
LINEAR PROGRAMMING

1. Introduction.

A linear programming problem may be defined as the problem of maximizing or min-
imizing a linear function subject to linear constraints. The constraints may be equalities
or inequalities. Here is a simple example.

Find numbers x1 and x2 that maximize the sum x1 + x2 subject to the constraints
x1 ≥ 0, x2 ≥ 0, and

x1 + 2x2 ≤ 4

4x1 + 2x2 ≤ 12

−x1 + x2 ≤ 1

In this problem there are two unknowns, and five constraints. All the constraints are
inequalities and they are all linear in the sense that each involves an inequality in some
linear function of the variables. The first two constraints, x1 ≥ 0 and x2 ≥ 0, are special.
These are called nonnegativity constraints and are often found in linear programming
problems. The other constraints are then called the main constraints. The function to be
maximized (or minimized) is called the objective function. Here, the objective function is
x1 + x2 .

Since there are only two variables, we can solve this problem by graphing the set
of points in the plane that satisfies all the constraints (called the constraint set) and
then finding which point of this set maximizes the value of the objective function. Each
inequality constraint is satisfied by a half-plane of points, and the constraint set is the
intersection of all the half-planes. In the present example, the constraint set is the five-
sided figure shaded in Figure 1.

We seek the point (x1, x2), that achieves the maximum of x1 + x2 as (x1, x2) ranges
over this constraint set. The function x1 + x2 is constant on lines with slope −1, for
example the line x1 + x2 = 1, and as we move this line further from the origin up and to
the right, the value of x1 + x2 increases. Therefore, we seek the line of slope −1 that is
farthest from the origin and still touches the constraint set. This occurs at the intersection
of the lines x1 + 2x2 = 4 and 4x1 +2x2 = 12, namely, (x1, x2) = (8/3, 2/3). The value of
the objective function there is (8/3) + (2/3) = 10/3.

Exercises 1 and 2 can be solved as above by graphing the feasible set.

It is easy to see in general that the objective function, being linear, always takes on
its maximum (or minimum) value at a corner point of the constraint set, provided the
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constraint set is bounded. Occasionally, the maximum occurs along an entire edge or face
of the constraint set, but then the maximum occurs at a corner point as well.

Not all linear programming problems are so easily solved. There may be many vari-
ables and many constraints. Some variables may be constrained to be nonnegative and
others unconstrained. Some of the main constraints may be equalities and others inequal-
ities. However, two classes of problems, called here the standard maximum problem and
the standard minimum problem, play a special role. In these problems, all variables are
constrained to be nonnegative, and all main constraints are inequalities.

We are given an m -vector, b = (b1, . . . , bm)T, an n -vector, c = (c1, . . . , cn)T, and an
m × n matrix,

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn









of real numbers.

The Standard Maximum Problem: Find an n -vector, x = (x1, . . . , xn)T, to
maximize

cTx = c1x1 + · · · + cnxn

subject to the constraints

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2

...

am1x1 + am2x2 + · · · + amnxn ≤ bm

(or Ax ≤ b)

and
x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0 (or x ≥ 0).
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The Standard Minimum Problem: Find an m -vector, y = (y1, . . . , ym), to
minimize

yTb = y1b1 + · · · + ymbm

subject to the constraints

y1a11 + y2a21 + · · · + ymam1 ≥ c1

y1a12 + y2a22 + · · · + ymam2 ≥ c2

...

y1a1n + y2a2n + · · · + ymamn ≥ cn

(or yTA ≥ cT)

and
y1 ≥ 0, y2 ≥ 0, . . . , ym ≥ 0 (or y ≥ 0).

Note that the main constraints are written as ≤ for the standard maximum problem
and ≥ for the standard minimum problem. The introductory example is a standard
maximum problem.

We now present examples of four general linear programming problems. Each of these
problems has been extensively studied.

Example 1. The Diet Problem. There are m different types of food, F1, . . . , Fm ,
that supply varying quantities of the n nutrients, N1, . . . , Nn , that are essential to good
health. Let cj be the minimum daily requirement of nutrient, Nj . Let bi be the price per
unit of food, Fi . Let aij be the amount of nutrient Nj contained in one unit of food Fi .
The problem is to supply the required nutrients at minimum cost.

