
Chapter 5

Preliminaries on polyhedra and

linear and integer programming

This chapter surveys what we need on polyhedra and linear and integer
programming. Most background can be found in Chapters 7–10, 14, 16, 19,
22, and 23 of Schrijver [1986b]. We give proofs of a few easy further results
that we need in later parts of the present book.
The results of this chapter are mostly formulated for real space,

but are maintained when restricted to rational space. So the symbol
R can be replaced by the symbol Q. In applying these results, we add the
adjective rational when we restrict ourselves to rational numbers.

5.1. Convexity and halfspaces

A subset C of Rn is convex if λx + (1 − λ)y belongs to C for all x, y ∈ C and
each λ with 0 ≤ λ ≤ 1. A convex body is a compact convex set.

The convex hull of a set X ⊆ Rn, denoted by conv.hullX, is the smallest
convex set containing X. Then:

(5.1) conv.hullX = {λ1x1 + · · · + λkxk | k ≥ 1, x1, . . . , xk ∈ X, λ1, . . . ,
λk∈ R+, λ1 + · · · + λk = 1}.

A useful fundamental result was proved by Carathéodory [1911]:

Theorem 5.1 (Carathéodory’s theorem). For any X ⊆ Rn and x ∈
conv.hullX, there exist affinely independent vectors x1, . . . , xk in X with
x ∈ conv.hull{x1, . . . , xk}.

(Corollary 7.1f in Schrijver [1986b].)
A subset H of Rn is called an affine halfspace if H = {x | cTx ≤ δ}, for

some c ∈ Rn with c �= 0 and some δ ∈ R. If δ = 0, then H is called a linear
halfspace.

Let X ⊆ Rn. The set conv.hullX + Rn
+ is called the up hull of X, and the

set conv.hullX − Rn
+ the down hull of X.
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5.2. Cones

A subset C of Rn is called a (convex) cone if C �= ∅ and λx + µy ∈ C
whenever x, y ∈ C and λ, µ ∈ R+. The cone generated by a set X of vectors
is the smallest cone containing X:

(5.2) coneX = {λ1x1 + · · · + λkxk | k ≥ 0, λ1, . . . , λk ≥ 0, x1, . . . , xk∈
X}.

There is a variant of Carathéodory’s theorem:

Theorem 5.2. For any X ⊆ Rn and x ∈ coneX, there exist linearly inde-
pendent vectors x1, . . . , xk in X with x ∈ cone{x1, . . . , xk}.

A cone C is polyhedral if there is a matrix A such that

(5.3) C = {x | Ax ≤ 0}.

Equivalently, C is polyhedral if it is the intersection of finitely many linear
halfspaces.

Results of Farkas [1898,1902], Minkowski [1896], and Weyl [1935] imply
that

(5.4) a convex cone is polyhedral if and only if it is finitely generated,

where a cone C is finitely generated if C = coneX for some finite set X.
(Corollary 7.1a in Schrijver [1986b].)

5.3. Polyhedra and polytopes

A subset P of Rn is called a polyhedron if there exists an m × n matrix A
and a vector b ∈ Rm (for some m ≥ 0) such that

(5.5) P = {x | Ax ≤ b}.

So P is a polyhedron of and only if it is the intersection of finitely many affine
halfspaces. If (5.5) holds, we say that Ax ≤ b determines P . Any inequality
cTx ≤ δ is called valid for P if cTx ≤ δ holds for each x ∈ P .

A subset P of Rn is called a polytope if it is the convex hull of finitely
many vectors in Rn. Motzkin [1936] showed:

(5.6) a set P is a polyhedron if and only if P = Q+C for some polytope
Q and some cone C.

(Corollary 7.1b in Schrijver [1986b].) If P �= ∅, then C is unique and is called
the characteristic cone char.cone(P ) of P . Then:

(5.7) char.cone(P ) = {y ∈ Rn | ∀x ∈ P∀λ ≥ 0 : x + λy ∈ P}.
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If P = ∅, then by definition its characteristic cone is char.cone(P ) := {0}.
(5.6) implies the following fundamental result (Minkowski [1896], Steinitz

[1916], Weyl [1935]):

(5.8) a set P is a polytope if and only if P is a bounded polyhedron.

(Corollary 7.1c in Schrijver [1986b].)
A polyhedron P is called rational if it is determined by a rational system

of linear inequalities. Then a rational polytope is the convex hull of a finite
number of rational vectors.

5.4. Farkas’ lemma

A system Ax ≤ b is called feasible (or solvable) if it has a solution x. Feasibility
of a system Ax ≤ b of linear inequalities is characterized by Farkas’ lemma
(Farkas [1894,1898], Minkowski [1896]):

Theorem 5.3 (Farkas’ lemma). Ax ≤ b is feasible ⇐⇒ yTb ≥ 0 for each
y ≥ 0 with yTA = 0T.

(Corollary 7.1e in Schrijver [1986b].) Theorem 5.3 is equivalent to:

Corollary 5.3a (Farkas’ lemma — variant). Ax = b has a solution x ≥ 0

⇐⇒ yTb ≥ 0 for each y with yTA ≥ 0T.

(Corollary 7.1d in Schrijver [1986b].) A second equivalent variant is:

Corollary 5.3b (Farkas’ lemma — variant). Ax ≤ b has a solution x ≥ 0

⇐⇒ yTb ≥ 0 for each y ≥ 0 with yTA ≥ 0T.

(Corollary 7.1f in Schrijver [1986b].) A third equivalent, affine variant of
Farkas’ lemma is:

Corollary 5.3c (Farkas’ lemma — affine variant). Let Ax ≤ b be a feasible
system of inequalities and let cTx ≤ δ be an inequality satisfied by each x
with Ax ≤ b. Then for some δ′ ≤ δ, the inequality cTx ≤ δ′ is a nonnegative
linear combination of the inequalities in Ax ≤ b.

(Corollary 7.1h in Schrijver [1986b].)

5.5. Linear programming

Linear programming, abbreviated to LP, concerns the problem of maximizing
or minimizing a linear function over a polyhedron. Examples are

(5.9) max{cTx | Ax ≤ b} and min{cTx | x ≥ 0, Ax ≥ b}.
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If a supremum of a linear function over a polyhedron is finite, then it is
attained as a maximum. So a maximum is finite if the value set is nonempty
and has an upper bound. Similarly for infimum and minimum.

The duality theorem of linear programming says (von Neumann [1947],
Gale, Kuhn, and Tucker [1951]):

Theorem 5.4 (duality theorem of linear programming). Let A be a matrix
and b and c be vectors. Then

(5.10) max{cTx | Ax ≤ b} = min{yTb | y ≥ 0, yTA = cT},

if at least one of these two optima is finite.

(Corollary 7.1g in Schrijver [1986b].) So, in particular, if at least one of the
optima is finite, then both are finite.

Note that the inequality ≤ in (5.10) is easy, since cTx = yTAx ≤ yTb.
This is called weak duality.

There are several equivalent forms of the duality theorem of linear pro-
gramming, like

(5.11) max{cTx | x ≥ 0, Ax ≤ b} = min{yTb | y ≥ 0, yTA ≥ cT},
max{cTx | x ≥ 0, Ax = b} = min{yTb | yTA ≥ cT},
min{cTx | x ≥ 0, Ax ≥ b} = max{yTb | y ≥ 0, yTA ≤ cT},
min{cTx | Ax ≥ b} = max{yTb | y ≥ 0, yTA = cT}.

Any of these equalities holds if at least one of the two optima is finite (im-
plying that both are finite).

