
Chapter 10

Maximum flow

An s − t flow is defined as a nonnegative real-valued function on the arcs
of a digraph satisfying the ‘flow conservation law’ at each vertex �= s, t.
In this chapter we consider the problem of finding a maximum-value flow
subject to a given capacity function. Basic results are Ford and Fulkerson’s
max-flow min-cut theorem and their augmenting path algorithm to find a
maximum flow.
Each s − t flow is a nonnegative linear combination of incidence vectors
of s − t paths and of directed circuits. Moreover, an integer flow is an
integer such combination. This makes flows tightly connected to disjoint
paths. Thus, maximum integer flow corresponds to a capacitated version of
a maximum packing of disjoint paths, and the max-flow min-cut theorem
is equivalent to Menger’s theorem on disjoint paths.
Distinguishing characteristic of flow is however that it is not described by
a combination of paths but by a function on the arcs. This promotes the
algorithmic tractability.
In this chapter, graphs can be assumed to be simple.

10.1. Flows: concepts

Let D = (V, A) be a digraph and let s, t ∈ V . A function f : A → R is called
a flow from s to t, or an s − t flow, if:

(10.1) (i) f(a) ≥ 0 for each a ∈ A,
(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t}.

Condition (10.1)(ii) is called the flow conservation law : the amount of flow
entering a vertex v �= s, t should be equal to the amount of flow leaving v.

The value of an s − t flow f is, by definition:

(10.2) value(f) := f(δout(s)) − f(δin(s)).

So the value is the net amount of flow leaving s. This is equal to the net
amount of flow entering t (this follows from (10.5) below).

Let c : A → R+ be a capacity function. We say that a flow f is under c
(or subject to c) if

(10.3) f(a) ≤ c(a) for each a ∈ A.

Section 10.1. Flows: concepts 149

A maximum s − t flow, or just a maximum flow, is an s − t flow under c, of
maximum value. The maximum flow problem is to find a maximum flow.

By compactness and continuity, a maximum flow exists. It will follow from
the results in this chapter (in particular, Theorem 10.4), that if the capacities
are rational, then there exists a rational-valued maximum flow.

It will be convenient to make an observation on general functions f : A →
R. For any f : A → R, the excess function is the function excessf : P(V) → R

defined by

(10.4) excessf (U) := f(δin(U)) − f(δout(U))

for U ⊆ V . Set excessf (v) := excessf ({v}) for v ∈ V . Then:

Theorem 10.1. Let D = (V, A) be a digraph, let f : A → R, and let U ⊆ V .

Then:

(10.5) excessf (U) =
∑

v∈U

excessf (v).

Proof. This follows directly by counting, for each a ∈ A, the multiplicity of
f(a) at both sides of (10.5).

To formulate a min-max relation, define the capacity of a cut δout(U) by
c(δout(U)). Then:

Theorem 10.2. Let D = (V, A) be a digraph, s, t ∈ V , and c : A → R+.

Then

(10.6) value(f) ≤ c(δout(U)),

for each s − t flow f ≤ c and each s − t cut δout(U). Equality holds in

(10.6) if and only if f(a) = c(a) for each a ∈ δout(U) and f(a) = 0 for each

a ∈ δin(U).

Proof. Using (10.5) we have

(10.7) value(f) = −excessf (s) = −excessf (U) = f(δout(U))−f(δin(U))
≤ c(δout(U)),

with equality if and only if f(δout(U)) = c(δout(U)) and f(δin(U))= 0.

Finally, we consider a concept that turns out to be important in studying
flows. Let D = (V, A) be a digraph. For each a = (u, v) ∈ A, let a−1 := (v, u).
Define

(10.8) A−1 := {a−1 | a ∈ A}.

Fix a lower bound function d : A → R and an upper bound function c : A →
R. Then for any f : A → R satisfying d ≤ f ≤ c we define

(10.9) Af := {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > d(a)}.

150 Chapter 10. Maximum flow

Clearly, Af depends not only on f , but also on D, d, and c, but in the
applications below D, d, and c are fixed, while f is variable. The digraph

(10.10) Df = (V, Af)

is called the residual graph of f . So Df is a subgraph of the directed graph
(V, A ∪ A−1). As we shall see, the residual graph is very useful in studying
flows and circulations, both theoretically and algorithmically.

