Equality is typable in Semi-Full Pure Type Systems

Vincent Siles - Hugo Herbelin
INRIA - PPS - Ecole Polytechnique

LICS 2010

Road Map

(1) A brief history of PTS
(2) Equivalence between all presentations
(3) Partial Solution with Adams' TPOSR

First steps

- Pure Type Systems were introduced by Berardi and Terlouw, inspired by Barendregt's λ-cube (1992).

First steps

- Pure Type Systems were introduced by Berardi and Terlouw, inspired by Barendregt's λ-cube (1992).
- It is a general framework to have results over a large family of type systems (e.g. ST λ C, System-F/F ${ }_{\omega}$, CoC, System-U, LF, Type: Type, ...).

First steps

- Pure Type Systems were introduced by Berardi and Terlouw, inspired by Barendregt's λ-cube (1992).
- It is a general framework to have results over a large family of type systems (e.g. ST λ C, System-F/F ${ }_{\omega}$, CoC, System-U, LF, Type : Type, ...).
- Terms and Contexts:

$$
\begin{array}{cll}
A, B, M, N & ::= & s|x| M N\left|\lambda x^{A} \cdot M\right| \Pi x^{A} \cdot B(\text { or } A \rightarrow B) \\
\Gamma & := & {[] \mid \Gamma, x: A}
\end{array}
$$

First steps

- Pure Type Systems were introduced by Berardi and Terlouw, inspired by Barendregt's λ-cube (1992).
- It is a general framework to have results over a large family of type systems (e.g. ST λ C, System-F/F ${ }_{\omega}$, CoC, System-U, LF, Type : Type, ...).
- Terms and Contexts:

$$
\begin{array}{cll}
A, B, M, N & ::= & s|x| M N\left|\lambda x^{A} \cdot M\right| \Pi x^{A} \cdot B(\text { or } A \rightarrow B) \\
\Gamma & := & {[] \mid \Gamma, x: A}
\end{array}
$$

- Typing judgments relies on two sets:
- $A x$ is used to type sorts.
- Rel is used to type functions (or П-types).

First steps

- Pure Type Systems were introduced by Berardi and Terlouw, inspired by Barendregt's λ-cube (1992).
- It is a general framework to have results over a large family of type systems (e.g. ST λ C, System-F/F ${ }_{\omega}$, CoC, System-U, LF, Type : Type, ...).
- Terms and Contexts:

$$
\begin{array}{cll}
A, B, M, N & := & s|x| M N\left|\lambda x^{A} \cdot M\right| \Pi x^{A} \cdot B(\text { or } A \rightarrow B) \\
\Gamma & ::= & {[] \mid \Gamma, x: A}
\end{array}
$$

- Typing judgments relies on two sets:
- $A x$ is used to type sorts .
- Rel is used to type functions (or ח-types).
- Reduction :

$$
\left(\lambda x^{A} \cdot M\right) N \xrightarrow{\beta} M[N / x]+\text { congruences }
$$

PTS typing rules

$$
\begin{gathered}
\overline{\emptyset_{w f}} \frac{\Gamma \vdash A: s \quad x \notin \operatorname{Dom}(\Gamma)}{(\Gamma, x: A)_{w f}} \quad \frac{\Gamma_{w f}(s, t) \in \mathcal{A} x}{\Gamma \vdash s: t} \quad \frac{\Gamma_{w f} \Gamma(x)=A}{\Gamma \vdash x: A} \\
\frac{\Gamma \vdash A: s}{} \frac{\Gamma, x: A \vdash B: t}{\Gamma \vdash \lambda x^{A} \cdot M: \Pi x^{A} \cdot B} \\
\frac{\Gamma \vdash A: s \quad \Gamma, x: A \vdash B: t \quad(s, t, u) \in \mathcal{R} e l}{\Gamma \vdash \Pi x^{A} \cdot B: u}
\end{gathered}
$$

$$
\frac{\Gamma \vdash M: \Pi x^{A} \cdot B \quad \Gamma \vdash N: A}{\Gamma \vdash M N: B[N / x]} \quad \frac{\Gamma \vdash M: A}{} \quad A \stackrel{\beta}{\equiv} B \quad \Gamma \vdash B: s
$$

Facts about PTS

Generation:

e.g. if $\Gamma \vdash \lambda x^{A} . M: T$ then there are s, t, u and B such that

- $(s, t, u) \in \operatorname{Rel}, T \stackrel{\beta}{\equiv} \Pi x^{A} . B$
- $\Gamma \vdash A: s$ and $\Gamma, x: A \vdash B: t$ and $\Gamma, x: A \vdash M: B$.

Facts about PTS

Generation:

e.g. if $\Gamma \vdash \lambda x^{A} \cdot M: T$ then there are s, t, u and B such that

- $(s, t, u) \in \operatorname{Rel}, T \stackrel{\beta}{\equiv} \Pi x^{A} . B$
- $\Gamma \vdash A: s$ and $\Gamma, x: A \vdash B: t$ and $\Gamma, x: A \vdash M: B$.

Type Correctness

If $\Gamma \vdash M: T$ then there is $s \in S$ such that $T=s$ or $\Gamma \vdash T: s$.

Facts about PTS

Generation:

e.g. if $\Gamma \vdash \lambda x^{A} \cdot M: T$ then there are s, t, u and B such that

- $(s, t, u) \in \operatorname{Rel}, T \stackrel{\beta}{\equiv} \Pi x^{A} . B$
- $\Gamma \vdash A: s$ and $\Gamma, x: A \vdash B: t$ and $\Gamma, x: A \vdash M: B$.

Type Correctness

If $\Gamma \vdash M: T$ then there is $s \in S$ such that $T=s$ or $\Gamma \vdash T: s$.

Subject Reduction

If $\Gamma \vdash M: T$ and $M \xrightarrow{\beta} M^{\prime}$ then $\Gamma \vdash M^{\prime}: T$.
Needs injectivity of Π-types: If $\Pi x^{A} . B \stackrel{\beta}{=} \Pi x^{C} . D$ then $A \stackrel{\beta}{\equiv} C$ and $B \stackrel{\beta}{=} D$. (Easy by confluence of β-reduction).