A most general formulation is: let A, B, C, D, E, F, G, H, K be matrices
and let a, b, c, d, e, f be vectors; then

(5.12) max{dTx + eTy + fTz | x ≥ 0, z ≤ 0,
Ax + By + Cz ≤ a,
Dx + Ey + Fz = b,
Gx + Hy + Kz ≥ c}
= min{uTa + vTb + wTc | u ≥ 0, w ≤ 0,
uTA + vTD + wTG ≥ dT,
uTB + vTE + wTH = eT,
uTC + vTF + wTK ≤ fT},

provided that at least one of the two optima is finite (cf. Section 7.4 in
Schrijver [1986b]).

So there is a one-to-one relation between constraints in a problem and
variables in its dual problem. The objective function in one problem becomes
the right-hand side in the dual problem. We survey these relations in the
following table:
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maximize minimize
≤ constraint variable ≥ 0
≥ constraint variable ≤ 0
= constraint unconstrained variable
variable ≥ 0 ≥ constraint
variable ≤ 0 ≤ constraint

unconstrained variable = constraint
right-hand side objective function

objective function right-hand side

Some LP terminology. Linear programming concerns maximizing or mini-
mizing a linear function cTx over a polyhedron P . The polyhedron P is called
the feasible region, and any vector in P a feasible solution. If the feasible re-
gion is nonempty, the problem is called feasible, and infeasible otherwise. The
function x → cTx is called the objective function or the cost function. Any
feasible solution attaining the optimum value is called an optimum solution.
An inequality cTx ≤ δ is called tight or active for some x∗ if cTx∗ = δ.

Equations like (5.10), (5.11), and (5.12) are called linear programming
duality equations. The minimization problem is called the dual problem of the
maximization problem (which problem then is called the primal problem), and
conversely. A feasible solution of the dual problem is called a dual solution.

Complementary slackness. The following complementary slackness con-
ditions characterize optimality of a pair of feasible solutions x, y of the linear
programs (5.10):

(5.13) x and y are optimum solutions if and only if (Ax)i = bi for each
i with yi > 0.

Similar conditions can be formulated for other pairs of dual linear programs
(cf. Section 7.9 in Schrijver [1986b]).

Carathéodory’s theorem. A consequence of Carathéodory’s theorem (The-
orem 5.1 above) is:

Theorem 5.5. If the optimum value in the LP problems (5.10) is finite,
then the minimum is attained by a vector y ≥ 0 such that the rows of A
corresponding to positive components of y are linearly independent.

(Corollary 7.1l in Schrijver [1986b].)

5.6. Faces, facets, and vertices

Let P = {x | Ax ≤ b} be a polyhedron in Rn. If c is a nonzero vector and
δ = max{cTx | Ax ≤ b}, the affine hyperplane {x | cTx = δ} is called a
supporting hyperplane of P . A subset F of P is called a face if F = P or if
F = P ∩ H for some supporting hyperplane H of P . So
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(5.14) F is a face of P ⇐⇒ F is the set of optimum solutions of
max{cTx | Ax ≤ b} for some c ∈ Rn.

An inequality cTx ≤ δ is said to determine or to induce face F of P if

(5.15) F = {x ∈ P | cTx = δ}.

Alternatively, F is a face of P if and only if

(5.16) F = {x ∈ P | A′x = b′}

for some subsystem A′x ≤ b′ of Ax ≤ b (cf. Section 8.3 in Schrijver [1986b]).
So any face of a nonempty polyhedron is a nonempty polyhedron. We say
that a constraint aTx ≤ β from Ax ≤ b is tight or active in a face F if aTx = β
holds for each x ∈ F .

An inequality aTx ≤ β from Ax ≤ b is called an implicit equality if Ax ≤ b
implies aTx = β. Then:

Theorem 5.6. Let P = {x | Ax ≤ b} be a polyhedron in Rn. Let A′x ≤ b′ be
the subsystem of implicit inequalities in Ax ≤ b. Then dimP = n − rankA′.

(Cf. Section 8.2 in Schrijver [1986b].)
A facet of P is an inclusionwise maximal face F of P with F �= P . An

inequality determining a facet is called facet-determining or facet-inducing.
Any facet has dimension one less than the dimension of P .

A system Ax ≤ b is called minimal or irredundant if each proper subsys-
tem A′x ≤ b′ has a solution x not satisfying Ax ≤ b. If Ax ≤ b is irredundant
and P is full-dimensional, then Ax ≤ b is the unique minimal system deter-
mining P , up to multiplying inequalities by positive scalars.

If Ax ≤ b is irredundant, then there is a one-to-one relation between the
facets F of P and those inequalities aTx ≤ β in Ax ≤ b that are not implicit
equalities, given by:

(5.17) F = {x ∈ P | aTx = β}

(cf. Theorem 8.1 in Schrijver [1986b]). This implies that each face F �= P is
the intersection of facets.

A face of P = {x | Ax ≤ b} is called a minimal face if it is an inclusionwise
minimal face. Any minimal face is an affine subspace of Rn, and all minimal
faces of P are translates of each other. They all have dimension n − rankA.

If each minimal face has dimension 0, P is called pointed. A vertex of P is
an element z such that {z} is a minimal face. A polytope is the convex hull
of its vertices.

For any element z of P = {x | Ax ≤ b}, let Azx ≤ bz be the system
consisting of those inequalities from Ax ≤ b that are satisfied by z with
equality. Then:

Theorem 5.7. Let P = {x | Ax ≤ b} be a polyhedron in Rn and let z ∈ P .
Then z is a vertex of P if and only if rank(Az) = n.
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An edge of P is a bounded face of dimension 1. It necessarily connects
two vertices of P . Two vertices connected by an edge are called adjacent. An
extremal ray is a face of dimension 1 that forms a halfline.

The 1-skeleton of a pointed polyhedron P is the union of the vertices,
edges, and extremal rays of P . If P is a polytope, the 1-skeleton is a topologi-
cal graph. The diameter of P is the diameter of the associated (combinatorial)
graph.

The Hirsch conjecture states that a d-dimensional polytope with m facets
has diameter at most m − d. Naddef [1989] proved this for polytopes with
0, 1 vertices. We refer to Kalai [1997] for a survey of bounds on the diameter
and on the number of pivot steps in linear programming.

5.7. Polarity

(For the results of this section, see Section 9.1 in Schrijver [1986b].) For any
subset C of Rn, the polar of C is

(5.18) C∗ := {z ∈ Rn | xTz ≤ 1 for all x ∈ C}.

If C is a cone, then C∗ is again a cone, the polar cone of C, and satisfies

(5.19) C∗ := {z ∈ Rn | xTz ≤ 0 for all x ∈ C}.

Let C be a polyhedral cone; so C = {x | Ax ≤ 0} for some matrix A.
Trivially, if C is generated by the vectors x1, . . . , xk, then C∗ is equal to the
cone determined by the inequalities xT

i z ≤ 0 for i = 1, . . . , k. It is less trivial,
and can be derived from Farkas’ lemma, that:

(5.20) the polar cone C∗ is equal to the cone generated by the transposes
of the rows of A.

This implies

(5.21) C∗∗ = C for each polyhedral cone C.

So there is a symmetric duality relation between finite sets of vectors gener-
ating a cone and finite sets of vectors generating its polar cone.

5.8. Blocking polyhedra

(For the results of this section, see Section 9.2 in Schrijver [1986b].) A dual-
ity relation similar to polarity holds between convex sets ‘of blocking type’,
and also between convex sets ‘of antiblocking type’. This was shown by Fulk-
erson [1970b,1971a,1972a], who found several applications in combinatorial
optimization.