In the context of flows we take d = 0. We observe:

Corollary 10.2a. Let f be an s − t flow in D with f ≤ c. Suppose that Df

has no s − t path. Define U as the set of vertices reachable in Df from s.
Then value(f) = c(δout

A (U)). In particular, f has maximum value.

Proof. We apply Theorem 10.2. For each a ∈ δout
A (U), one has a �∈ Af , and

hence f(a) = c(a). Similarly, for each a ∈ δin
A (U) one has a−1 �∈ Af , and hence

f(a) = 0. So value(f) = c(δout
A (U)) and f has maximum value by Theorem

10.2.

Any directed path P in Df gives an undirected path in D = (V, A). Define
χP ∈ RA by:

(10.11) χP (a) :=







1 if P traverses a,
−1 if P traverses a−1,

0 if P traverses neither a nor a−1,

for a ∈ A.

10.2. The max-flow min-cut theorem

The following theorem was proved by Ford and Fulkerson [1954,1956b] for the
undirected case and by Dantzig and Fulkerson [1955,1956] for the directed
case. (According to Robacker [1955a], the max-flow min-cut theorem was
conjectured first by D.R. Fulkerson.)

Theorem 10.3 (max-flow min-cut theorem). Let D = (V, A) be a digraph,

let s, t ∈ V , and let c : A → R+. Then the maximum value of an s − t flow

subject to c is equal to the minimum capacity of an s − t cut.

Proof. Let f be an s − t flow subject to c, of maximum value. By Theorem
10.2, it suffices to show that there is an s− t cut δout(U) with capacity equal
to value(f).

Consider the residual graph Df (for lower bound d := 0). Suppose that it
contains an s − t path P . Then f ′ := f + εχP is again an s − t flow subject
to c, for ε > 0 small enough, with value(f ′) = value(f) + ε. This contradicts
the maximality of value(f).

Section 10.4. Finding a maximum flow 151

So Df contains no s − t path. Let U be the set of vertices reachable in
Df from s. Then value(f) = c(δout(U)) by Corollary 10.2a.

This ‘constructive’ proof method is implied by the algorithm of Ford and
Fulkerson [1955,1957b], to be discussed below.

Moreover, one has (Dantzig and Fulkerson [1955,1956])16:

Corollary 10.3a (integrity theorem). If c is integer, there exists an integer

maximum flow.

Proof. Directly from the proof of the max-flow min-cut theorem, where we
can take ε = 1.

10.3. Paths and flows

The following observation gives an important link between flows at one side
and paths at the other side.

Let D = (V, A) be a digraph, let s, t ∈ V , and let f : A → R+ be an s − t
flow. Then f is a nonnegative linear combination of at most |A| vectors χP ,
where P is a directed s − t path or a directed circuit. If f is integer, we can
take the linear combination integer-scalared.

Conversely, if P1, . . . , Pk are s− t paths in D, then f := χAP1 + · · ·+χAPk

is an integer s − t flow of value k.
With this observation, Corollary 10.3a implies the arc-disjoint version of

Menger’s theorem (Corollary 9.1b). Conversely, Corollary 10.3a (the integrity
theorem) can be derived from the arc-disjoint version of Menger’s theorem
by replacing each arc a by c(a) parallel arcs.

10.4. Finding a maximum flow

The proof idea of the max-flow min-cut theorem can also be used algorith-
mically to find a maximum s − t flow, as was shown by Ford and Fulkerson
[1955,1957b]. Let D = (V, A) be a digraph and s, t ∈ V and let c : A → Q+

be a ‘capacity’ function.
Initially set f := 0. Next apply the following flow-augmenting algorithm

iteratively:

(10.12) let P be a directed s − t path in Df and reset f := f + εχP ,
where ε is as large as possible so as to maintain 0 ≤ f ≤ c.

If no such path exists, the flow f is maximum, by Corollary 10.2a.
The path P is called a flow-augmenting path or an f-augmenting path, or

just an augmenting path.

16 The name ‘integrity theorem’ was used by Ford and Fulkerson [1962].

152 Chapter 10. Maximum flow

As for termination, we have:

Theorem 10.4. If all capacities c(a) are rational, the algorithm terminates.