Some special classes of PTS

- Functional: If $(s, t) \in \mathcal{A} x$ and $\left(s, t^{\prime}\right) \in \mathcal{A} x$ then $t=t^{\prime}$. If $(s, t, u) \in \mathcal{R e l}$ and $\left(s, t, u^{\prime}\right) \in \mathcal{R e l}$ then $u=u^{\prime}$.

Some special classes of PTS

- Functional: If $(s, t) \in \mathcal{A} x$ and $\left(s, t^{\prime}\right) \in \mathcal{A} x$ then $t=t^{\prime}$. If $(s, t, u) \in \mathcal{R e l}$ and $\left(s, t, u^{\prime}\right) \in \mathcal{R e l}$ then $u=u^{\prime}$.

Uniqueness of Types

If $\Gamma \vdash M: A$ and $\Gamma \vdash M: B$ then $A \stackrel{\beta}{\equiv} B$.

Some special classes of PTS

- Functional: If $(s, t) \in \mathcal{A} x$ and $\left(s, t^{\prime}\right) \in \mathcal{A} x$ then $t=t^{\prime}$. If $(s, t, u) \in \mathcal{R e l}$ and $\left(s, t, u^{\prime}\right) \in \mathcal{R e l}$ then $u=u^{\prime}$.

Uniqueness of Types

If $\Gamma \vdash M: A$ and $\Gamma \vdash M: B$ then $A \stackrel{\beta}{\equiv} B$.

- Full: for all s, t, there is a u such that $(s, t, u) \in \mathcal{R e}$.

Some special classes of PTS

- Functional: If $(s, t) \in \mathcal{A} x$ and $\left(s, t^{\prime}\right) \in \mathcal{A} x$ then $t=t^{\prime}$. If $(s, t, u) \in \mathcal{R e l}$ and $\left(s, t, u^{\prime}\right) \in \mathcal{R e}$ then $u=u^{\prime}$.

Uniqueness of Types

If $\Gamma \vdash M: A$ and $\Gamma \vdash M: B$ then $A \stackrel{\beta}{\equiv} B$.

- Full: for all s, t, there is a u such that $(s, t, u) \in \mathcal{R e}$. \hookrightarrow In those PTS, "any" product is typable.

Some special classes of PTS

- Functional: If $(s, t) \in \mathcal{A} x$ and $\left(s, t^{\prime}\right) \in \mathcal{A} x$ then $t=t^{\prime}$. If $(s, t, u) \in \mathcal{R e l}$ and $\left(s, t, u^{\prime}\right) \in \mathcal{R e l}$ then $u=u^{\prime}$.

Uniqueness of Types

If $\Gamma \vdash M: A$ and $\Gamma \vdash M: B$ then $A \stackrel{\beta}{\equiv} B$.

- Full: for all s, t, there is a u such that $(s, t, u) \in \mathcal{R e}$. \hookrightarrow In those PTS, "any" product is typable.
- Semi-full PTS: If $(s, t, u) \in \mathcal{R}$ el then for all t^{\prime}, there is u^{\prime} such that $\left(s, t^{\prime}, u^{\prime}\right) \in \mathcal{R e}$.

Some special classes of PTS

- Functional: If $(s, t) \in \mathcal{A} x$ and $\left(s, t^{\prime}\right) \in \mathcal{A} x$ then $t=t^{\prime}$. If $(s, t, u) \in \mathcal{R e l}$ and $\left(s, t, u^{\prime}\right) \in \mathcal{R e}$ then $u=u^{\prime}$.

Uniqueness of Types

If $\Gamma \vdash M: A$ and $\Gamma \vdash M: B$ then $A \xlongequal{\underline{\beta}} B$.

- Full: for all s, t, there is a u such that $(s, t, u) \in \mathcal{R e}$. \hookrightarrow In those PTS, "any" product is typable.
- Semi-full PTS: If $(s, t, u) \in \mathcal{R} e l$ then for all t^{\prime}, there is u^{\prime} such that $\left(s, t^{\prime}, u^{\prime}\right) \in \mathcal{R e}$.

Functionality of products

If $\Gamma \vdash \Pi x^{A} \cdot B: u$ and $\Gamma(x: A) \vdash B^{\prime}: t^{\prime}$, there is u^{\prime} such that $\Gamma \vdash \Pi x^{A} \cdot B^{\prime}: u^{\prime}$.

Shape of types in PTS

In 1993, Jutting studied the types of terms in PTS:
Terms are classified in two families T_{v} and $T s$:

Shape of types in PTS

In 1993, Jutting studied the types of terms in PTS:
Terms are classified in two families $T v$ and $T s$:

$$
\left\{\begin{array}{clc}
v \in V & \longrightarrow & v \in T v \\
M \in T v & \longrightarrow & M N, \lambda x^{A} \cdot M \in T v
\end{array}\right.
$$

Shape of types in PTS

In 1993, Jutting studied the types of terms in PTS:
Terms are classified in two families $T v$ and $T s$:

$$
\begin{aligned}
& \left\{\begin{array}{clc}
v \in V & \longrightarrow & v \in T v \\
M \in T v & \longrightarrow & M N, \lambda x^{A} \cdot M \in T v
\end{array}\right. \\
& \left\{\begin{array}{ccc}
s \in S & \longrightarrow & s \in T s \\
& \longrightarrow & \Pi x^{A} \cdot B \in T s \\
M \in T s & \longrightarrow & M N, \lambda x^{A} \cdot M \in T s
\end{array}\right.
\end{aligned}
$$

Shape of types in PTS

In 1993, Jutting studied the types of terms in PTS:
Terms are classified in two families $T v$ and $T s$:

$$
\begin{aligned}
& \left\{\begin{array}{clc}
v \in V & \longrightarrow & v \in T v \\
M \in T v & \longrightarrow & M N, \lambda x^{A} \cdot M \in T v
\end{array}\right. \\
& \left\{\begin{array}{ccc}
s \in S & \longrightarrow & s \in T s \\
& \longrightarrow & \Pi x^{A} \cdot B \in T s \\
M \in T s & \longrightarrow & M N, \lambda x^{A} \cdot M \in T s
\end{array}\right.
\end{aligned}
$$

- if $M \in T v, \Gamma \vdash M: A$ and $\Gamma \vdash M: B$, then $A \xlongequal{\underline{\beta}} B$.
- if $M \in T_{s}, \Gamma \vdash M: A$ and $\Gamma \vdash M: B$, then $A \xrightarrow{\beta} \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . s$ and $B \xrightarrow{\beta} \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . t$.