We say that a subset P of Rn is up-monotone if x ∈ P and y ≥ x imply
y ∈ P . Similarly, P is down-monotone if x ∈ P and y ≤ x imply y ∈ P .
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Moreover, P is down-monotone in Rn
+ if x ∈ P and 0 ≤ y ≤ x imply y ∈ P .

For any P ⊆ Rn we define

(5.22) P ↑ := {y ∈ Rn | ∃x ∈ P : y ≥ x} = P + Rn
+ and

P ↓ := {y ∈ Rn | ∃x ∈ P : y ≤ x} = P − Rn
+.

P ↑ is called the dominant of P . So P is up-monotone if and only if P = P ↑,
and P is down-monotone if and only if P = P ↓.

We say that a convex set P ⊆ Rn is of blocking type if P is a closed convex
up-monotone subset of Rn

+. Each polyhedron P of blocking type is pointed.
Moreover, P is a polyhedron of blocking type if and only if there exist vectors
x1, . . . , xk ∈ Rn

+ such that

(5.23) P = conv.hull{x1, . . . , xk}↑;

and also, if and only if

(5.24) P = {x ∈ Rn
+ | Ax ≥ 1}

for some nonnegative matrix A.
For any polyhedron P in Rn, the blocking polyhedron B(P ) of P is defined

by

(5.25) B(P ) := {z ∈ Rn
+ | xTz ≥ 1 for each x ∈ P}.

Fulkerson [1970b,1971a] showed:

Theorem 5.8. Let P ⊆ Rn
+ be a polyhedron of blocking type. Then B(P )

is again a polyhedron of blocking type and B(B(P )) = P . Moreover, for any
x1, . . . , xk ∈ Rn

+:

(5.26) (5.23) holds if and only if B(P ) = {z ∈ Rn
+ | xT

i z ≥ 1 for i =
1, . . . , k}.

Here the only if part is trivial, while the if part requires Farkas’ lemma.
Theorem 5.8 implies that for vectors x1, . . . , xk ∈ Rn

+ and z1, . . . , zd ∈ Rn
+

one has:

(5.27) conv.hull{x1, . . . , xk}+Rn
+ = {x ∈ Rn

+ | zT

j x ≥ 1 for j = 1, . . . , d}

if and only if

(5.28) conv.hull{z1, . . . , zd}+Rn
+ = {z ∈ Rn

+ | xT

i z ≥ 1 for i = 1, . . . , k}.

Two polyhedra P, R are called a blocking pair (of polyhedra) if they are
of blocking type and satisfy R = B(P ). So if P, R is a blocking pair, then so
is R, P .
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5.9. Antiblocking polyhedra

(For the results of this section, see Section 9.3 in Schrijver [1986b].) The
theory of antiblocking polyhedra is almost fully analogous to the blocking
case and arises mostly by reversing inequality signs.

We say that a set P ⊆ Rn is of antiblocking type if P is a nonempty closed
convex subset of Rn

+ that is down-monotone in Rn
+. Then P is a polyhedron

of antiblocking type if and only if

(5.29) P = {x ∈ Rn
+ | Ax ≤ b}

for some nonnegative matrix A and nonnegative vector b.
For any subset P of Rn, the antiblocking set A(P ) of P is defined by

(5.30) A(P ) := {z ∈ Rn
+ | xTz ≤ 1 for each x ∈ P}.

If A(P ) is a polyhedron we speak of the antiblocking polyhedron, and if A(P )
is a convex body, of the antiblocking body.

Fulkerson [1971a,1972a] showed:

Theorem 5.9. Let P ⊆ Rn
+ be of antiblocking type. Then A(P ) is again of

antiblocking type and A(A(P )) = P .

The antiblocking analogue of (5.26) is a little more complicated to for-
mulate, but we need it only for full-dimensional polytopes. For any full-
dimensional polytope P ⊆ Rn of antiblocking type and x1, . . . , xk ∈ Rn

+

we have:

(5.31) P = conv.hull{x1, . . . , xk}↓ ∩ Rn
+ if and only if A(P ) = {z ∈ Rn

+ |
xT

i z ≤ 1 for i = 1, . . . , k}.

Two convex sets P, R are called an antiblocking pair (of polyhedra) if they
are of antiblocking type and satisfy R = A(P ). So if P, R is an antiblocking
pair, then so is R, P .

5.10. Methods for linear programming

The simplex method was designed by Dantzig [1951b] to solve linear pro-
gramming problems. It is in practice and on average quite efficient, but no
polynomial-time worst-case running time bound has been proved (most of
the pivot selection rules that have been proposed have been proved to take
exponential time in the worst case).

The simplex method consists of finding a path in the 1-skeleton of the
feasible region, ending at an optimum vertex (in preprocessing, the problem
first is transformed to one with a pointed feasible region). An important issue
when implementing this is that the LP problem is not given by vertices and
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edges, but by linear inequalities, and that vertices are determined by a, not
necessarily unique, ‘basis’ among the inequalities.

The first polynomial-time method for linear programming was given by
Khachiyan [1979,1980], by adapting the ‘ellipsoid method’ for nonlinear pro-
gramming of Shor [1970a,1970b,1977] and Yudin and Nemirovskĭı [1976]. The
method consists of finding a sequence of shrinking ellipsoids each containing
at least one optimum solution, until we have an ellipsoid that is small enough
so as to derive an optimum solution. The method however is practically quite
infeasible.

Karmarkar [1984a,1984b] showed that ‘interior point’ methods can solve
linear programming in polynomial time, and moreover that they have efficient
implementations, competing with the simplex method. Interior point methods
make a tour not along vertices and edges, but across the feasible region.

5.11. The ellipsoid method

While the ellipsoid method is practically infeasible, it turned out to have
features that are useful for deriving complexity results in combinatorial op-
timization. Specifically, the ellipsoid method does not require listing all con-
straints of an LP problem a priori, but allows that they are generated when
needed. In this way, one can derive the polynomial-time solvability of a num-
ber of combinatorial optimization problems. This should be considered as
existence proofs of polynomial-time algorithms — the algorithms are not
practical.

This application of the ellipsoid method was described by Karp and Pa-
padimitriou [1980,1982], Padberg and Rao [1980], and Grötschel, Lovász, and
Schrijver [1981]. The book by Grötschel, Lovász, and Schrijver [1988] is de-
voted to it. We refer to Chapter 6 of this book or to Chapter 14 of Schrijver
[1986b] for proofs of the results that we survey below.

The ellipsoid method applies to classes of polyhedra (and more generally,
classes of convex sets) which are described as follows.

Let Σ be a finite alphabet and let Π be a subset of the set Σ∗ of words
over Σ. In applications, we take for Π very simple sets like the set of strings
representing a graph or the set of strings representing a digraph.

For each σ ∈ Π, let Eσ be a finite set and let Pσ be a rational polyhedron
in QEσ . (When we apply this, Eσ is often the vertex set or the edge or arc
set of the (di)graph represented by σ.) We make the following assumptions:

(5.32) (i) there is a polynomial-time algorithm that, given σ ∈ Σ∗, tests
if σ belongs to Π and, if so, returns the set Eσ;

(ii) there is a polynomial p such that, for each σ ∈ Π, Pσ is deter-
mined by linear inequalities each of size at most p(size(σ)).