Let yi be the number of units of food Fi to be purchased per day. The cost per day
of such a diet is

b1y1 + b2y2 + · · · + bmym. (1)

The amount of nutrient Nj contained in this diet is

a1jy1 + a2jy2 + · · · + amjym

for j = 1, . . . , n . We do not consider such a diet unless all the minimum daily requirements
are met, that is, unless

a1jy1 + a2jy2 + · · · + amjym ≥ cj for j = 1, . . . , n . (2)

Of course, we cannot purchase a negative amount of food, so we automatically have the
constraints

y1 ≥ 0, y2 ≥ 0, . . . , ym ≥ 0. (3)

Our problem is: minimize (1) subject to (2) and (3). This is exactly the standard minimum
problem.
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Example 2. The Transportation Problem. There are I ports, or produc-
tion plants, P1, . . . , PI , that supply a certain commodity, and there are J markets,
M1, . . . ,MJ , to which this commodity must be shipped. Port Pi possesses an amount
si of the commodity (i = 1, 2, . . . , I ), and market Mj must receive the amount rj of the
commodity (j = 1, . . . , J ). Let bij be the cost of transporting one unit of the commodity
from port Pi to market Mj . The problem is to meet the market requirements at minimum
transportation cost.

Let yij be the quantity of the commodity shipped from port Pi to market Mj . The
total transportation cost is

I
∑

i=1

J
∑

j=1

yijbij . (4)

The amount sent from port Pi is
∑J

j=1
yij and since the amount available at port Pi is

si , we must have
J

∑

j=1

yij ≤ si for i = 1, . . . , I . (5)

The amount sent to market Mj is
∑I

i=1
yij , and since the amount required there is rj ,

we must have
I

∑

i=1

yij ≥ rj for j = 1, . . . , J . (6)

It is assumed that we cannot send a negative amount from PI to Mj , we have

yij ≥ 0 for i = 1, . . . , I and j = 1, . . . , J . (7)

Our problem is: minimize (4) subject to (5), (6) and (7).

Let us put this problem in the form of a standard minimum problem. The number of
y variables is IJ , so m = IJ . But what is n? It is the total number of main constraints.
There are n = I + J of them, but some of the constraints are ≥ constraints, and some of
them are ≤ constraints. In the standard minimum problem, all constraints are ≥ . This
can be obtained by multiplying the constraints (5) by −1:

J
∑

j=1

(−1)yij ≥ −sj for i = 1, . . . , I . (5′)

The problem “minimize (4) subject to (5′), (6) and (7)” is now in standard form. In
Exercise 3, you are asked to write out the matrix A for this problem.

Example 3. The Activity Analysis Problem. There are n activities, A1, . . . , An ,
that a company may employ, using the available supply of m resources, R1, . . . , Rm (labor
hours, steel, etc.). Let bi be the available supply of resource Ri . Let aij be the amount
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of resource Ri used in operating activity Aj at unit intensity. Let cj be the net value
to the company of operating activity Aj at unit intensity. The problem is to choose the
intensities which the various activities are to be operated to maximize the value of the
output to the company subject to the given resources.

Let xj be the intensity at which Aj is to be operated. The value of such an activity
allocation is

n
∑

j=1

cjxj . (8)

The amount of resource Ri used in this activity allocation must be no greater than the
supply, bi ; that is,

∑

j=1

aijxj ≤ bi for i = 1, . . . ,m . (9)

It is assumed that we cannot operate an activity at negative intensity; that is,

x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0. (10)

Our problem is: maximize (8) subject to (9) and (10). This is exactly the standard
maximum problem.

Example 4. The Optimal Assignment Problem. There are I persons available
for J jobs. The value of person i working 1 day at job j is aij , for i = 1, . . . , I , and
j = 1, . . . , J . The problem is to choose an assignment of persons to jobs to maximize the
total value.