Could we be able to type the equality?

- In the conversion rules the intermediate steps are not checked.

$$
\frac{\Gamma \vdash M: A \quad A \stackrel{\beta}{=} B \quad \Gamma \vdash B: s}{\Gamma \vdash M: B}
$$

Could we be able to type the equality?

- In the conversion rules the intermediate steps are not checked.

$$
\frac{\Gamma \vdash M: A \quad A \stackrel{\beta}{=} B \quad \Gamma \vdash B: s}{\Gamma \vdash M: B}
$$

- β-equality is all about program computation, where types are useless.

Could we be able to type the equality?

- In the conversion rules the intermediate steps are not checked.

$$
\frac{\Gamma \vdash M: A \quad A \stackrel{\beta}{\equiv} B \quad \Gamma \vdash B: s}{\Gamma \vdash M: B}
$$

- β-equality is all about program computation, where types are useless.
- However, set-theoretical models need a typed equality.

Could we be able to type the equality?

- In the conversion rules the intermediate steps are not checked.

$$
\frac{\Gamma \vdash M: A \quad A \stackrel{\beta}{=} B \quad \Gamma \vdash B: s}{\Gamma \vdash M: B}
$$

- β-equality is all about program computation, where types are useless.
- However, set-theoretical models need a typed equality.
- Other kind of equalities may depend on types (η-expansion, external axioms).

Could we be able to type the equality?

- In the conversion rules the intermediate steps are not checked.

$$
\frac{\Gamma \vdash M: A \quad A \stackrel{\beta}{\equiv} B \quad \Gamma \vdash B: s}{\Gamma \vdash M: B}
$$

- β-equality is all about program computation, where types are useless.
- However, set-theoretical models need a typed equality.
- Other kind of equalities may depend on types (η-expansion, external axioms).
- So, what if we could ensure that each conversion step is intrisincally well-typed?

Could we be able to type the equality?

- In the conversion rules the intermediate steps are not checked.

$$
\frac{\Gamma \vdash M: A \quad A \stackrel{\beta}{=} B \quad \Gamma \vdash B: s}{\Gamma \vdash M: B}
$$

- β-equality is all about program computation, where types are useless.
- However, set-theoretical models need a typed equality.
- Other kind of equalities may depend on types (η-expansion, external axioms).
- So, what if we could ensure that each conversion step is intrisincally well-typed ?
\hookrightarrow all this lead to the definition of PTS with Judgmental Equality (aka a sementical version of PTS, mostly inspired by [Martin-Löf 84]).

PTS typing rules (1)

$$
\begin{gathered}
\overline{\emptyset_{w f_{e}}} \frac{\Gamma \vdash_{e} A: s \quad x \notin \operatorname{Dom}(\Gamma)}{(\Gamma, x: A)_{w f_{e}}} \frac{\Gamma_{w f_{e}}(s, t) \in \mathcal{A} x}{\Gamma \vdash_{e} s: t} \quad \frac{\Gamma{ }_{w f_{e}} \Gamma(x)=A}{\Gamma \vdash_{e} x: A} \\
\Gamma \vdash_{e} A: s \quad \Gamma, x: A \vdash_{e} B: t \\
\frac{(s, t, u) \in \mathcal{R} e l}{\Gamma, x: A \vdash_{e} M: B} \\
\frac{\Gamma \vdash_{e} A x^{A} \cdot M: \Pi x^{A} \cdot B}{\Gamma, x: A \vdash_{e} B: t \quad(s, t, u) \in \mathcal{R e} l} \\
\Gamma \vdash_{e} \Pi x^{A} \cdot B: u \\
\frac{\Gamma \vdash_{e} M: \Pi x^{A} \cdot B \quad \Gamma \vdash_{e} N: A}{\Gamma \vdash_{e} M N: B[N / x]} \quad \frac{\Gamma \vdash_{e} M: A \quad \Gamma \vdash_{e} A=B: s}{\Gamma \vdash_{e} M: B}
\end{gathered}
$$

PTS typing rules (1)

$$
\begin{gathered}
\overline{\emptyset_{w f_{e}}} \frac{\Gamma \vdash_{e} A: s \quad x \notin \operatorname{Dom}(\Gamma)}{(\Gamma, x: A)_{w f_{e}}} \frac{\Gamma w f_{e}(s, t) \in \mathcal{A} x}{\Gamma \vdash_{e} s: t} \quad \frac{\Gamma w f_{e} \Gamma(x)=A}{\Gamma \vdash_{e} x: A} \\
\begin{array}{c}
\Gamma \vdash_{e} A: s \\
\frac{(s, t, u) \in \mathcal{R} e l}{} \quad \Gamma, x: A \vdash_{e} B: t \\
\Gamma \vdash_{e} \lambda x^{A} \cdot M: \Pi \vdash^{A} \cdot B
\end{array} \\
\frac{\Gamma \vdash_{e} A: s \quad \Gamma, x: A \vdash_{e} B: t \quad(s, t, u) \in \mathcal{R} e l}{\Gamma \vdash_{e} \Pi x^{A} \cdot B: u} \\
\frac{\Gamma \vdash_{e} M: \Pi x^{A} \cdot B \quad \Gamma \vdash_{e} N: A}{\Gamma \vdash_{e} M N: B[N / x]} \quad \frac{\Gamma \vdash_{e} M: A}{\Gamma \vdash_{e} M: B}
\end{gathered}
$$

PTSe typing rules (2)

$$
\begin{gathered}
\frac{\Gamma w f_{e} \quad(s, t) \in \mathcal{A} x}{\Gamma \vdash_{e} s=s: t} \quad \frac{\Gamma_{w f_{e}} \quad \Gamma(x)=A}{\Gamma \vdash_{e} x=x: A} \\
\frac{\Gamma \vdash_{e} M=M^{\prime}: \Pi x^{A} \cdot B \quad \Gamma \vdash_{e} N=N^{\prime}: A}{\Gamma \vdash_{e} M N=M^{\prime} N^{\prime}: B[N / x]} \\
\frac{\Gamma \vdash_{e} A=A^{\prime}: s \quad \Gamma, x: A \vdash_{e} B=B^{\prime}: t \quad(s, t, u) \in \mathcal{R e} e l}{\Gamma \vdash_{e} \Pi x^{A} \cdot B=\Pi x^{A^{\prime}} \cdot B^{\prime}: u} \\
\frac{\Gamma \vdash_{e} A=A^{\prime}: s \quad \Gamma, x: A \vdash_{e} M=M^{\prime}: B}{\Gamma, x: A \vdash_{e} B: t \quad(s, t, u) \in \mathcal{R e l}} \\
\Gamma \vdash_{e} \lambda x^{A} \cdot M=\lambda x^{A^{\prime}} \cdot M^{\prime}: \Pi x^{A} \cdot B
\end{gathered}
$$