Proof. If all capacities are rational, there exists a natural number K such
that Kc(a) is an integer for each a ∈ A. (We can take for K the l.c.m. of the
denominators of the c(a).)

Then in the flow-augmenting iterations, every fi(a) and every ε is a mul-
tiple of 1/K. So at each iteration, the flow value increases by at least 1/K.
Since the flow value cannot exceed c(δout({s})), there are only finitely many
iterations.

If we delete the rationality condition, this theorem is not maintained —
see Section 10.4a. On the other hand, in Section 10.5 we shall see that if
we always choose a shortest possible flow-augmenting path, then the algo-
rithm terminates in a polynomially bounded number of iterations, regardless
whether the capacities are rational or not.

10.4a. Nontermination for irrational capacities

Ford and Fulkerson [1962] showed that Theorem 10.4 is not maintained if we allow
arbitrary real-valued capacities. The example is as follows.

Let D = (V, A) be the complete directed graph on 8 vertices, with s, t ∈ V . Let
A0 = {a1, a2, a3} consist of three disjoint arcs of D, each disjoint from s and t. Let
r be the positive root of r2 + r − 1 = 0; that is, r = (−1 +

√
5)/2 < 1. Define a

capacity function c on A by

(10.13) c(a1) := 1, c(a2) := 1, c(a3) := r,

and c(a) at least

(10.14) q :=
1

1 − r
= 1 + r + r2 + · · ·

for each a ∈ A \ A0. Apply the flow-augmenting algorithm iteratively as follows.
In step 0, choose, as flow-augmenting path, the s− t path of length 3 traversing

a1. After this step, the flow f satisfies, for k = 1:

(10.15) (i) f has value 1 + r + r2 + · · · + rk−1,
(ii) {c(a) − f(a) | a ∈ A0} = {0, rk−1, rk},
(iii) f(a) ≤ 1 + r + r2 + · · · + rk−1 for each a ∈ A.

We describe the further steps. In each step k, for k ≥ 1, the input flow f
satisfies (10.15). Choose a flow-augmenting path P in Df that contains the arc
a ∈ A0 satisfying c(a) − f(a) = 0 in backward direction, and the other two arcs in
A0 in forward direction; all other arcs of P are arcs of D in forward direction. Since
rk < rk−1, and since (1 + r + · · · + rk−1) + rk < q, the flow augmentation increases
the flow value by rk. Since rk−1 − rk = rk+1, the new flow satisfies (10.15) with k
replaced by k + 1.

Section 10.5. A strongly polynomial bound on the number of iterations 153

We can keep iterating this, making the flow value converge to 1+r+r2+r3+· · · =
q. So the algorithm does not terminate, and the flow value does not converge to the
optimum value, since, trivially, the maximum flow value is more than q.

(Zwick [1995] gave the smallest directed graph (with 6 vertices and 8 arcs) for
which the algorithm (with irrational capacities) need not terminate.)

10.5. A strongly polynomial bound on the number of
iterations

We saw in Theorem 10.4 that the number of iterations in the maximum flow
algorithm is finite, if all capacities are rational. But if we choose as our flow-
augmenting path P in the auxiliary graph Df an arbitrary s − t path, the
number of iterations yet can get quite large. For instance, in the graph in
Figure 10.1 the number of iterations, at an unfavourable choice of paths, can
become 2 · 10k, so exponential in the size of the input data (which is O(k)).

10k

10k

10k

10k

s t1

Figure 10.1

However, if we choose always a shortest s − t path in Df as our flow-
augmenting path P (that is, with a minimum number of arcs), then the
number of iterations is at most |V | · |A| (also if capacities are irrational).
This was shown by Dinits [1970] and Edmonds and Karp [1972]. (The latter
remark that this refinement ‘is so simple that it is likely to be incorporated
innocently into a computer implementation.’)

To see this bound on the number of iterations, let again, for any digraph
D = (V, A) and s, t ∈ V , µ(D) denote the minimum length of an s − t path.
Moreover, let α(D) denote the set of arcs contained in at least one shortest
s − t path. Recall that by Theorem 9.5:

(10.16) for D′ := (V, A ∪ α(D)−1), one has µ(D′) = µ(D) and α(D′) =
α(D).