Here the size of a rational linear inequality is proportional to the sum of the
sizes of its components, where the size of a rational number p/q (for integers
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p, q) is proportional to log(|p| + 1) + log q. Condition (5.32)(ii) is equivalent
to (cf. Theorem 10.2 in Schrijver [1986b]):

(5.33) there is a polynomial q such that, for each σ ∈ Π, we can write
Pσ = Q + C, where Q is a polytope with vertices each of input
size at most q(size(σ)) and where C is a cone generated by vectors
each of input size at most q(size(σ)).

(The input size7 of a vector is the sum of the sizes of its components.) In
most applications, the existence of the polynomial p in (5.32)(ii) or of the
polynomial q in (5.33) is obvious.

We did not specify how the polyhedra Pσ are given algorithmically. In
applications, they might have an exponential number of vertices or facets, so
listing them would not be an algorithmic option. To handle this, we formu-
late two, in a sense dual, problems. An algorithm for either of them would
determine the polyhedra Pσ.

First, the optimization problem for (Pσ | σ ∈ Π) is the problem:

(5.34) given: σ ∈ Π and c ∈ QEσ ,
find: x ∈ Pσ maximizing cTx over Pσ or y ∈ char.cone(Pσ) with

cTy > 0, if either of them exists.

Second, the separation problem for (Pσ | σ ∈ Π) is the problem:

(5.35) given: σ ∈ Π and z ∈ QEσ ,
find: c ∈ QEσ such that cTx < cTz for all x ∈ Pσ (if such a c

exists).

So c gives a separating hyperplane if z �∈ Pσ.
Then the ellipsoid method implies that these two problems are ‘polyno-

mial-time equivalent’:

Theorem 5.10. Let Π ⊆ Σ∗ and let (Pσ | σ ∈ Π) satisfy (5.32). Then the
optimization problem for (Pσ | σ ∈ Π) is polynomial-time solvable if and only
if the separation problem for (Pσ | σ ∈ Π) is polynomial-time solvable.

(Cf. Theorem (6.4.9) in Grötschel, Lovász, and Schrijver [1988] or Corollary
14.1c in Schrijver [1986b].)

The equivalence in Theorem 5.10 makes that we call (Pσ | σ ∈ Π)
polynomial-time solvable if it satisfies (5.32) and the optimization problem
(equivalently, the separation problem) for it is polynomial-time solvable.

Using simultaneous diophantine approximation based on the basis reduc-
tion method given by Lenstra, Lenstra, and Lovász [1982], Frank and Tardos
[1985,1987] extended these results to strong polynomial-time solvability:

7 We will use the term size of a vector for the sum of its components.
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Theorem 5.11. The optimization problem and the separation problem for
any polynomial-time solvable system of polyhedra are solvable in strongly pol-
ynomial time.

(Theorem (6.6.5) in Grötschel, Lovász, and Schrijver [1988].)
For polynomial-time solvable classes of polyhedra, the separation problem

can be strengthened so as to obtain a facet as separating hyperplane:

Theorem 5.12. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system of
polyhedra. Then the following problem is strongly polynomial-time solvable:

(5.36) given: σ ∈ Π and z ∈ QEσ ,
find: c ∈ QEσ and δ ∈ Q such that cTz > δ and such that cTx ≤ δ

is facet-inducing for Pσ (if it exists).

(Cf. Theorem (6.5.16) in Grötschel, Lovász, and Schrijver [1988].) Also a
weakening of the separation problem turns out to be equivalent, under certain
conditions. The membership problem for (Pσ | σ ∈ Π) is the problem:

(5.37) given σ ∈ Π and z ∈ QEσ , does z belong to Pσ?

Theorem 5.13. Let (Pσ | σ ∈ Π) be a system of full-dimensional polytopes
satisfying (5.32), such that there is a polynomial-time algorithm that gives for
each σ ∈ Π a vector in the interior of Pσ. Then (Pσ | σ ∈ Π) is polynomial-
time solvable if and only if the membership problem for (Pσ | σ ∈ Π) is
polynomial-time solvable.

(This follows from Corollary (4.3.12) and Theorem (6.3.2) in Grötschel,
Lovász, and Schrijver [1988].)

The theorems above imply:

Theorem 5.14. Let (Pσ | σ ∈ Π) and (Qσ | σ ∈ Π) be polynomial-time
solvable classes of polyhedra, such that for each σ ∈ Π, the polyhedra Pσ

and Qσ are in the same space REσ . Then also (Pσ ∩ Qσ | σ ∈ Π) and
(conv.hull(Pσ ∪ Qσ) | σ ∈ Π) are polynomial-time solvable.

(Corollary 14.1d in Schrijver [1986b].)

Corollary 5.14a. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, all of blocking type. Then also the system of blocking polyhedra
(B(Pσ) | σ ∈ Π) is polynomial-time solvable.

(Corollary 14.1e in Schrijver [1986b].) Similarly:

Corollary 5.14b. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, all of antiblocking type. Then also the system of antiblocking
polyhedra (A(Pσ) | σ ∈ Π) is polynomial-time solvable.
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(Corollary 14.1e in Schrijver [1986b].)
Also the following holds:

Theorem 5.15. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, where each Pσ is a polytope. Then the following problems are
strongly polynomial-time solvable:

(5.38) (i) given σ ∈ Π, find an internal vector, a vertex, and a facet-
inducing inequality of Pσ;

(ii) given σ ∈ Π and x ∈ Pσ, find affinely independent ver-
tices x1, . . . , xk of Pσ and write x as a convex combination
of x1, . . . , xk;

(iii) given σ ∈ Π and c ∈ REσ , find facet-inducing inequalities
cT

1 x ≤ δ1,. . . , c
T

kx ≤ δk of Pσ with c1, . . . , ck linearly indepen-
dent, and find λ1, . . . , λk ≥ 0 such that λ1c1 + · · · + λkck = c
and λ1δ1 + · · · + λkδk = max{cTx | x ∈ Pσ} (i.e., find an
optimum dual solution).

(Corollary 14.1f in Schrijver [1986b].)
The ellipsoid method can be applied also to nonpolyhedral convex sets,

in which case only approximative versions of the optimization and separation
problems can be shown to be equivalent. We only need this in Chapter 67
on the convex body TH(G), where we refer to the appropriate theorem in
Grötschel, Lovász, and Schrijver [1988].

5.12. Polyhedra and NP and co-NP

An appropriate polyhedral description of a combinatorial optimization prob-
lem relates to the question NP�=co-NP. More precisely, unless NP=co-NP, the
polyhedra associated with an NP-complete problem cannot be described by
‘certifiable’ inequalities. (These insights go back to observations in the work
of Edmonds of the 1960s.)

Again, let (Pσ | σ ∈ Π) be a system of polyhedra satisfying (5.32). Con-
sider the decision version of the optimization problem:

(5.39) given σ ∈ Π, c ∈ QEσ , and k ∈ Q, is there an x ∈ Pσ with
cTx > k?

Then:

Theorem 5.16. Problem (5.39) belongs to co-NP if and only if for each
σ ∈ Π, there exists a collection Iσ of inequalities determining Pσ such that
the problem:

(5.40) given σ ∈ Π, c ∈ QEσ , and δ ∈ Q, does cTx ≤ δ belong to Iσ,
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belongs to NP.

Proof. To see necessity, we can take for Iσ the collection of all valid in-
equalities for Pσ. Then co-NP-membership of (5.39) is equivalent of NP-
membership of (5.40).