PTSe typing rules (3)

$$
\frac{\Gamma \vdash_{e} M=M^{\prime}: A \quad \Gamma \vdash_{e} A=B: s}{\Gamma \vdash_{e} M=M^{\prime}: B}
$$

$$
\frac{\Gamma \vdash_{e} M: A}{\Gamma \vdash_{e} M=M: A} \quad \frac{\Gamma \vdash_{e} M=N: A}{\Gamma \vdash_{e} N=M: A} \quad \frac{\Gamma \vdash_{e} M=N: A \quad \Gamma \vdash_{e} N=P: A}{\Gamma \vdash_{e} M=P: A}
$$

$$
\begin{gathered}
\Gamma, x: A \vdash_{e} M: B \quad \Gamma \vdash_{e} N: A \\
\frac{\Gamma \vdash_{e} A: s \quad \Gamma, x: A \vdash_{e} B: t \quad(s, t, u) \in \mathcal{R} e l}{\Gamma \vdash_{e}\left(\lambda x^{A} \cdot M\right) N=M[N / x]: B[N / x]}
\end{gathered}
$$

The Big Question

Are both systems the same?

Proof of the equivalence

We prove by mutual induction that

- $\Gamma \vdash_{e} M: T$ iff $\Gamma \vdash M: T$.
- $\Gamma \vdash_{e} M=N: T$ iff $\Gamma \vdash M: T$, $\Gamma \vdash N: T$ and $M \stackrel{\beta}{=} N$.
- $\Gamma_{w f_{e}}$ iff $\Gamma_{w f}$.

Proof of the equivalence

We prove by mutual induction that

- $\Gamma \vdash_{e} M: T$ iff $\Gamma \vdash M: T$.
- $\Gamma \vdash_{e} M=N: T$ iff $\Gamma \vdash M: T, \Gamma \vdash N: T$ and $M \stackrel{\beta}{=} N$.
- $\Gamma_{w f_{e}}$ iff $\Gamma_{w f}$.
\Rightarrow trivial, we just "lose" some information.

Proof of the equivalence

We prove by mutual induction that

- $\Gamma \vdash_{e} M: T$ iff $\Gamma \vdash M: T$.
- $\Gamma \vdash_{e} M=N: T$ iff $\Gamma \vdash M: T$, $\Gamma \vdash N: T$ and $M \stackrel{\beta}{=} N$.
- $\Gamma_{w f_{e}}$ iff $\Gamma_{w f}$.
\Rightarrow trivial, we just "lose" some information.
\Leftarrow we need to find a way to type all the intermediate steps.

Proof of the equivalence

We prove by mutual induction that

- $\Gamma \vdash_{e} M: T$ iff $\Gamma \vdash M: T$.
- $\Gamma \vdash_{e} M=N: T$ iff $\Gamma \vdash M: T$, $\Gamma \vdash N: T$ and $M \stackrel{\beta}{=} N$.
- $\Gamma_{w f_{e}}$ iff $\Gamma_{w f}$.
\Rightarrow trivial, we just "lose" some information.
\Leftarrow we need to find a way to type all the intermediate steps.
But can we ?

How do we do this?

$$
\Gamma \vdash M: T \quad M \quad \stackrel{\beta}{=} \quad N \quad \Gamma \vdash N: T
$$

How do we do this?

How do we do this?

- P is well-typed in PTS by Subject Reduction.

How do we do this?

- P is well-typed in PTS by Subject Reduction.
- Is P well-typed in PTSe?

How do we do this?

- P is well-typed in PTS by Subject Reduction.
- Is P well-typed in PTSe ?
- How do we type $M=P$ and $N=P$ in PTSe ?

The need of Subject Reduction

As pointed out in [Geuvers-Werner 94], we need to prove that PTSe have the Subject Reduction property

Subject Reduction:
If $\Gamma \vdash_{e} M: T$ and $M \xrightarrow{\beta} N$, then $\Gamma \vdash_{e} M=N: T$.

The need of Subject Reduction

As pointed out in [Geuvers-Werner 94], we need to prove that PTSe have the Subject Reduction property

Subject Reduction:
 If $\Gamma \vdash_{e} M: T$ and $M \xrightarrow{\beta} N$, then $\Gamma \vdash_{e} M=N: T$.

But to prove this, we need Π-injectivity for typed equality judgments, which is a really difficult question for PTSe since it relies on (typed) property of Confluence,

The need of Subject Reduction

As pointed out in [Geuvers-Werner 94], we need to prove that PTSe have the Subject Reduction property

Subject Reduction:

If $\Gamma \vdash_{e} M: T$ and $M \xrightarrow{\beta} N$, then $\Gamma \vdash_{e} M=N: T$.

But to prove this, we need Π-injectivity for typed equality judgments, which is a really difficult question for PTSe since it relies on (typed) property of Confluence, which relies on Subject Reduction,

The need of Subject Reduction

As pointed out in [Geuvers-Werner 94], we need to prove that PTSe have the Subject Reduction property

Subject Reduction:

If $\Gamma \vdash_{e} M: T$ and $M \xrightarrow{\beta} N$, then $\Gamma \vdash_{e} M=N: T$.

But to prove this, we need Π-injectivity for typed equality judgments, which is a really difficult question for PTSe since it relies on (typed) property of Confluence, which relies on Subject Reduction, which relies on П-injectivity,

The need of Subject Reduction

As pointed out in [Geuvers-Werner 94], we need to prove that PTSe have the Subject Reduction property

Subject Reduction:

If $\Gamma \vdash_{e} M: T$ and $M \xrightarrow{\beta} N$, then $\Gamma \vdash_{e} M=N: T$.