This implies the result of Dinits [1970] and Edmonds and Karp [1972]:

Theorem 10.5. If we choose in each iteration a shortest s− t path in Df as

flow-augmenting path, the number of iterations is at most |V | · |A|.

154 Chapter 10. Maximum flow

Proof. If we augment flow f along a shortest s − t path P in Df , obtaining
flow f ′, then Df ′ is a subgraph of D′ := (V, Af ∪ α(Df)−1). Hence µ(Df ′) ≥
µ(D′) = µ(Df) (by (10.16)). Moreover, if µ(Df ′) = µ(Df), then α(Df ′) ⊆
α(D′) = α(Df) (again by (10.16)). As at least one arc in P belongs to Df

but not to Df ′ , we have a strict inclusion. Since µ(Df) increases at most |V |
times and, as long as µ(Df) does not change, α(Df) decreases at most |A|
times, we have the theorem.

Since a shortest path can be found in time O(m) (Theorem 6.3), this
gives:

Corollary 10.5a. A maximum flow can be found in time O(nm2).

Proof. Directly from Theorem 10.5.

10.6. Dinits’ O(n2
m) algorithm

Dinits [1970] observed that one can speed up the maximum flow algorithm,
by not augmenting simply along paths in Df , but along flows in Df . The
approach is similar to that of Section 9.3 for path packing.

To describe this, define a capacity function cf on Af by, for each a ∈ A:

(10.17) cf (a) := c(a) − f(a) if a ∈ Af and
cf (a−1) := f(a) if a−1 ∈ Af .

Then for any flow g in Df subject to cf ,

(10.18) f ′(a) := f(a) + g(a) − g(a−1)

gives a flow f ′ in D subject to c. (We define g(a) or g(a−1) to be 0 if a or
a−1 does not belong to Af .)

Now we shall see that, given a flow f in D, one can find in time O(m) a
flow g in Df such that the flow f ′ arising by (10.18) satisfies µ(Df ′) > µ(Df).
It implies that there are at most n iterations.

The basis of the method is the concept of ‘blocking flow’. An s − t flow f
is called blocking if for each s − t flow f ′ with f ≤ f ′ ≤ c one has f ′ = f .

Theorem 10.6. Given an acyclic graph D = (V, A), s, t ∈ V , and a capacity

function c : A → Q+, a blocking s − t flow can be found in time O(nm).

Proof. By depth-first search we can find, in time O(|A′|), a subset A′ of A
and an s − t path P in A′ such that no arc in A′ \ AP is contained in any
s − t path: just scan s (cf. (6.2)) until t is reached; then A′ is the set of arcs
considered so far.

Let f be the maximum flow that can be sent along P , and reset c := c−f .
Delete all arcs in A′ \ AP and all arcs a with c(a) = 0, and recursively find

Section 10.6a. Karzanov’s O(n3) algorithm 155

a blocking s − t flow f ′ in the new network. Then f ′ + f is a blocking s − t
flow for the original data, as is easily checked.

The running time of the iteration is O(n + t), where t is the number of
arcs deleted. Since there are at most |A| iterations and since at most |A| arcs
can be deleted, we have the required running time bound.

Hence we have an improvement on the running time for finding a maxi-
mum flow:

Corollary 10.6a. A maximum flow can be found in time O(n2m).

Proof. It suffices to describe an O(nm) method to find, for given flow f , a
flow f ′ with µ(Df ′) > µ(Df).

Find a blocking flow g in (V, α(Df)). (Note that α(Df) can be determined
in O(m) time.) Let f ′(a) := f(a)+g(a)−g(a−1), taking values 0 if undefined.
Then Df ′ is a subgraph of D′ := (V, Af ∪ α(Df)−1), and hence by (10.16),
µ(Df ′) ≥ µ(D′) = µ(Df). If µ(Df ′) = µ(Df), Df ′ has a path P of length
µ(Df), which (again (10.16)) should also be a path in α(Df). But then g
could have been increased along this path, contradicting the fact that g is
blocking in Df .