To see sufficiency, a negative answer to question (5.39) can be certified
by giving inequalities cT

i x ≤ δi from Iσ and λi ∈ Q+ (i = 1, . . . , k) such that
c = λ1c1 + · · · + λkck and δ ≥ λ1δ1 + · · · + λkδk. As we can take k ≤ |Eσ|,
and as each inequality in Iσ has a polynomial-time checkable certificate (as
(5.40) belongs to NP), this gives a polynomial-time checkable certificate for
the negative answer. Hence (5.39) belongs to co-NP.

This implies for NP-complete problems:

Corollary 5.16a. Let (5.39) be NP-complete and suppose NP�=co-NP. For
each σ ∈ Π, let Iσ be a collection of inequalities determining Pσ. Then
problem (5.40) does not belong to NP.

Proof. If problem (5.40) would belong to NP, then by Theorem 5.16, problem
(5.39) belongs to co-NP. If (5.39) is NP-complete, this implies NP=co-NP.

Roughly speaking, this implies that if (5.39) is NP-complete and NP�=co-
NP, then Pσ has ‘difficult’ facets, that is, facets which have no polynomial-
time checkable certificate of validity for Pσ.

(Related work on the complexity of facets was reported in Karp and
Papadimitriou [1980,1982] and Papadimitriou and Yannakakis [1982,1984].)

5.13. Primal-dual methods

As a generalization of similar methods for network flow and transporta-
tion problems, Dantzig, Ford, and Fulkerson [1956] designed the ‘primal-dual
method’ for linear programming. The general idea is as follows. Starting with
a dual feasible solution y, the method searches for a primal feasible solution
x satisfying the complementary slackness condition with respect to y. If such
a primal feasible solution x is found, x and y form a pair of optimum solu-
tions (by (5.13)). If no such primal solution is found, the method prescribes
a modification of y, after which the method iterates.

The problem now is how to find a primal feasible solution x satisfying the
complementary slackness condition, and how to modify the dual solution y
if no such primal solution is found. For general linear programs this problem
can be seen to amount to another linear program, generally simpler than the
original linear program. To solve the simpler linear program we could use any
LP method. In many combinatorial applications, however, this simpler linear
program is a simpler combinatorial optimization problem, for which direct
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methods are available. Thus, if we can describe a combinatorial optimization
problem as a linear program, the primal-dual method gives us a scheme for
reducing one combinatorial problem to an easier combinatorial problem. The
efficiency of the method depends on the complexity of the easier problem and
on the number of primal-dual iterations.

We describe the primal-dual method more precisely. Suppose that we wish
to solve the LP problem

(5.41) min{cTx | x ≥ 0, Ax = b},

where A is an m×n matrix, with columns a1, . . . , an, and where b ∈ Rm and
c ∈ Rn. The dual problem is

(5.42) max{yTb | yTA ≤ cT}.

The primal-dual method consists of repeating the following primal-dual iter-
ation. Suppose that we have a feasible solution y0 for problem (5.42). Let A′

be the submatrix of A consisting of those columns aj of A for which yT

0 aj = cj

holds. To find a feasible primal solution satisfying the complementary slack-
ness, solve the restricted linear program

(5.43) x′ ≥ 0, A′x′ = b.

If such an x′ exists, by adding components 0, we obtain a vector x ≥ 0 such
that Ax = b and such that xj = 0 if yT

0 aj < cj . By complementary slackness
((5.13)), it follows that x and y0 are optimum solutions for problems (5.41)
and (5.42).

On the other hand, if no x′ satisfying (5.43) exists, by Farkas’ lemma

(Corollary 5.3a), there exists a y′ such that y′TA′ ≤ 0 and y′Tb > 0. Let α
be the largest real number satisfying

(5.44) (y0 + αy′)TA ≤ cT.

(Note that α > 0.) Reset y0 := y0 + αy′, and start the iteration anew. (If
α = ∞, (5.42) is unbounded, hence (5.41) is infeasible.)

This describes the primal-dual method. It reduces problem (5.41) to
(5.43), which often is an easier problem.

The primal-dual method can equally well be considered as a gradient
method. Suppose that we wish to solve problem (5.42), and we have a feasible
solution y0. This y0 is not optimum if and only if there exists a vector y′ such
that y′Tb > 0 and y′ is a feasible direction at y0 (that is, (y0 + αy′)TA ≤ cT

for some α > 0). If we let A′ consist of those columns of A in which yT

0 A ≤ cT

has equality, then y′ is a feasible direction if and only if y′TA′ ≤ 0. So y′ can
be found by solving (5.43).

5.14. Integer linear programming

A vector x ∈ Rn is called integer if each component is an integer, i.e., if x
belongs to Zn. Many combinatorial optimization problems can be described as
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maximizing a linear function cTx over the integer vectors in some polyhedron
P = {x | Ax ≤ b}.

So this type of problems can be described as:

(5.45) max{cTx | Ax ≤ b;x ∈ Zn}.

Such problems are called integer linear programming, or ILP, problems. They
consist of maximizing a linear function over the intersection P ∩ Zn of a
polyhedron P with the set Zn of integer vectors.

Clearly, always the following inequality holds:

(5.46) max{cTx | Ax ≤ b;x integer} ≤ max{cTx | Ax ≤ b}.

It is easy to make an example where strict inequality holds. This implies,
that generally one will have strict inequality in the following duality relation:

(5.47) max{cTx | Ax ≤ b;x integer}
≤ min{yTb | y ≥ 0; yTA = cT; y integer}.

No polynomial-time algorithm is known to exist for solving an integer lin-
ear programming problem in general. In fact, the general integer linear pro-
gramming problem is NP-complete (since the satisfiability problem is easily
transformed to an integer linear programming problem). However, for special
classes of integer linear programming problems, polynomial-time algorithms
have been found. These classes often come from combinatorial problems.

5.15. Integer polyhedra

A polyhedron P is called an integer polyhedron if it is the convex hull of the
integer vectors contained in P . This is equivalent to: P is rational and each
face of P contains an integer vector. So a polytope P is integer if and only if
each vertex of P is integer. If a polyhedron P = {x | Ax ≤ b} is integer, then
the linear programming problem

(5.48) max{cTx | Ax ≤ b}

has an integer optimum solution if it is finite. Hence, in that case,

(5.49) max{cTx | Ax ≤ b; x integer} = max{cTx | Ax ≤ b}.

This in fact characterizes integer polyhedra, since:

Theorem 5.17. Let P be a rational polyhedron in Qn. Then P is integer
if and only if for each c ∈ Qn, the linear programming problem max{cTx |
Ax ≤ b} has an integer optimum solution if it is finite.

A stronger characterization is (Edmonds and Giles [1977]):

Theorem 5.18. A rational polyhedron P in Qn is integer if and only if for
each c ∈ Zn the value of max{cTx | x ∈ P} is an integer if it is finite.
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(Corollary 22.1a in Schrijver [1986b].) We also will use the following obser-
vation:

Theorem 5.19. Let P be an integer polyhedron in Rn
+ with P +Rn

+ = P and
let c ∈ Zn

+ be such that x ≤ c for each vertex x of P . Then P ∩ {x | x ≤ c}
is an integer polyhedron again.

Proof. Let Q := P ∩ {x | x ≤ c} and let R be the convex hull of the integer
vectors in Q. We must show that Q ⊆ R.

Let x ∈ Q. As P = R + Rn
+ there exists a y ∈ R with y ≤ x. Choose such

a y with y1 + · · · + yn maximal. Suppose that yi < xi for some component
i. Since y ∈ R, y is a convex combination of integer vectors in Q. Since
yi < xi ≤ ci, at least one of these integer vectors, z say, has zi < ci. But then
the vector z′ := z+χi belongs to R. Hence we could increase yi, contradicting
the maximality of y.