But to prove this, we need Π-injectivity for typed equality judgments, which is a really difficult question for PTSe since it relies on (typed) property of Confluence, which relies on Subject Reduction, which relies on П-injectivity, which relies on ...

Current status of the equivalence

- for functional PTS : [Adams 06] "Pure Type Systems with Judgmental Equality".

Current status of the equivalence

- for functional PTS : [Adams 06] "Pure Type Systems with Judgmental Equality".
- for semi-full and full PTS : [Herbelin-Siles 10] "Equality is typable in Semi-Full Pure Type Systems".

Current status of the equivalence

- for functional PTS : [Adams 06] "Pure Type Systems with Judgmental Equality".
- for semi-full and full PTS : [Herbelin-Siles 10] "Equality is typable in Semi-Full Pure Type Systems".
- But the question is still open finally solved for any kind of PTS! (Herbelin-Siles, submitted at JFP).

Adams' approach

- In order to break the loop, Adams only considered the functional PTS and defined a typed version of the usual parallel β-reduction, called Typed Parallel One Step Reduction (TPOSR).

Adams' approach

- In order to break the loop, Adams only considered the functional PTS and defined a typed version of the usual parallel β-reduction, called Typed Parallel One Step Reduction (TPOSR).
- His goal was to prove the Diamond Property for TPOSR, which leads to the addition of annotations on applications.

Adams' approach

- In order to break the loop, Adams only considered the functional PTS and defined a typed version of the usual parallel β-reduction, called Typed Parallel One Step Reduction (TPOSR).
- His goal was to prove the Diamond Property for TPOSR, which leads to the addition of annotations on applications.
- The main scheme is:

Adams' approach

- In order to break the loop, Adams only considered the functional PTS and defined a typed version of the usual parallel β-reduction, called Typed Parallel One Step Reduction (TPOSR).
- His goal was to prove the Diamond Property for TPOSR, which leads to the addition of annotations on applications.
- The main scheme is:
- Prove that TPOSR is Church-Rosser.

Adams' approach

- In order to break the loop, Adams only considered the functional PTS and defined a typed version of the usual parallel β-reduction, called Typed Parallel One Step Reduction (TPOSR).
- His goal was to prove the Diamond Property for TPOSR, which leads to the addition of annotations on applications.
- The main scheme is:
- Prove that TPOSR is Church-Rosser.
- Prove that TPOSR has injectivity of П-types.

Adams' approach

- In order to break the loop, Adams only considered the functional PTS and defined a typed version of the usual parallel β-reduction, called Typed Parallel One Step Reduction (TPOSR).
- His goal was to prove the Diamond Property for TPOSR, which leads to the addition of annotations on applications.
- The main scheme is:
- Prove that TPOSR is Church-Rosser.
- Prove that TPOSR has injectivity of П-types.
- Prove that TPOSR has Subject-Reduction.

Adams' approach

- In order to break the loop, Adams only considered the functional PTS and defined a typed version of the usual parallel β-reduction, called Typed Parallel One Step Reduction (TPOSR).
- His goal was to prove the Diamond Property for TPOSR, which leads to the addition of annotations on applications.
- The main scheme is:
- Prove that TPOSR is Church-Rosser.
- Prove that TPOSR has injectivity of П-types.
- Prove that TPOSR has Subject-Reduction.
- Prove that TPOSR is equivalent to PTS and PTSe.

TPOSR typing rules (1)

$$
\begin{aligned}
\overline{\emptyset_{w f}} & \frac{\Gamma \vdash A \triangleright A^{\prime}: s \quad x \notin \operatorname{Dom}(\Gamma)}{(\Gamma, x: A)_{w f}} \quad \frac{\Gamma_{w f}(s, t) \in \mathcal{A} x}{\Gamma \vdash s \triangleright s: t} \quad \frac{\Gamma_{w f} \Gamma(x)=A}{\Gamma \vdash x \triangleright x: A} \\
& \frac{\Gamma \vdash A \triangleright A^{\prime}: s \quad \Gamma, x: A \vdash B \triangleright B^{\prime}: t \quad(s, t, u) \in \mathcal{R} e l}{\Gamma \vdash \Pi x^{A} \cdot B \triangleright \Pi x^{A^{\prime}} \cdot B^{\prime}: u}
\end{aligned}
$$

$$
\frac{\Gamma, x: A \vdash B \triangleright B^{\prime}: t \quad \Gamma \vdash, x: A \vdash M \triangleright M^{\prime}: B \quad(s, t, u) \in \mathcal{R e l}}{\Gamma \vdash \lambda x^{A} \cdot M \triangleright \lambda x^{A^{\prime}} \cdot M^{\prime}: \Pi x^{A} \cdot B}
$$

$$
\left\ulcorner\vdash A \triangleright A^{\prime}: s \quad \Gamma, x: A \vdash B \triangleright B^{\prime}: t\right.
$$

$$
\Gamma \vdash M \triangleright M^{\prime}: \Pi x^{A} . B \quad \Gamma \vdash N \triangleright N^{\prime}: A \quad(s, t, u) \in \mathcal{R e} l
$$

$$
\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime}}^{\prime} N^{\prime}: B[N / x]
$$

TPOSR typing rules (1)

$$
\begin{aligned}
\overline{\emptyset_{w f}} & \frac{\Gamma \vdash A \triangleright A^{\prime}: s \quad x \notin \operatorname{Dom}(\Gamma)}{(\Gamma, x: A)_{w f}} \quad \frac{\Gamma_{w f}(s, t) \in \mathcal{A} x}{\Gamma \vdash s \triangleright s: t} \quad \frac{\Gamma_{w f} \Gamma(x)=A}{\Gamma \vdash x \triangleright x: A} \\
& \frac{\Gamma \vdash A \triangleright A^{\prime}: s \quad \Gamma, x: A \vdash B \triangleright B^{\prime}: t \quad(s, t, u) \in \mathcal{R} e l}{\Gamma \vdash \Pi x^{A} \cdot B \triangleright \Pi x^{A^{\prime}} \cdot B^{\prime}: u}
\end{aligned}
$$

$$
\frac{\Gamma, x: A \vdash B \triangleright B^{\prime}: t \quad \Gamma \vdash, x: A \vdash M \triangleright M^{\prime}: B \quad(s, t, u) \in \mathcal{R e l}}{\Gamma \vdash \lambda x^{A} \cdot M \triangleright \lambda x^{A^{\prime}} \cdot M^{\prime}: \Pi x^{A} \cdot B}
$$

$$
\left\ulcorner\vdash A \triangleright A^{\prime}: s \quad \Gamma, x: A \vdash B \triangleright B^{\prime}: t\right.
$$

$$
\Gamma \vdash M \triangleright M^{\prime}: \Pi x^{A} . B \quad \Gamma \vdash N \triangleright N^{\prime}: A \quad(s, t, u) \in \mathcal{R e} l
$$

$$
\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime}}^{\prime} N^{\prime}: B[N / x]
$$