10.6a. Karzanov’s O(n3) algorithm

Karzanov [1974] gave a faster algorithm to find a blocking flow, thus speeding up
the maximum flow algorithm. We give the short proof of Malhotra, Kumar, and
Maheshwari [1978] (see also Cherkasskĭı [1979] and Tarjan [1984]).

Theorem 10.7. Given an acyclic digraph D = (V, A), s, t ∈ V , and a capacity

function c : A → Q+, a blocking s − t flow can be found in time O(n2).

Proof. First order the vertices reachable from s as s = v1, v2, . . . , vn−1, vn topo-

logically ; that is, if (vi, vj) ∈ A, then i < j. This can be done in time O(m) (see
Corollary 6.5b).

We describe the algorithm recursively. Consider the minimum of the values
c(δin(v)) for all v ∈ V \ {s} and c(δout(v)) for all v ∈ V \ {t}. Let the minimum be
attained by vi and c(δout(vi)) (without loss of generality). Define f(a) := c(a) for
each a ∈ δout(vi) and f(a) := 0 for all other a.

Next for j = i+1, . . . , n−1, redefine f(a) for each a ∈ δout(vj) such that f(a) ≤
c(a) and such that f(δout(vj)) = f(δin(vj)). By the minimality of c(δout(vi)), we
can always do this, as initially f(δin(vj)) ≤ c(δout(vi)) ≤ c(δout(vj)). We do this in
such a way that finally f(a) ∈ {0, c(a)} for all but at most one a in δout(vj).

After that, for j = i, i − 1, . . . , 2, redefine similarly f(a) for a ∈ δin(vj) such
that f(a) ≤ c(a), f(δin(vj)) = f(δout(vj)), and f(a) ∈ {0, c(a)} for all but at most
one a in δin(vj).

If vi ∈ {s, t} we stop, and f is a blocking flow. If vi �∈ {s, t}, set c′(a) :=
c(a) − f(a) for each a ∈ A, and delete all arcs a with c′(a) = 0 and delete vi and
all arcs incident with vi, thus obtaining the directed graph D′ = (V ′, A′). Obtain

156 Chapter 10. Maximum flow

(recursively) a blocking flow f ′ in D′ subject to the capacity function c′. Define
f ′′(a) := f(a) + f ′(a) for a ∈ A′ and f ′′(a) = f(a) for a ∈ A \ A′. Then f ′′ is a
blocking flow in D.

This describes the algorithm. The correctness can be seen as follows. If vi ∈
{s, t} the correctness is immediate. If vi �∈ {s, t}, suppose that f ′′ is not a blocking
flow in D, and let P be an s−t path in D with f ′′(a) < c(a) for each arc a in P . Then
each arc of P belongs to A′, since f ′′(a) = f(a) = c(a) for each a ∈ A\(A′∪δin(vi)).
So for each arc a of P one has c′(a) = c(a) − f(a) > f ′′(a) − f(a) = f ′(a). This
contradicts the fact that f ′ is a blocking flow in D′.

The running time of the algorithm is O(n2), since the running time of the
iteration is O(n + |A \ A′|), and since there are at most |V | iterations.

Theorem 10.7 improves the running time for finding a maximum flow as follows:

Corollary 10.7a. A maximum flow can be found in time O(n3).

Proof. Similar to the proof of Corollary 10.6a.

Sharper blocking flow algorithms were found by Cherkasskĭı [1977a] (O(n
√

m)),
Galil [1978,1980a] (O((nm)2/3)), Shiloach [1978] and Galil and Naamad [1979,1980]
(O(m log2 n)), Sleator [1980] and Sleator and Tarjan [1981,1983a] (O(m log n)),
and Goldberg and Tarjan [1990] (O(m log(n2/m))), each yielding a maximum flow
algorithm with running time bound a factor of n higher.

An alternative approach finding a maximum flow in time O(nm log(n2/m)),
based on the ‘push-relabel’ method, was developed by Goldberg [1985,1987] and
Goldberg and Tarjan [1986,1988a], and is described in the following section.

10.7. Goldberg’s push-relabel method

The algorithms for the maximum flow problem described above are all based
on flow augmentation. The basis is updating a flow f until Df has no s − t
path. Goldberg [1985,1987] and Goldberg and Tarjan [1986,1988a] proposed
a different, in a sense dual, method, the ‘push-relabel’ method: update a ‘pre-
flow’ f , maintaining the property that Df has no s− t path, until f is a flow.
(Augmenting flow methods are ‘primal’ as they maintain feasibility of the
primal linear program, while the push-relabel method maintains feasibility
of the dual linear program.)