We call a polyhedron P box-integer if P ∩ {x | d ≤ x ≤ c} is an integer
polyhedron for each choice of integer vectors d, c. The set {x | d ≤ x ≤ c} is
called a box.

A 0, 1 polytope is a polytope with all vertices being 0,1 vectors.

5.16. Totally unimodular matrices

Total unimodularity of matrices is an important tool in integer programming.
A matrix A is called totally unimodular if each square submatrix of A has
determinant equal to 0, +1, or −1. In particular, each entry of a totally
unimodular matrix is 0, +1, or −1.

An alternative way of characterizing total unimodularity is by requiring
that the matrix is integer and that each nonsingular submatrix has an integer
inverse matrix. This implies the following easy, but fundamental result:

Theorem 5.20. Let A be a totally unimodular m×n matrix and let b ∈ Zm.
Then the polyhedron

(5.50) P := {x | Ax ≤ b}

is integer.

(Cf. Theorem 19.1 in Schrijver [1986b].) It follows that each linear program-
ming problem with integer data and totally unimodular constraint matrix
has integer optimum primal and dual solutions:

Corollary 5.20a. Let A be a totally unimodular m × n matrix, let b ∈ Zm,
and let c ∈ Zn. Then both optima in the LP duality equation

(5.51) max{cTx | Ax ≤ b} = min{yTb | y ≥ 0, yTA = cT}
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have integer optimum solutions (if the optima are finite).

(Corollary 19.1a in Schrijver [1986b].) Hoffman and Kruskal [1956] showed
that this property is close to a characterization of total unimodularity.

Corollary 5.20a implies:

Corollary 5.20b. Let A be an m × n matrix, let b ∈ Zm, and let c ∈ Rn.
Suppose that

(5.52) max{cTx | x ≥ 0, Ax ≤ b}

has an optimum solution x∗ such that the columns of A corresponding to
positive components of x∗ form a totally unimodular matrix. Then (5.52) has
an integer optimum solution.

Proof. Since x∗ is an optimum solution, we have

(5.53) max{cTx | x ≥ 0, Ax ≤ b} = max{c′Tx′ | x′ ≥ 0, A′x′ ≤ b},

where A′ and c′ are the parts of A and c corresponding to the support of x∗.
As A′ is totally unimodular, the right-hand side maximum in (5.53) has an
integer optimum solution x′∗. Extending x′∗ by components 0, we obtain an
integer optimum solution of the left-hand side maximum in (5.53).

We will use the following characterization of Ghouila-Houri [1962b] (cf.
Theorem 19.3 in Schrijver [1986b]):

Theorem 5.21. A matrix M is totally unimodular if and only if each col-
lection R of rows of M can be partitioned into classes R1 and R2 such that
the sum of the rows in R1, minus the sum of the rows in R2, is a vector with
entries 0,±1 only.

5.17. Total dual integrality

Edmonds and Giles [1977] introduced the powerful notion of total dual in-
tegrality. It is not only useful as a tool to derive combinatorial min-max
relation, but also it gives an efficient way of expressing a whole bunch of
min-max relations simultaneously.

A system Ax ≤ b in n dimensions is called totally dual integral, or just
TDI, if A and b are rational and for each c ∈ Zn, the dual of maximizing cTx
over Ax ≤ b:

(5.54) min{yTb | y ≥ 0, yTA = cT}

has an integer optimum solution y, if it is finite.
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By extension, a system A′x ≤ b′, A′′x = b′′ is defined to be TDI if the
system A′x ≤ b′, A′′x ≤ b′′,−A′′x ≤ −b′′ is TDI. This is equivalent to requir-
ing that A′, A′′, b′, b′′ are rational and for each c ∈ Zn the dual of maximizing
cTx over A′x ≤ b′, A′′x = b′′ has an integer optimum solution, if finite.

Problem (5.54) is the problem dual to max{cTx | Ax ≤ b}, and Edmonds
and Giles showed that total dual integrality implies that also this primal
problem has an integer optimum solution, if b is integer. In fact, they showed
Theorem 5.18, which implies (since if (5.54) has an integer optimum solution,
the optimum value is an integer):

Theorem 5.22. If Ax ≤ b is TDI and b is integer, then Ax ≤ b determines
an integer polyhedron.

So total dual integrality implies ‘primal integrality’. For combinatorial
applications, the following observation is useful:

Theorem 5.23. Let A be a nonnegative integer m × n matrix such that the
system x ≥ 0, Ax ≥ 1 is TDI. Then also the system 0 ≤ x ≤ 1, Ax ≥ 1 is
TDI.

Proof. Choose c ∈ Zn. Let c+ arise from c by setting negative components to
0. By the total dual integrality of x ≥ 0, Ax ≥ 1, there exist integer optimum
solutions x, y of

(5.55) min{cT

+x | x ≥ 0, Ax ≥ 1} = max{yT1 | y ≥ 0, yTA ≤ cT

+}.

As A is nonnegative and integer and as c+ ≥ 0, we may assume that x ≤ 1.
Moreover, we can assume that xi = 1 if (c+)i = 0, that is, if ci ≤ 0.

Let z := c − c+. So z ≤ 0. We show that x, y, z are optimum solutions of

(5.56) min{cTx | 0 ≤ x ≤ 1, Ax ≥ 1}
= max{yT1 + zT1 | y ≥ 0, z ≤ 0, yTA + zT ≤ cT}.

Indeed, x is feasible, as 0 ≤ x ≤ 1 and Ax ≥ 1. Moreover, y, z is feasible, as
yTA + zT ≤ cT

+ + zT = cT. Optimality of x, y, z follows from

(5.57) cTx = cT

+x + zTx = yT1 + zTx = yT1 + zT1.

In certain cases, to obtain total dual integrality one can restrict oneself
to nonnegative objective functions:

Theorem 5.24. Let A be a nonnegative m × n matrix and let b ∈ Rm
+ . Then

x ≥ 0, Ax ≤ b is TDI if and only if min{yTb | y ≥ 0, yTA ≥ cT} is attained
by an integer optimum solution (if finite), for each c ∈ Zn

+.

Proof. Necessity is trivial. To see sufficiency, let c ∈ Zn with min{yTb | y ≥
0, yTA ≥ cT} finite. Let it be attained by y. Let c+ arise from c by setting
negative components to 0. Then
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(5.58) min{yTb | y ≥ 0, yTA ≥ cT

+} = min{yTb | y ≥ 0, yTA ≥ cT},

since yTA ≥ 0 if y ≥ 0. As the first minimum has an integer optimum
solution, also the second minimum has an integer optimum solution.

Total dual integrality is maintained under setting an inequality to an
equality (Theorem 22.2 in Schrijver [1986b]):

Theorem 5.25. Let Ax ≤ b be TDI and let A′x ≤ b′ arise from Ax ≤ b
by adding −aTx ≤ −β for some inequality aTx ≤ β in Ax ≤ b. Then also
A′x ≤ b′ is TDI.

Total dual integrality is also maintained under translation of the solution
set, as follows directly from the definition of total dual integrality:

Theorem 5.26. If Ax ≤ b is TDI and w ∈ Rn, then Ax ≤ b − Aw is TDI.

