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First steps

Pure Type Systems were introduced by Berardi and Terlouw, inspired
by Barendregt's λ-cube (1992).

It is a general framework to have results over a large family of type
systems (e.g. STλC, System-F/Fω, CoC, System-U, LF, Type : Type,
. . . ).

Terms and Contexts:
A,B,M,N ::= s | x | M N |λxA.M | ΠxA.B (or A→ B)

Γ ::= [ ] | Γ, x : A

Typing judgments relies on two sets:

Ax is used to type sorts .
Rel is used to type functions (or Π-types).

Reduction :

(λxA.M) N
β→ M[N/x ] + congruences
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PTS typing rules

∅wf
Γ ` A : s x /∈ Dom(Γ)

(Γ, x : A)wf

Γwf (s, t) ∈ Ax
Γ ` s : t

Γwf Γ(x) = A

Γ ` x : A

Γ ` A : s Γ, x : A ` B : t
(s, t, u) ∈ Rel Γ, x : A ` M : B

Γ ` λxA.M : ΠxA.B

Γ ` A : s Γ, x : A ` B : t (s, t, u) ∈ Rel
Γ ` ΠxA.B : u

Γ ` M : ΠxA.B Γ ` N : A

Γ ` MN : B[N/x ]

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B
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Facts about PTS

Generation:

e.g. if Γ ` λxA.M : T then there are s, t, u and B such that

(s, t, u) ∈ Rel , T
β
≡ ΠxA.B

Γ ` A : s and Γ, x : A ` B : t and Γ, x : A ` M : B .

Type Correctness

If Γ ` M : T then there is s ∈ S such that T = s or Γ ` T : s.

Subject Reduction

If Γ ` M : T and M
β→ M ′ then Γ ` M ′ : T .

Needs injectivity of Π-types: If ΠxA.B
β
≡ ΠxC .D then A

β
≡ C and B

β
≡ D.

(Easy by con�uence of β-reduction).
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Some special classes of PTS

Functional: If (s, t) ∈ Ax and (s, t ′) ∈ Ax then t = t ′.
If (s, t, u) ∈ Rel and (s, t, u′) ∈ Rel then u = u′.

Uniqueness of Types

If Γ ` M : A and Γ ` M : B then A
β
≡ B .

Full: for all s, t, there is a u such that (s, t, u) ∈ Rel .
↪→ In those PTS, �any� product is typable.

Semi-full PTS: If (s, t, u) ∈ Rel then for all t ′, there is u′ such that
(s, t ′, u′) ∈ Rel .

Functionality of products

If Γ ` ΠxA.B : u and Γ(x : A) ` B ′ : t ′, there is u′ such that
Γ ` ΠxA.B ′ : u′.
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Shape of types in PTS

In 1993, Jutting studied the types of terms in PTS:
Terms are classi�ed in two families Tv and Ts:

{
v ∈ V −→ v ∈ Tv

M ∈ Tv −→ MN, λxA.M ∈ Tv
s ∈ S −→ s ∈ Ts

−→ ΠxA.B ∈ Ts

M ∈ Ts −→ MN, λxA.M ∈ Ts

if M ∈ Tv ,Γ ` M : A and Γ ` M : B , then A
β
≡ B .

if M ∈ Ts ,Γ ` M : A and Γ ` M : B , then A
β
� ΠxU1

1 ...xUn

n .s and

B
β
� ΠxU1

1 ...xUn

n .t.
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Could we be able to type the equality ?

In the conversion rules the intermediate steps are not checked.

Γ ` M : A A
β
≡ B Γ ` B : s

Γ ` M : B

β-equality is all about program computation, where types are useless.

However, set-theoretical models need a typed equality.

Other kind of equalities may depend on types (η-expansion, external
axioms).

So, what if we could ensure that each conversion step is intrisincally
well-typed ?