Let D = (V, A) be a digraph, s, t ∈ V , and c : A → Q+. A function
f : A → Q is called an s − t preflow, or just a preflow, if

(10.19) (i) 0 ≤ f(a) ≤ c(a) for each a ∈ A,
(ii) excessf (v) ≥ 0 for each vertex v �= s.

(Preflows were introduced by Karzanov [1974]. excessf was defined in Section
10.1.)

Condition (ii) says that at each vertex v �= s, the outgoing preflow does
not exceed the ingoing preflow. For any preflow f , call a vertex v active if

Section 10.7. Goldberg’s push-relabel method 157

v �= t and excessf (v) > 0. So f is an s − t flow if and only if there are no
active vertices.

The push-relabel method consists of keeping a pair f, p, where f is a preflow
and p : V → Z+ such that

(10.20) (i) if (u, v) ∈ Af , then p(v) ≥ p(u) − 1,
(ii) p(s) = n and p(t) = 0.

Note that for any given f , such a function p exists if and only if Df has no
s − t path. Hence, if a function p satisfying (10.20) exists and f is an s − t
flow, then f is an s − t flow of maximum value (Corollary 10.2a).

Initially, f and p are set by:

(10.21) f(a) := c(a) if a ∈ δout(s) and f(a) := 0 otherwise;
p(v) := n if v = s and p(v) := 0 otherwise.

Next, while there exist active vertices, choose an active vertex u maximizing
p(u), and apply the following iteratively, until u is inactive:

(10.22) choose an arc (u, v) ∈ Af with p(v) = p(u) − 1 and push over
(u, v); if no such arc exists, relabel u.

Here to push over (u, v) ∈ Af means:

(10.23) if (u, v) ∈ A, reset f(u, v) := f(u, v)+ε, where ε := min{c(u, v)−
f(u, v), excessf (u)};
if (v, u) ∈ A, reset f(v, u) := f(v, u) − ε, where ε := min{f(v, u),
excessf (u)}.

To relabel u means:

(10.24) reset p(u) := p(u) + 1.

Note that if Af has no arc (u, v) with p(v) = p(u) − 1, then we can relabel u
without violating (10.20).

This method terminates, since:

Theorem 10.8. The number of pushes is O(n3) and the number of relabels

is O(n2).

Proof. First we show:

(10.25) throughout the process, p(v) < 2n for each v ∈ V .

Indeed, if v is active, then Df contains a v−s path (since f can be decomposed
as a sum of incidence vectors of s − v paths, for v ∈ V , and of directed
circuits). So by (10.20)(i), p(v) − p(s) ≤ distDf

(v, s) < n. As p(s) = n, we
have p(v) < 2n. This gives (10.25), which directly implies:

(10.26) the number of relabels is at most 2n2.

158 Chapter 10. Maximum flow

To estimate the number of pushes, call a push (10.23) saturating if after
the push one has f(u, v) = c(u, v) (if (u, v) ∈ A) or f(v, u) = 0 (if (v, u) ∈ A).
Then:

(10.27) the number of saturating pushes is O(nm).

For consider any arc a = (u, v) ∈ A. If we increase f(a), then p(v) = p(u)−1,
while if we decrease f(a), then p(u) = p(v)−1. So meantime p(v) should have
been relabeled at least twice. As p is nondecreasing (in time), by (10.25) we
have (10.27).

Finally:

(10.28) the number of nonsaturating pushes is O(n3).

Between any two relabels the function p does not change. Hence there are
O(n) nonsaturating pushes, as each of them makes an active vertex v maxi-
mizing p(v) inactive (while possibly a vertex v′ with p(v′) < p(v) is activated).
With (10.26) this gives (10.28).

There is an efficient implementation of the method:

Theorem 10.9. The push-relabel method finds a maximum flow in time

O(n3).