An assignment is a choice of numbers, xij , for i = 1, . . . , I , and j = 1, . . . , J , where
xij represents the proportion of person i ’s time that is to be spent on job j . Thus,

J
∑

j=1

xij ≤ 1 for i = 1, . . . , I (11)

I
∑

i=1

xij ≤ 1 for j = 1, . . . , J (12)

and
xij ≥ 0 for i = 1, . . . , I and j = 1, . . . , J . (13)

Equation (11) reflects the fact that a person cannot spend more than 100% of his time
working, (12) means that only one person is allowed on a job at a time, and (13) says that
no one can work a negative amount of time on any job. Subject to (11), (12) and (13), we
wish to maximize the total value,

I
∑

i=1

J
∑

j=1

aijxij . (14)
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This is a standard maximum problem with m = I + J and n = IJ .

Terminology.

The function to be maximized or minimized is called the objective function.

A vector, x for the standard maximum problem or y for the standard minimum
problem, is said to be feasible if it satisfies the corresponding constraints.

The set of feasible vectors is called the constraint set.

A linear programming problem is said to be feasible if the constraint set is not empty;
otherwise it is said to be infeasible.

A feasible maximum (resp. minimum) problem is said to be unbounded if the ob-
jective function can assume arbitrarily large positive (resp. negative) values at feasible
vectors; otherwise, it is said to be bounded. Thus there are three possibilities for a linear
programming problem. It may be bounded feasible, it may be unbounded feasible, and it
may be infeasible.

The value of a bounded feasible maximum (resp, minimum) problem is the maximum
(resp. minimum) value of the objective function as the variables range over the constraint
set.

A feasible vector at which the objective function achieves the value is called optimal.

All Linear Programming Problems Can be Converted to Standard Form.

A linear programming problem was defined as maximizing or minimizing a linear function
subject to linear constraints. All such problems can be converted into the form of a
standard maximum problem by the following techniques.

A minimum problem can be changed to a maximum problem by multiplying the
objective function by −1. Similarly, constraints of the form

∑n

j=1
aijxj ≥ bi can be

changed into the form
∑n

j=1
(−aij)xj ≤ −bi . Two other problems arise.

(1) Some constraints may be equalities. An equality constraint
∑n

j=1
aijxj = bi may

be removed, by solving this constraint for some xj for which aij �= 0 and substituting this
solution into the other constraints and into the objective function wherever xj appears.
This removes one constraint and one variable from the problem.

(2) Some variable may not be restricted to be nonnegative. An unrestricted variable,
xj , may be replaced by the difference of two nonnegative variables, xj = uj − vj , where
uj ≥ 0 and vj ≥ 0. This adds one variable and two nonnegativity constraints to the
problem.

Any theory derived for problems in standard form is therefore applicable to general
problems. However, from a computational point of view, the enlargement of the number
of variables and constraints in (2) is undesirable and, as will be seen later, can be avoided.
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Exercises.

1. Consider the linear programming problem: Find y1 and y2 to minimize y1 + y2

subject to the constraints,
y1 + 2y2 ≥ 3

2y1 + y2 ≥ 5
y2 ≥ 0.

Graph the constraint set and solve.

2. Find x1 and x2 to maximize ax1 + x2 subject to the constraints in the numerical
example of Figure 1. Find the value as a function of a .

3. Write out the matrix A for the transportation problem in standard form.

4. Put the following linear programming problem into standard form. Find x1 , x2 ,
x3 , x4 to maximize x1 + 2x2 + 3x3 + 4x4 + 5 subject to the constraints,

4x1 + 3x2 + 2x3 + x4 ≤ 10
x1 − x3 + 2x4 = 2
x1 + x2 + x3 + x4 ≥ 1 ,

and
x1 ≥ 0, x3 ≥ 0, x4 ≥ 0.
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2. Duality.

To every linear program there is a dual linear program with which it is intimately
connected. We first state this duality for the standard programs. As in Section 1, c and
x are n -vectors, b and y are m -vectors, and A is an m × n matrix. We assume m ≥ 1
and n ≥ 1.