↪→ all this lead to the de�nition of PTS with Judgmental Equality (aka a
sementical version of PTS, mostly inspired by [Martin-Löf 84]).
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PTSe typing rules (1)

∅wfe

Γ `e A : s x /∈ Dom(Γ)

(Γ, x : A)wfe

Γwfe (s, t) ∈ Ax
Γ `e s : t

Γwfe Γ(x) = A

Γ `e x : A

Γ `e A : s Γ, x : A `e B : t
(s, t, u) ∈ Rel Γ, x : A `e M : B

Γ `e λxA.M : ΠxA.B

Γ `e A : s Γ, x : A `e B : t (s, t, u) ∈ Rel
Γ `e ΠxA.B : u

Γ `e M : ΠxA.B Γ `e N : A

Γ `e MN : B[N/x ]

Γ `e M : A Γ `e A = B : s

Γ `e M : B
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PTSe typing rules (2)

Γwfe (s, t) ∈ Ax
Γ `e s = s : t

Γwfe Γ(x) = A

Γ `e x = x : A

Γ `e M = M ′ : ΠxA.B Γ `e N = N ′ : A

Γ `e MN = M ′N ′ : B[N/x ]

Γ `e A = A′ : s Γ, x : A `e B = B ′ : t (s, t, u) ∈ Rel
Γ `e ΠxA.B = ΠxA

′
.B ′ : u

Γ `e A = A′ : s Γ, x : A `e M = M ′ : B
Γ, x : A `e B : t (s, t, u) ∈ Rel

Γ `e λxA.M = λxA
′
.M ′ : ΠxA.B
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PTSe typing rules (3)

Γ `e M = M ′ : A Γ `e A = B : s

Γ `e M = M ′ : B

Γ `e M : A

Γ `e M = M : A

Γ `e M = N : A

Γ `e N = M : A

Γ `e M = N : A Γ `e N = P : A

Γ `e M = P : A

Γ, x : A `e M : B Γ `e N : A
Γ `e A : s Γ, x : A `e B : t (s, t, u) ∈ Rel

Γ `e (λxA.M)N = M[N/x ] : B[N/x ]
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The Big Question

Are both systems the same ?
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Proof of the equivalence

We prove by mutual induction that

Γ `e M : T i� Γ ` M : T .

Γ `e M = N : T i� Γ ` M : T , Γ ` N : T and M
β
≡ N.

Γwfe i� Γwf .

⇒ trivial, we just �lose� some information.
⇐ we need to �nd a way to type all the intermediate steps.

But can we ?
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How do we do this ?

Γ ` M : T M β
≡ N Γ ` N : T

P is well-typed in PTS by Subject Reduction.

Is P well-typed in PTSe ?

How do we type M = P and N = P in PTSe ?
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The need of Subject Reduction

As pointed out in [Geuvers-Werner 94], we need to prove that PTSe have
the Subject Reduction property

Subject Reduction:

If Γ `e M : T and M
β
� N, then Γ `e M = N : T .

But to prove this, we need Π-injectivity for typed equality judgments,
which is a really di�cult question for PTSe since it relies on (typed)
property of Con�uence, which relies on Subject Reduction, which relies on

Π-injectivity, which relies on ...
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Current status of the equivalence

for functional PTS : [Adams 06] �Pure Type Systems with Judgmental
Equality�.

for semi-full and full PTS : [Herbelin-Siles 10] �Equality is typable in
Semi-Full Pure Type Systems�.

But the question is still open �nally solved for any kind of PTS!
(Herbelin-Siles, submitted at JFP).
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Adams' approach

In order to break the loop, Adams only considered the functional PTS
and de�ned a typed version of the usual parallel β-reduction, called
Typed Parallel One Step Reduction (TPOSR).

His goal was to prove the Diamond Property for TPOSR, which leads
to the addition of annotations on applications.