Proof. We order the vertex set V as a doubly linked list, in order of increasing
value p(v). Moreover, for each u ∈ V we keep the set Lu of arcs (u, v) in Af

with p(v) = p(u) − 1, ordered as a doubly linked list. We also keep with each
vertex v the value excessf (v), and we keep linked lists of arcs of D incident
with v.

Throughout the iterations, we choose an active vertex u maximizing p(u),
and we process u, until u becomes inactive. Between any two relabelings,
this searching takes O(n) time, since as long as we do not relabel, we can
continue searching the list V in order. As we relabel O(n2) times, we can do
the searching in O(n3) time.

Suppose that we have found an active vertex u maximizing p(u). We next
push over each of the arcs in Lu. So finding an arc a = (u, v) for pushing
takes time O(1). If it is a saturating push, we can delete (u, v) from Lu in
time O(1). Moreover, we can update excessf (u) and excessf (v) in time O(1).
Therefore, as there are O(n3) pushes, they can be done in O(n3) time.

We decide to relabel u if Lu = ∅. When relabeling, updating the lists
takes O(n) time: When we reset p(u) from i to i + 1, then for each arc (u, v)
or (v, u) of D, we add (u, v) to Lu if p(v) = i and (u, v) ∈ Af , and we remove
(v, u) from Lv if p(v) = i+1 and (v, u) ∈ Af ; moreover, we move u to its new
rank in the list V . This all takes O(n) time. Therefore, as there are O(n2)
relabels, they can be done in O(n3) time.

Further notes on the push-relabel method. If we allow any active vertex u
to be chosen for (10.22) (not requiring maximality of p(u)), then the bounds of

Section 10.8a. A weakly polynomial bound 159

O(n2) on the number of relabels and O(nm) on the number of saturating pushes
are maintained, while the number of nonsaturating pushes is O(n2m).

A first-in first-out selection rule was studied by Goldberg [1985], also yield-
ing an O(n3) algorithm. Theorem 10.9 (using the largest-label selection) is due
to Goldberg and Tarjan [1986,1988a], who also showed an implementation of the
push-relabel method with dynamic trees, taking O(nm log(n2/m)) time. Cheriyan
and Maheshwari [1989] and Tunçel [1994] showed that the bound on the number
of pushes in Theorem 10.8 can be improved to O(n2

√
m), yielding an O(n2

√
m)

running time bound. Further improvements are given in Ahuja and Orlin [1989]
and Ahuja, Orlin, and Tarjan [1989]. The worst-case behaviour of the push-relabel
method was studied by Cheriyan and Maheshwari [1989].

10.8. Further results and notes

10.8a. A weakly polynomial bound

Edmonds and Karp [1972] considered the following fattest augmenting path rule:
choose a flow-augmenting path for which the flow value increase is maximal. They
showed that, if all capacities are integer, it terminates in at most 1 + m′ log φ
iterations, where φ is the maximum flow value and where m′ is the maximum
number of arcs in any s − t cut. This gives a maximum flow algorithm of running
time O(n2m log nC), where C is the maximum capacity (assuming all capacities
are integer). (For irrational capacities, Queyranne [1980] showed that the method
need not terminate.)

Edmonds and Karp [1970,1972] and Dinits [1973a] introduced the idea of
capacity-scaling, which gives the following stronger running time bound:

Theorem 10.10. For integer capacities, a maximum flow can be found in time

O(m2 log C).

Proof. Let L := ⌈log2 C⌉+1. For i = L, L−1, . . . , 0, we can obtain a maximum flow
f ′ for capacity function c′ := ⌊c/2i⌋, from a maximum flow f ′′ for capacity function
c′′ := ⌊c/2i+1⌋ as follows. Observe that the maximum flow value for c′ differs by
at most m from that of the maximum flow value φ for 2c′′. For let δout(U) be a
cut with 2c′′(δout(U)) = φ. Then c′(δout(U)) − φ ≤ |δout(U)| ≤ m. So a maximum
flow with respect to c′ can be obtained from 2f ′′ by at most m augmenting path
iterations. As each augmenting path iteration can be done in O(m) time, and as
⌊c/2L⌋ = 0, we have the running time bound given.