TPOSR typing rules (2)

$$
\begin{gathered}
\Gamma \vdash A \triangleright A^{\prime}: s \quad \Gamma, x: A \vdash B \triangleright B^{\prime}: t \\
\frac{\left.\Gamma, x: A \vdash M \triangleright M^{\prime}: B \quad \Gamma \vdash N \triangleright N^{\prime}: A \quad(s, t, u) \in \mathcal{R e} e\right)}{\Gamma \vdash\left(\lambda x^{A} \cdot M\right)_{(x) B} N \triangleright M^{\prime}\left[N^{\prime} / x\right]: B[N / x]} \\
\frac{\Gamma \vdash M \triangleright N: A \quad \Gamma \vdash A \triangleright B: s}{\Gamma \vdash M \triangleright N: B} \\
\frac{\Gamma \vdash M \triangleright N: A \quad \Gamma \vdash B \triangleright A: s}{\Gamma \vdash M \triangleright N: B} \\
\frac{\Gamma \vdash M \triangleright N: s}{\Gamma \vdash M \equiv N} \quad \frac{\Gamma \vdash M \equiv N}{\Gamma \vdash N \equiv M} \quad \frac{\Gamma \vdash M \equiv N}{\Gamma \vdash M \equiv P}
\end{gathered}
$$

TPOSR typing rules (2)

$$
\begin{gathered}
\Gamma \vdash A \triangleright A^{\prime}: s \quad \Gamma, x: A \vdash B \triangleright B^{\prime}: t \\
\frac{\left.\Gamma, x: A \vdash M \triangleright M^{\prime}: B \quad \Gamma \vdash N \triangleright N^{\prime}: A \quad(s, t, u) \in \mathcal{R e} l\right)}{\Gamma \vdash\left(\lambda x^{A} \cdot M\right)_{(x) B} N \triangleright M^{\prime}\left[N^{\prime} / x\right]: B[N / x]} \\
\frac{\Gamma \vdash M \triangleright N: A \quad \Gamma \vdash A \triangleright B: s}{\Gamma \vdash M \triangleright N: B} \\
\frac{\Gamma \vdash M \triangleright N: A \quad \Gamma \vdash B \triangleright A: s}{\Gamma \vdash M \triangleright N: B} \\
\frac{\Gamma \vdash M \triangleright N: s}{\Gamma \vdash M \equiv N} \quad \frac{\Gamma \vdash M \equiv N}{\Gamma \vdash N \equiv M} \frac{\Gamma \vdash M \equiv N}{\text { We do not keep track of the sort (it requires Type Uniqueness) }} \\
\text { WトN三P}
\end{gathered}
$$

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond Property holds for TPOSR.

Diamond Property

If $\Gamma \vdash M \triangleright M^{\prime}: A$ and $\Gamma \vdash M \triangleright M^{\prime \prime}: B$ then there is N such that $\Gamma \vdash M^{\prime} \triangleright N: A, B$ and $\Gamma \vdash M^{\prime \prime} \triangleright N: A, B$.

First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond Property holds for TPOSR.

Diamond Property

If $\Gamma \vdash M \triangleright M^{\prime}: A$ and $\Gamma \vdash M \triangleright M^{\prime \prime}: B$ then there is N such that $\Gamma \vdash M^{\prime} \triangleright N: A, B$ and $\Gamma \vdash M^{\prime \prime} \triangleright N: A, B$.

The main issues are the critical pairs involving the beta and app rules: when applying an induction hypothesis, both contexts need to be syntactically the same.

Where is the trap?

- Input:
$\Gamma \vdash M_{(x) B_{B}} N \triangleright M_{(x) B^{\prime}}^{\prime} N^{\prime}: B[N / x]$
$\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime \prime}}^{\prime \prime} N^{\prime \prime}: B[N / x]$

Where is the trap ?

- Input:
$\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime}}^{\prime} N^{\prime}: B[N / x]$
$\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime \prime}}^{\prime \prime} N^{\prime \prime}: B[N / x]$
- Induction Hypothesis over B : If $\Gamma(x: A) \vdash B \triangleright B^{\prime}: T$ and $\Gamma(x: A) \vdash B \triangleright B^{\prime \prime}: T^{\prime}$ then there is \ldots

Where is the trap ?

- Input:
$\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime}}^{\prime} N^{\prime}: B[N / x]$
$\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime \prime}}^{\prime \prime} N^{\prime \prime}: B[N / x]$
- Induction Hypothesis over B : If $\Gamma(x: A) \vdash B \triangleright B^{\prime}: T$ and $\Gamma(x: A) \vdash B \triangleright B^{\prime \prime}: T^{\prime}$ then there is \ldots
- Information about $B: \Gamma(x: A) \vdash B \triangleright B^{\prime}: t$ and $\Gamma(x: C) \vdash B \triangleright B^{\prime \prime}: t^{\prime}$

Where is the trap ?

- Input:
$\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime}}^{\prime} N^{\prime}: B[N / x]$
$\Gamma \vdash M_{(x) B} N \triangleright M_{(x) B^{\prime \prime}}^{\prime \prime} N^{\prime \prime}: B[N / x]$
- Induction Hypothesis over B : If $\Gamma(x: A) \vdash B \triangleright B^{\prime}: T$ and $\Gamma(x: A) \vdash B \triangleright B^{\prime \prime}: T^{\prime}$ then there is ...
- Information about $B: \Gamma(x: A) \vdash B \triangleright B^{\prime}: t$ and $\Gamma(x: C) \vdash B \triangleright B^{\prime \prime}: t^{\prime}$
- Information about A and C (by induction): there is N_{0} such that $\Gamma \vdash N^{\prime} \triangleright N_{0}: A$ and $\Gamma \vdash N^{\prime \prime} \triangleright N_{0}: C\left(\operatorname{resp} M_{0}\right)$.