The main scheme is:

Prove that TPOSR is Church-Rosser.
Prove that TPOSR has injectivity of Π-types.
Prove that TPOSR has Subject-Reduction.
Prove that TPOSR is equivalent to PTS and PTSe.
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TPOSR typing rules (1)

∅wf
Γ ` A B A′ : s x /∈ Dom(Γ)

(Γ, x : A)wf

Γwf (s, t) ∈ Ax
Γ ` s B s : t

Γwf Γ(x) = A

Γ ` x B x : A

Γ ` A B A′ : s Γ, x : A ` B B B ′ : t (s, t, u) ∈ Rel
Γ ` ΠxA.B B ΠxA

′
.B ′ : u

Γ ` A B A′ : s
Γ, x : A ` B B B ′ : t Γ, x : A ` M B M ′ : B (s, t, u) ∈ Rel

Γ ` λxA.M B λxA′
.M ′ : ΠxA.B

Γ ` A B A′ : s Γ, x : A ` B B B ′ : t

Γ ` M B M ′ : ΠxA.B Γ ` N B N ′ : A (s, t, u) ∈ Rel
Γ ` M(x)BN B M ′(x)B′N

′ : B[N/x ]
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TPOSR typing rules (2)

Γ ` A B A′ : s Γ, x : A ` B B B ′ : t
Γ, x : A ` M B M ′ : B Γ ` N B N ′ : A (s, t, u) ∈ Rel)

Γ ` (λxA.M)(x)BN B M ′[N ′/x ] : B[N/x ]

Γ ` M B N : A Γ ` A B B : s

Γ ` M B N : B

Γ ` M B N : A Γ ` B B A : s

Γ ` M B N : B

Γ ` M B N : s

Γ ` M ≡ N

Γ ` M ≡ N

Γ ` N ≡ M

Γ ` M ≡ N Γ ` N ≡ P

Γ ` M ≡ P

We do not keep track of the sort (it requires Type Uniqueness).
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First step: Church-Rosser

To prove the TPOSR is Church-Rosser, we will prove that the Diamond
Property holds for TPOSR.

Diamond Property

If Γ ` M B M ′ : A and Γ ` M B M ′′ : B then there is N such that
Γ ` M ′ B N : A,B and Γ ` M ′′ B N : A,B .

The main issues are the critical pairs involving the beta and app rules:

when applying an induction hypothesis, both contexts need to be
syntactically the same.
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Where is the trap ?

Input:
Γ ` M(x) BN B M ′(x) B′N

′ : B[N/x ]

Γ ` M(x) BN B M ′′(x) B′′N
′′ : B[N/x ]

Induction Hypothesis over B : If Γ(x : A) ` B B B ′ : T and
Γ(x : A) ` B B B ′′ : T ′ then there is ...

Information about B : Γ(x : A) ` B B B ′ : t and
Γ(x : C ) ` B B B ′′ : t ′

Information about A and C (by induction): there is N0 such that
Γ ` N ′ B N0 : A and Γ ` N ′′ B N0 : C (resp M0).

↪→ So we need a way to equal A and C .
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Functional vs Semi-Full

For any functional TPOSR system, Uniqueness of Types holds, so we can
prove that Γ ` A ≡ C quite easily.

Shape of Types in semi-full TPOSR

If Γ ` M B? : A and Γ ` M B? : B then

either Γ ` A ≡ B

or Γ ` A ≡ ΠxU1
1 ...xUn

n .s and Γ ` B ≡ ΠxU1
1 ...xUn

n .t

By applying it to M0 and N0, we can show that s = t by removing the
annotations and using untyped Con�uence of usual β-reduction.

We can now �nish to prove Church-Rosser, injectivity of Πs and Subject

Reduction.
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Validity of Annotations

To close the equivalence, we need to prove that the additional annotations
on applications did not change the typing system, that is:

Validity of Annotations

If Γ ` M : T , then there are Γ∗, M∗ and T ∗ such that Γ∗ ` M∗ B M∗ : T ∗,
|Γ∗| = Γ, |M∗| = M and |T ∗| = T .