For future reference, we prove:

Theorem 5.27. Let A11, A12, A21, A22 be matrices and let b1, b2 be column
vectors, such that the system

(5.59) A1,1x1 + A1,2x2 = b1,
A2,1x1 + A2,2x2 ≤ b2

is TDI and such that A1,1 is nonsingular. Then also the system

(5.60) (A2,2 − A2,1A
−1
1,1A1,2)x2 ≤ b2 − A2,1A

−1
1,1b1

is TDI.

Proof. We may assume that b1 = 0, since by Theorem 5.26 total dual inte-
grality is invariant under replacing (5.59) by

(5.61) A1,1x1 + A1,2x2 = b1 − A1,1A
−1
1,1b1 = 0,

A2,1x1 + A2,2x2 ≤ b2 − A2,1A
−1
1,1b1.

Let x2 minimize cTx2 over (5.60), for some integer vector c of appropri-
ate dimension. Define x1 := −A−1

1,1A1,2x2. Then x1, x2 minimizes cTx2 over

(5.59), since any solution x′
1, x

′
2 of (5.59) satisfies x′

1 = −A−1
1,1A1,2x

′
2, and

therefore x′
2 satisfies (5.60); hence cTx′

2 ≥ cTx2.
Let y1, y2 be an integer optimum solution of the problem dual to maxi-

mizing cTx2 over (5.59). So y1, y2 satisfy

(5.62) yT

1 A1,1 + yT

2 A2,1 = 0, yT

1 A1,2 + yT

2 A2,2 = cT, yT

2 b2 = cTx2.

Hence

(5.63) yT

2 (A2,2 − A2,1A
−1
1,1A1,2) = yT

2 A2,2 + yT

1 A1,2 = cT

and
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(5.64) yT

2 b2 = cTx2.

So y2 is an integer optimum solution of the problem dual to maximizing cTx2

over (5.60).

This has as consequence (where a0 is a column vector):

Corollary 5.27a. If x0 = β, a0x0 + Ax ≤ b is TDI, then Ax ≤ b − βa0 is
TDI.

Proof. This is a special case of Theorem 5.27.

We also have:

Theorem 5.28. Let A = [a1 a2 A′′] be an integer m × n matrix and let
b ∈ Rm. Let A′ be the m × (n − 1) matrix [a1 + a2 A′′]. Then A′x′ ≤ b is
TDI if and only if Ax ≤ b, x1 − x2 = 0 is TDI.

Proof. To see necessity, choose c ∈ Zn. Let c′ := (c1 + c2, c3, . . . , cn)T. Then

(5.65) µ := max{cTx | Ax ≤ b, x1 − x2 = 0} = max{c′Tx′ | A′x′ ≤ b}.

Let y ∈ Zm
+ be an integer optimum dual solution of the second maximum.

So yTA′ = c′ and yTb = µ. Then yTa1 + yTa2 = c1 + c2. Hence yTA =
cT + λ(1,−1, 0, . . . , 0) for some λ ∈ Z. So y, λ form an integer optimum dual
solution of the first maximum.

To see sufficiency, choose c′ = (c2, . . . , cn)T ∈ Zn−1. Define c := (0, c2, . . . ,
cn)T. Again we have (5.65). Let y ∈ Zm

+ , λ ∈ Z constitute an integer optimum
dual solution of the first maximum, where λ corresponds to the constraint
x1 − x2 = 0. So yTA + λ(1,−1, 0, . . . , 0) = c and yTb = µ. Hence yTA′ = cT,
and therefore, y is an integer optimum dual solution of the second maximum.

Let A be a rational m × n matrix and let b ∈ Qm, c ∈ Qn. Consider
the following series of inequalities (where a vector z is half-integer if 2z is
integer):

(5.66) max{cTx | Ax ≤ b, x integer} ≤ max{cTx | Ax ≤ b}
= min{yTb | y ≥ 0, yTA = cT}
≤ min{yTb | y ≥ 0, yTA = cT, y half-integer}
≤ min{yTb | y ≥ 0, yTA = cT, y integer}.

Under certain circumstances, equality in the last inequality implies equality
throughout:

Theorem 5.29. Let Ax ≤ b be a system with A and b rational. Then Ax ≤ b
is TDI if and only if

(5.67) min{yTb | y ≥ 0, yTA = cT, y half-integer}
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is finite and is attained by an integer optimum solution y, for each integer
vector c with max{cTx | Ax ≤ b} finite.

Proof. Necessity follows directly from (5.66). To see sufficiency, choose c ∈
Zn with max{cTx | Ax ≤ b} finite. We must show that min{yTb | y ≥
0, yTA = cT} is attained by an integer optimum solution.

For each k ≥ 1, define

(5.68) αk = min{yTb | y ≥ 0, yTA = kcT, y integer}.

This is well-defined, as max{kcTx | Ax ≤ b} is finite.
The condition in the theorem gives that, for each t ≥ 0,

(5.69)
α2t

2t
= α1.

This can be shown by induction on t, the case t = 0 being trivial. If t ≥ 1,
then

(5.70) α2t = min{yTb | yTA = 2tcT, y ∈ Zm
+}

= 2 min{yTb | yTA = 2t−1cT, y ∈ 1
2Zm

+}

= 2 min{yTb | yTA = 2t−1cT, y ∈ Zm
+} = 2α2t−1 ,

implying (5.69) by induction.
Now αk+l ≤ αk + αl for all k, l. Hence we can apply Fekete’s lemma, and

get:

(5.71) min{yTb | y ≥ 0, yTA = cT} = min
k

αk

k
= lim

k→∞

αk

k
= lim

t→∞

α2t

2t

= α1.

The following analogue of Carathéodory’s theorem holds (Cook, Fonlupt,
and Schrijver [1986]):

Theorem 5.30. Let Ax ≤ b be a totally dual integral system in n dimensions
and let c ∈ Zn. Then min{yTb | y ≥ 0, yTA ≥ cT} has an integer optimum
solution y with at most 2n − 1 nonzero components.

(Theorem 22.12 in Schrijver [1986b].)
We also will need the following substitution property:

Theorem 5.31. Let A1x ≤ b1, A2x ≤ b2 be a TDI system with A1 integer,
and let A′

1 ≤ b′
1 be a TDI system with

(5.72) {x | A1x ≤ b1} = {x | A′
1x ≤ b′

1}.

Then the system A′
1x ≤ b′

1, A2x ≤ b2 is TDI.

Proof. Let c ∈ Zn with

(5.73) max{cTx | A′
1x ≤ b′

1, A2x ≤ b2}
= min{yTb′

1 + zTb2 | y, z ≥ 0, yTA′
1 + zTA2 = cT}
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finite. By (5.72), also

(5.74) max{cTx | A1x ≤ b1, A2x ≤ b2}
= min{yTb1 + zTb2 | y, z ≥ 0, yTA1 + zTA2 = cT}

is finite. Hence, since A1x ≤ b1, A2x ≤ b2 is TDI, the minimum in (5.74) has
an integer optimum solution y, z. Set d := yTA1. Then, as d is an integer
vector,

(5.75) yTb1 = min{uTb1 | u ≥ 0, uTA1 = dT}
= max{dTx | A1x ≤ b1} = max{dTx | A′

1x ≤ b′
1}

= min{vTb′
1 | v ≥ 0, vTA′

1 = dT}

is finite. Hence, since A′
1x ≤ b′

1 is TDI, the last minimum in (5.75) has an
integer optimum solution v. Then v, z is an integer optimum solution of the
minimum in (5.73).

