time $O(n^{3/4}m \log L)$ and $O(nm \log_{2+\frac{m}{n}} L)$. Goldberg and Tarjan [1990] gave an $O(nm \log(nL))$ algorithm for minimum-cost flow with unit capacities. More complexity results follow from the table in Section 12.5a. Disjoint s - t cuts were considered by Wagner [1990] and Talluri and Wagner [1994].

13.3. Network matrices

Let D = (V, A) be a digraph and let T = (V, A') be a directed tree. Let C be the $A' \times A$ matrix defined as follows. Take $a' \in A'$ and $a = (u, v) \in A$ and let P be the undirected u - v path in T. Define

(13.44) $C_{a',a} := \begin{cases} +1 \text{ if } a' \text{ occurs in forward direction in } P, \\ -1 \text{ if } a' \text{ occurs in backward direction in } P, \\ 0 \text{ if } a' \text{ does not occur in } P. \end{cases}$

Matrix C is called a *network matrix, generated by* T = (V, A') and D = (V, A).

Theorem 13.19. Any submatrix of a network matrix is again a network matrix.

Proof. Deleting column indexed by $a \in A$ corresponds to deleting a from D = (V, A). Deleting the row indexed by $a' = (u, v) \in A'$ corresponds to contracting a' in the tree T = (V, A') and identifying u and v in D.

The following theorem is implicit in Tutte [1965a]:

Theorem 13.20. A network matrix is totally unimodular.

Proof. By Theorem 13.19, it suffices to show that any square network matrix C has determinant 0, 1, or -1. We prove this by induction on the size of C, the case of 1×1 matrices being trivial. We use notation as above.

Assume that det $C \neq 0$. Let u be an end vertex of T and let a' be the arc in T incident with u. By reversing orientations, we can assume that each arc in A and A' incident with u, has u as tail. Then, by definition of C, the row indexed by a' contains only 0's and 1's.

Consider two 1's in row a'. That is, consider two columns indexed by arcs $a_1 = (u, v_1)$ and $a_2 = (u, v_2)$ in A. Subtracting column a_1 from column a_2 , has the effect of resetting a_2 to (v_1, v_2) . So after that, column a_2 has a 0 in position a'. Since this subtraction does not change the determinant, we can assume that there is exactly one arc in A incident with u; that is, row a' has exactly one nonzero. Then by expanding the determinant by row a', we obtain inductively that det $C = \pm 1$.

The incidence matrix of a digraph D = (V, A) is a network matrix: add a new vertex u to D giving digraph $D' = (V \cup \{u\}, A)$. Let T be the directed