Where is the trap ?

- Input:

$$
\begin{aligned}
& \Gamma \vdash M_{(x)}{ }_{B} N \triangleright M_{(x) B^{\prime}}^{\prime} N^{\prime}: B[N / x] \\
& \Gamma \vdash M_{(x)} N D \triangleright M_{(x) B^{\prime \prime}}^{\prime \prime} N^{\prime \prime}: B[N / x]
\end{aligned}
$$

- Induction Hypothesis over B : If $\Gamma(x: A) \vdash B \triangleright B^{\prime}: T$ and $\Gamma(x: A) \vdash B \triangleright B^{\prime \prime}: T^{\prime}$ then there is ...
- Information about $B: \Gamma(x: A) \vdash B \triangleright B^{\prime}: t$ and $\Gamma(x: C) \vdash B \triangleright B^{\prime \prime}: t^{\prime}$
- Information about A and C (by induction): there is N_{0} such that $\Gamma \vdash N^{\prime} \triangleright N_{0}: A$ and $\Gamma \vdash N^{\prime \prime} \triangleright N_{0}: C\left(\operatorname{resp} M_{0}\right)$.
\hookrightarrow So we need a way to equal A and C.

Functional vs Semi-Full

For any functional TPOSR system, Uniqueness of Types holds, so we can prove that $\Gamma \vdash A \equiv C$ quite easily.

Functional vs Semi-Full

For any functional TPOSR system, Uniqueness of Types holds, so we can prove that $\Gamma \vdash A \equiv C$ quite easily.

Shape of Types in semi-full TPOSR

If $\Gamma \vdash M \triangleright$? : A and $\Gamma \vdash M \triangleright$? : B then

- either $\Gamma \vdash A \equiv B$
- or $\Gamma \vdash A \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . s$ and $\Gamma \vdash B \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . t$

Functional vs Semi-Full

For any functional TPOSR system, Uniqueness of Types holds, so we can prove that $\Gamma \vdash A \equiv C$ quite easily.

Shape of Types in semi-full TPOSR

If $\Gamma \vdash M \triangleright$? : A and $\Gamma \vdash M \triangleright$?: B then

- either $\Gamma \vdash A \equiv B$
- or $\Gamma \vdash A \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . s$ and $\Gamma \vdash B \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . t$

By applying it to M_{0} and N_{0}, we can show that $s=t$ by removing the annotations and using untyped Confluence of usual β-reduction.

Functional vs Semi-Full

For any functional TPOSR system, Uniqueness of Types holds, so we can prove that $\Gamma \vdash A \equiv C$ quite easily.

Shape of Types in semi-full TPOSR

If $\Gamma \vdash M \triangleright$? : A and $\Gamma \vdash M \triangleright$?: B then

- either $\Gamma \vdash A \equiv B$
- or $\Gamma \vdash A \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . s$ and $\Gamma \vdash B \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . t$

By applying it to M_{0} and N_{0}, we can show that $s=t$ by removing the annotations and using untyped Confluence of usual β-reduction.

We can now finish to prove Church-Rosser, injectivity of Π s and Subject Reduction.

Validity of Annotations

To close the equivalence, we need to prove that the additional annotations on applications did not change the typing system, that is:

Validity of Annotations
If $\Gamma \vdash M: T$, then there are Γ^{*}, M^{*} and T^{*} such that $\Gamma^{*} \vdash M^{*} \triangleright M^{*}: T^{*}$, $\left|\Gamma^{*}\right|=\Gamma,\left|M^{*}\right|=M$ and $\left|T^{*}\right|=T$.

Validity of Annotations

To close the equivalence, we need to prove that the additional annotations on applications did not change the typing system, that is:

Validity of Annotations

If $\Gamma \vdash M: T$, then there are Γ^{*}, M^{*} and T^{*} such that $\Gamma^{*} \vdash M^{*} \triangleright M^{*}: T^{*}$, $\left|\Gamma^{*}\right|=\Gamma,\left|M^{*}\right|=M$ and $\left|T^{*}\right|=T$.

Since there are several ways to annotate a term, the induction can be quite tricky without the following lemma:

Erased Conversion

- If $\Gamma \vdash A \triangleright$? : $s, \Gamma \vdash B \triangleright$? : t and $|A|=|B|$, then $\Gamma \vdash A \equiv B$.
- If $\Gamma_{1} \vdash M \triangleright N: A,\left|\Gamma_{1}\right|=\left|\Gamma_{2}\right|$ and $\Gamma_{2} w f$, then $\Gamma_{2} \vdash M \triangleright N: A$.

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is easily done for functional PTS, but strangely hard for semi-full:

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

If $\Gamma \vdash M \triangleright$? : $S, \Gamma \vdash N \triangleright$?: T and $|M|=|N|$, then there is P such that:

- 「トM $\triangleright^{+} P: S$
- $\Gamma \vdash N \triangleright^{+} P: T$

Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is easily done for functional PTS, but strangely hard for semi-full:

Erased Confluence

If $\Gamma \vdash M \triangleright ?: S, \Gamma \vdash N \triangleright$?: T and $|M|=|N|$, then there is P such that:

- 「トM $\triangleright^{+} P: S$
- $\Gamma \vdash N \triangleright^{+} P: T$

By induction, all the cases are trivial but the application one

Erased Conversion：the second pitfall

To prove this conversion lemma，we need a more general lemma which is easily done for functional PTS，but strangely hard for semi－full：

Erased Confluence

If $\Gamma \vdash M \triangleright$ ？：$S, \Gamma \vdash N \triangleright$ ？：T and $|M|=|N|$ ，then there is P such that：
－「トMロ＋$P: S$
－$\Gamma \vdash N \triangleright^{+} P: T$
By induction，all the cases are trivial but the application one

$$
\begin{array}{ll}
|M|=\left|M^{\prime}\right| & |N|=\left|N^{\prime}\right| \\
\Gamma \vdash M_{(x) B} N \triangleright ?: B[N / x] & \Gamma \vdash M_{(x) B^{\prime}}^{\prime} N^{\prime} \triangleright ?: B^{\prime}\left[N^{\prime} / x\right] \\
\Gamma \vdash M \triangleright^{+} M_{0}: \Pi x^{A} \cdot B & \Gamma \vdash N \triangleright^{+} N_{0}: A \\
\Gamma \vdash M^{\prime} \triangleright^{+} M_{0}: \Pi x^{A^{\prime}} . B^{\prime} & \Gamma \vdash N^{\prime} \triangleright^{+} N_{0}: A^{\prime}
\end{array}
$$

Shape of Terms

Shape of Types in TPOSR

\ldots or $\Gamma \vdash A \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . s$ and $\Gamma \vdash B \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . t$
What does it mean to be typed by a telescope ?