Since there are several ways to annotate a term, the induction can be quite
tricky without the following lemma:

Erased Conversion

If Γ ` A B ? : s, Γ ` B B ? : t and |A| = |B|, then Γ ` A ≡ B .

If Γ1 ` M B N : A, |Γ1| = |Γ2| and Γ2 wf , then Γ2 ` M B N : A.
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Erased Conversion: the second pitfall

To prove this conversion lemma, we need a more general lemma which is
easily done for functional PTS, but strangely hard for semi-full:

Erased Con�uence

If Γ ` M B ? : S , Γ ` N B ? : T and |M| = |N|, then there is P such that:

Γ ` M B+ P : S

Γ ` N B+ P : T

By induction, all the cases are trivial but the application one

|M| = |M ′| |N| = |N ′|
Γ ` M(x)BN B ? : B[N/x ] Γ ` M ′(x)B′N

′ B ? : B ′[N ′/x ]

Γ ` M B+ M0 : ΠxA.B Γ ` N B+ N0 : A

Γ ` M ′ B+ M0 : ΠxA
′
.B ′ Γ ` N ′ B+ N0 : A′
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Shape of Terms

Shape of Types in TPOSR

. . . or Γ ` A ≡ ΠxU1
1 ...xUn

n .s and Γ ` B ≡ ΠxU1
1 ...xUn

n .t

What does it mean to be typed by a telescope ?

(Simple) Shape of Terms in TPOSR

If Γ ` M B ? : A and Γ ` M B ? : B then:

either Γ ` A ≡ B

or Γ ` M B K : A and Γ ` M B K : B where K is a sort, a product
ΠxU .V or an abstraction λxU .V .

In the previous problematic case, M0 is typed by a Π-type, so K can not be
a sort, nor a Π-types, so we just created a β-redex whose reduction will
erase the annotation.
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ΠxU .V or an abstraction λxU .V .

In the previous problematic case, M0 is typed by a Π-type, so K can not be
a sort, nor a Π-types, so we just created a β-redex whose reduction will
erase the annotation.
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Consequences of the equivalence

Equivalence PTS / PTSe

Γ ` M : T i� Γ `e M : T .

Γ ` M : T Γ ` N : T and M
β
≡ N i� Γ `e M = N : T .

What about Subject Reduction for PTSe?

if Γ `e M : T and M
β
� N, then:

By equivalence, Γ ` M : T .

By Subject Reduction for PTS, Γ ` N : T .

So by equivalence, Γ `e M = N : T .
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Possible Extensions of the proof (1)

The system can be enhanced by changing the conversion rule, with η for
example.

Adding η to the conversion is as hard as always : Strengthening and
Subject Reduction (even untyped) still depend on one another,
Con�uence is only true on well-typed terms. . .

Possible solutions: adding Strengthening as a primitive rule, restrict to
normalizing systems, using a weaker form of Con�uence. . .
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Possible Extensions of the proof (2)

We can also consider adding subtyping:

Using this approach, we are unable to prove the Shape of Types
property for the Extended Calculus of Constructions (ECC).

But with our approach to prove the general case of any PTS, we were
able to prove that �TPOSRECC � enjoys Π-injectivity and Subject

Reduction.

However, even with the general framework, the Validity of Annotations
do not scale to subtyping (Erased Conversion is wrong).
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Conclusion: Where are we ?

What do we have so far:

+ The whole proof is formalized in Coq.

+ A new proof of Church-Rosser and Validity of Annotations for all
semi-full and full TPOSR.

+ This proof can be extended to prove this equivalence for all PTS.

+ implementation a la PTS and model construction a la PTSe are now
linked: an extension with subtyping would be useful for meta-theory of
proof assistant.

- Dealing with η-conversion is still complicated

- Subtyping forces us to throw away the Shape of Types approach to
Validity of Annotations and redo it from scratch.
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Thank you for your attention

Any questions ?

http://www.lix.polytechnique.fr/~vsiles/coq/TPOSR.html
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