A system Ax ≤ b is called totally dual half-integral if A and b are rational
and for each c ∈ Zn, the dual of maximizing cTx over Ax ≤ b has a half-
integer optimum solution, if it is finite. Similarly, Ax ≤ b is called totally
dual quarter-integral if A and b are rational and for each c ∈ Zn, the dual of
maximizing cTx over Ax ≤ b has a quarter-integer optimum solution y, if it
is finite.

5.18. Hilbert bases and minimal TDI systems

For any X ⊆ Rn we denote

(5.76) latticeX := {λ1x1 + · · · + λkxk | k ≥ 0, λ1, . . . , λk ∈ Z, x1, . . . , xk

∈X}.

A subset L of Rn is called a lattice if L = latticeX for some base X of Rn.
So for general X, latticeX need not be a lattice.

The dual lattice of X is, by definition:

(5.77) {x ∈ Rn | yTx ∈ Z for each y ∈ X}.

Again, this need not be a lattice in the proper sense.
A set X of vectors is called a Hilbert base if each vector in latticeX∩coneX

is a nonnegative integer combination of vectors in X. The Hilbert base is
called integer if it consists of integer vectors only.

One may show:

(5.78) Each rational polyhedral cone C is generated by an integer
Hilbert base. If C is pointed, there exists a unique inclusionwise
minimal integer Hilbert base generating C.
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(Theorem 16.4 in Schrijver [1986b].)
There is a close relation between Hilbert bases and total dual integrality:

Theorem 5.32. A rational system Ax ≤ b is TDI if and only if for each face
F of P := {x | Ax ≤ b}, the rows of A which are active in F form a Hilbert
base.

(Theorem 22.5 in Schrijver [1986b].)
(5.78) and Theorem 5.32 imply (Giles and Pulleyblank [1979], Schrijver

[1981b]):

Theorem 5.33. Each rational polyhedron P is determined by a TDI system
Ax ≤ b with A integer. If moreover P is full-dimensional, there exists a
unique minimal such system.

(Theorem 22.6 in Schrijver [1986b].)

5.19. The integer rounding and decomposition

properties

A system Ax ≤ b is said to have the integer rounding property if Ax ≤ b is
rational and

(5.79) min{yTb | y ≥ 0, yTA = cT, y integer}
= ⌈min{yTb | y ≥ 0, yTA = cT}⌉

for each integer vector c for which min{yTb | y ≥ 0, yTA = cT} is finite. So
any TDI system has the integer rounding property.

A polyhedron P is said to have the integer decomposition property if for
each natural number k, each integer vector in k · P is the sum of k integer
vectors in P .

Baum and Trotter [1978] showed that an integer matrix A is totally uni-
modular if and only if the polyhedron {x | x ≥ 0, Ax ≤ b} has the integer
decomposition property for each integer vector b. In another paper, Baum and
Trotter [1981] observed the following relation between the integer rounding
and the integer decomposition property:

(5.80) Let A be a nonnegative integer matrix. Then the system x ≥
0, Ax ≥ 1 has the integer rounding property if and only if the
blocking polyhedron B(P ) of P := {x | x ≥ 0, Ax ≥ 1} has the
integer decomposition property and all minimal integer vectors
in B(P ) are transposes of rows of A (minimal with respect to ≤).

Similarly,

(5.81) Let A be a nonnegative integer matrix. Then the system x ≥
0, Ax ≤ 1 has the integer rounding property if and only if the
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antiblocking polyhedron A(P ) of P := {x | x ≥ 0, Ax ≤ 1}
has the integer decomposition property and all maximal integer
vectors in A(P ) are transposes of rows of A (maximal with respect
to ≤).

(Theorem 22.19 in Schrijver [1986b].)

5.20. Box-total dual integrality

A system Ax ≤ b is called box-totally dual integral, or just box-TDI, if the
system d ≤ x ≤ c, Ax ≤ b is totally dual integral for each choice of vectors
d, c ∈ Rn. By Theorem 5.22,

(5.82) if Ax ≤ b is box-totally dual integral, then the polyhedron {x |
Ax ≤ b} is box-integer.

We will need the following two results.

Theorem 5.34. If Ax ≤ b is box-TDI in n dimensions and w ∈ Rn, then
Ax ≤ b − Aw is box-TDI.

Proof. Directly from the definition of box-total dual integrality.

Theorem 5.35. Let Ax ≤ b be a system of linear inequalities, with A an
m×n matrix. Suppose that for each c ∈ Rn, max{cTx | Ax ≤ b} has (if finite)
an optimum dual solution y ∈ Rm

+ such that the rows of A corresponding to
positive components of y form a totally unimodular submatrix of A. Then
Ax ≤ b is box-TDI.

Proof. Choose d, c ∈ Rn, with d ≤ c, and choose c ∈ Zn. Consider the dual
of maximizing cTx over Ax ≤ b, d ≤ x ≤ c:

(5.83) min{yTb + zT

1 c − zT

2 d | y ∈ Rm
+ , z1, z2 ∈ Rn

+, yTA + zT

1 − zT

2 = cT}.

Let y, z1, z2 attain this optimum. Define c′ := c − z1 + z2. By assumption,
min{y′Tb | y′ ∈ Rm

+ , y′TA = c′T} has an optimum solution such that the rows
of A corresponding to positive components of y′ form a totally unimodular
matrix. Now y′, z1, z2 is an optimum solution of (5.83). Also, the rows in
Ax ≤ b, d ≤ x ≤ c corresponding to positive components of y′, z1, z2 form a
totally unimodular matrix. Hence by Corollary 5.20b, (5.83) has an integer
optimum solution.

5.21. The integer hull and cutting planes

Let P be a rational polyhedron. The integer hull PI of P is the convex hull
of the integer vectors in P :
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(5.84) PI = conv.hull(P ∩ Zn).

It can be shown that PI is a rational polyhedron again.
Consider any rational affine halfspace H = {x | cTx ≤ δ}, where c is a

nonzero integer vector such that the g.c.d. of its components is equal to 1
and where δ ∈ Q. Then it is easy to show that

(5.85) HI = {x | cTx ≤ ⌊δ⌋}.

The inequality cTx ≤ ⌊δ⌋ (or, more correctly, the hyperplane {x | cTx = ⌊δ⌋})
is called a cutting plane.

Define for any rational polyhedron P :

(5.86) P ′ :=
⋂

H⊇P

HI,

where H ranges over all rational affine halfspaces H containing P . Then P ′

is a rational polyhedron contained in P . Since P ⊆ H implies PI ⊆ HI, we
know

(5.87) PI ⊆ P ′ ⊆ P.

For k ∈ Z+, define P (k) inductively by:

(5.88) P (0) := P and P (k+1) := (P (k))′.

Then (Gomory [1958,1960], Chvátal [1973a], Schrijver [1980b]):

Theorem 5.36. For each rational polyhedron there exists a k ∈ Z+ with
PI = P (k).

(For a proof, see Theorem 23.2 in Schrijver [1986b].)

5.21a. Background literature

Most background on polyhedra and linear and integer programming needed for this
book can be found in Schrijver [1986b].

More background can be found in Dantzig [1963] (linear programming), Grün-
baum [1967] (polytopes), Hu [1969] (integer programming), Garfinkel and Nemhau-
ser [1972a] (integer programming), Brøndsted [1983] (polytopes), Chvátal [1983]
(linear programming), Lovász [1986] (ellipsoid method), Grötschel, Lovász, and
Schrijver [1988] (ellipsoid method), Nemhauser and Wolsey [1988] (integer pro-
gramming), Padberg [1995] (linear programming), Ziegler [1995] (polytopes), and
Wolsey [1998] (integer programming).