Shape of Terms

Shape of Types in TPOSR

\ldots or $\Gamma \vdash A \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . s$ and $\Gamma \vdash B \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . t$
What does it mean to be typed by a telescope ?

(Simple) Shape of Terms in TPOSR

If $\Gamma \vdash M \triangleright$? : A and $\Gamma \vdash M \triangleright$? : B then:

- either $\Gamma \vdash A \equiv B$
- or $\Gamma \vdash M \triangleright K: A$ and $\Gamma \vdash M \triangleright K: B$ where K is a sort, a product $\Pi x^{U} . V$ or an abstraction $\lambda x^{U} . V$.

Shape of Terms

Shape of Types in TPOSR

\ldots or $\Gamma \vdash A \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . s$ and $\Gamma \vdash B \equiv \Pi x_{1}^{U_{1}} \ldots x_{n}^{U_{n}} . t$
What does it mean to be typed by a telescope ?

(Simple) Shape of Terms in TPOSR

If $\Gamma \vdash M \triangleright$? : A and $\Gamma \vdash M \triangleright$? : B then:

- either $\Gamma \vdash A \equiv B$
- or $\Gamma \vdash M \triangleright K: A$ and $\Gamma \vdash M \triangleright K: B$ where K is a sort, a product $\Pi x^{U} . V$ or an abstraction $\lambda x^{U} . V$.

In the previous problematic case, M_{0} is typed by a Π-type, so K can not be a sort, nor a Π-types, so we just created a β-redex whose reduction will erase the annotation.

Consequences of the equivalence

Equivalence PTS / PTSe

- $\Gamma \vdash M: T$ iff $\Gamma \vdash_{e} M: T$.
- $\Gamma \vdash M: T \Gamma \vdash N: T$ and $M \stackrel{\beta}{=} N$ iff $\Gamma \vdash_{e} M=N: T$.

Consequences of the equivalence

Equivalence PTS / PTSe

- 「ト $M: T$ iff $\Gamma \vdash_{e} M: T$.
- $\Gamma \vdash M: T \Gamma \vdash N: T$ and $M \stackrel{\beta}{=} N$ iff $\Gamma \vdash_{e} M=N: T$.

What about Subject Reduction for PTSe?

Consequences of the equivalence

Equivalence PTS / PTSe

- 「ト $M: T$ iff $\Gamma \vdash_{e} M: T$.
- $\Gamma \vdash M: T \Gamma \vdash N: T$ and $M \stackrel{\beta}{=} N$ iff $\Gamma \vdash_{e} M=N: T$.

What about Subject Reduction for PTSe? if $\Gamma \vdash_{e} M: T$ and $M \xrightarrow{\beta} N$, then:

- By equivalence, $\Gamma \vdash M: T$.
- By Subject Reduction for PTS, Г $\vdash N: T$.
- So by equivalence, $\Gamma \vdash_{e} M=N: T$.

Possible Extensions of the proof (1)

The system can be enhanced by changing the conversion rule, with η for example.

Possible Extensions of the proof (1)

The system can be enhanced by changing the conversion rule, with η for example.

- Adding η to the conversion is as hard as always: Strengthening and Subject Reduction (even untyped) still depend on one another, Confluence is only true on well-typed terms...
- Possible solutions: adding Strengthening as a primitive rule, restrict to normalizing systems, using a weaker form of Confluence...

Possible Extensions of the proof (2)

We can also consider adding subtyping:

Possible Extensions of the proof (2)

We can also consider adding subtyping:

- Using this approach, we are unable to prove the Shape of Types property for the Extended Calculus of Constructions (ECC).
- But with our approach to prove the general case of any PTS, we were able to prove that "TPOSR ${ }_{E C C}$ " enjoys Π-injectivity and Subject Reduction.
- However, even with the general framework, the Validity of Annotations do not scale to subtyping (Erased Conversion is wrong).

Conclusion: Where are we ?

What do we have so far:

+ The whole proof is formalized in Coq.

Conclusion: Where are we ?

What do we have so far:

+ The whole proof is formalized in Coq.
+ A new proof of Church-Rosser and Validity of Annotations for all semi-full and full TPOSR.

Conclusion: Where are we ?

What do we have so far:

+ The whole proof is formalized in Coq.
+ A new proof of Church-Rosser and Validity of Annotations for all semi-full and full TPOSR.
+ This proof can be extended to prove this equivalence for all PTS.

Conclusion: Where are we ?

What do we have so far:

+ The whole proof is formalized in Coq.
+ A new proof of Church-Rosser and Validity of Annotations for all semi-full and full TPOSR.
+ This proof can be extended to prove this equivalence for all PTS.
+ implementation a la PTS and model construction a la PTSe are now linked: an extension with subtyping would be useful for meta-theory of proof assistant.

Conclusion: Where are we ?

What do we have so far:

+ The whole proof is formalized in Coq.
+ A new proof of Church-Rosser and Validity of Annotations for all semi-full and full TPOSR.
+ This proof can be extended to prove this equivalence for all PTS.
+ implementation a la PTS and model construction a la PTSe are now linked: an extension with subtyping would be useful for meta-theory of proof assistant.
- Dealing with η-conversion is still complicated

Conclusion: Where are we ?

What do we have so far:

+ The whole proof is formalized in Coq.
+ A new proof of Church-Rosser and Validity of Annotations for all semi-full and full TPOSR.
+ This proof can be extended to prove this equivalence for all PTS.
+ implementation a la PTS and model construction a la PTSe are now linked: an extension with subtyping would be useful for meta-theory of proof assistant.
- Dealing with η-conversion is still complicated
- Subtyping forces us to throw away the Shape of Types approach to Validity of Annotations and redo it from scratch.

Thank you for your attention

Any questions ?

http://www.lix.polytechnique.fr/~vsiles/coq/TPOSR.html