With methods similar to those used in Corollary 10.6a, the bound in Theorem
10.10 can be improved to O(nm log C), a result of Dinits [1973a] and Gabow [1985b].
To see this, observe that the proof of Theorem 10.6 also yields:

Theorem 10.11. Given an acyclic graph D = (V, A), s, t ∈ V , and a capacity

function c : A → Z+, an integer blocking flow f can be found in time O(nφ + m),
where φ is the value of f .

160 Chapter 10. Maximum flow

Proof. Consider the proof of Theorem 10.6. We do at most φ iterations, while each
iteration takes O(n + t) time, where t is the number of arcs deleted.

Hence, similarly to Corollary 10.6a one has:

Corollary 10.11a. For integer capacities, a maximum flow can be found in time

O(n(φ + m)), where φ is the maximum flow value.

Proof. Similar to the proof of Corollary 10.6a.

Therefore,

Corollary 10.11b. For integer capacities, a maximum flow can be found in time

O(nm log C).

Proof. In the proof of Theorem 10.10, a maximum flow with respect to c′ can be
obtained from 2f ′′ in time O(nm) (by Corollary 10.11a), since the maximum flow
value in the residual graph Df ′′ is at most m.

10.8b. Complexity survey for the maximum flow problem

Complexity survey (∗ indicates an asymptotically best bound in the table):

O(n2mC) Dantzig [1951a] simplex method

O(nmC)
Ford and Fulkerson [1955,1957b]
augmenting path

O(nm2)
Dinits [1970], Edmonds and Karp
[1972] shortest augmenting path

O(n2m log nC)
Edmonds and Karp [1972] fattest
augmenting path

O(n2m)
Dinits [1970] shortest augmenting
path, layered network

O(m2 log C)
Edmonds and Karp [1970,1972]
capacity-scaling

O(nm log C)
Dinits [1973a], Gabow [1983b,1985b]
capacity-scaling

O(n3)
Karzanov [1974] (preflow push); cf.
Malhotra, Kumar, and Maheshwari
[1978], Tarjan [1984]

O(n2
√

m)
Cherkasskĭı [1977a] blocking preflow
with long pushes

O(nm log2 n)
Shiloach [1978], Galil and Naamad
[1979,1980]

O(n5/3m2/3) Galil [1978,1980a]

≫

Section 10.8b. Complexity survey for the maximum flow problem 161

continued

O(nm log n)
Sleator [1980], Sleator and Tarjan
[1981,1983a] dynamic trees

∗ O(nm log(n2/m))
Goldberg and Tarjan [1986,1988a]
push-relabel+dynamic trees

O(nm + n2 log C)
Ahuja and Orlin [1989] push-relabel +
excess scaling

O(nm + n2
√

log C)
Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved

∗ O(nm log((n/m)
√

log C + 2))
Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved + dynamic trees

∗ O(n3/ log n)
Cheriyan, Hagerup, and Mehlhorn
[1990,1996]

O(n(m + n5/3 log n))
Alon [1990] (derandomization of
Cheriyan and Hagerup [1989,1995])

O(nm + n2+ε)
(for each ε > 0) King, Rao, and Tarjan
[1992]

∗ O(nm logm/n n + n2 log2+ε n)
(for each ε > 0) Phillips and
Westbrook [1993,1998]

∗ O(nm log m
n log n

n) King, Rao, and Tarjan [1994]

∗ O(m3/2 log(n2/m) log C) Goldberg and Rao [1997a,1998]

∗ O(n2/3m log(n2/m) log C) Goldberg and Rao [1997a,1998]

Here C := ‖c‖∞ for integer capacity function c. For a complexity survey for unit
capacities, see Section 9.6a.

Research problem: Is there an O(nm)-time maximum flow algorithm?
For the special case of planar undirected graphs:

O(n2 log n) Itai and Shiloach [1979]

O(n log2 n)
Reif [1983] (minimum cut), Hassin and Johnson
[1985] (maximum flow)

O(n log n log∗ n) Frederickson [1983b]

∗ O(n log n) Frederickson [1987b]

For directed planar graphs:

O(n3/2 log n) Johnson and Venkatesan [1982]

O(n4/3 log2 n log C)
Klein, Rao, Rauch, and Subramanian [1994],
Henzinger, Klein, Rao, and Subramanian [1997]

∗ O(n log n) Weihe [1994b,1997b]