Definition. The dual of the standard maximum problem

maximize cTx

subject to the constraints Ax ≤ b and x ≥ 0
(1)

is defined to be the standard minimum problem

minimize yTb

subject to the constraints yTA ≥ cT and y ≥ 0
(2)

Let us reconsider the numerical example of the previous section: Find x1 and x2 to
maximize x1 + x2 subject to the constraints x1 ≥ 0, x2 ≥ 0, and

x1 + 2x2 ≤ 4
4x1 + 2x2 ≤ 12
−x1 + x2 ≤ 1.

(3)

The dual of this standard maximum problem is therefore the standard minimum problem:
Find y1 , y2 , and y3 to minimize 4y1+12y2+y3 subject to the constraints y1 ≥ 0, y2 ≥ 0,
y3 ≥ 0, and

y1 + 4y2 − y3 ≥ 1
2y1 + 2y2 + y3 ≥ 1.

(4)

If the standard minimum problem (2) is transformed into a standard maximum prob-
lem (by multiplying A , b , and c by −1), its dual by the definition above is a standard
minimum problem which, when transformed to a standard maximum problem (again by
changing the signs of all coefficients) becomes exactly (1). Therefore, the dual of the stan-
dard minimum problem (2) is the standard maximum problem (1). The problems (1) and
(2) are said to be duals.

The general standard maximum problem and the dual standard minimum problem
may be simultaneously exhibited in the display:

x1 x2 · · · xn

y1 a11 a12 · · · a1n ≤ b1

y2 a21 a22 · · · a2n ≤ b2

...
...

...
...

...
ym am1 am2 · · · amn ≤ bm

≥ c1 ≥ c2 · · · ≥ cn

(5)
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Our numerical example in this notation becomes

x1 x2

y1 1 2 ≤ 4
y2 4 2 ≤ 12
y3 −1 1 ≤ 1

≥ 1 ≥ 1

(6)

The relation between a standard problem and its dual is seen in the following theorem
and its corollaries.

Theorem 1. If x is feasible for the standard maximum problem (1) and if y is feasible
for its dual (2), then

cTx ≤ yTb. (7)

Proof.

cTx ≤ yTAx ≤ yTb.

The first inequality follows from x ≥ 0 and cT ≤ yTA . The second inequality follows
from y ≥ 0 and Ax ≤ b .

Corollary 1. If a standard problem and its dual are both feasible, then both are bounded
feasible.

Proof. If y is feasible for the minimum problem, then (7) shows that yTb is an upper
bound for the values of cTx for x feasible for the maximum problem. Similarly for the
converse.

Corollary 2. If there exists feasible x∗ and y∗ for a standard maximum problem (1) and
its dual (2) such that cTx∗ = y∗Tb , then both are optimal for their respective problems.

Proof. If x is any feasible vector for (1), then cTx ≤ y∗Tb = cTx∗ . which shows that x∗

is optimal. A symmetric argument works for y∗ .

The following fundamental theorem completes the relationship between a standard
problem and its dual. It states that the hypothesis of Corollary 2 are always satisfied
if one of the problems is bounded feasible. The proof of this theorem is not as easy
as the previous theorem and its corollaries. We postpone the proof until later when we
give a constructive proof via the simplex method. (The simplex method is an algorithmic
method for solving linear programming problems.) We shall also see later that this theorem
contains the Minimax Theorem for finite games of Game Theory.

The Duality Theorem. If a standard linear programming problem is bounded feasible,
then so is its dual, their values are equal, and there exists optimal vectors for both problems.
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There are three possibilities for a linear program. It may be feasible bounded (f.b.),
feasible unbounded (f.u.), or infeasible (i). For a program and its dual, there are therefore
nine possibilities. Corollary 1 states that three of these cannot occur: If a problem and
its dual are both feasible, then both must be bounded feasible. The first conclusion of the
Duality Theorem states that two other possiblities cannot occur. If a program is feasible
bounded, its dual cannot be infeasible. The x’s in the accompanying diagram show the
impossibilities. The remaining four possibilities can occur.

Standard Maximum Problem

f.b. f.u. i.
f.b. x x

Dual f.u. x x
i. x

(8)

As an example of the use of Corollary 2, consider the following maximum problem.
Find x1 , x2 , x2 , x4 to maximize 2x1 + 4x2 + x3 + x4 , subject to the constraints xj ≥ 0
for all j , and

x1 + 3x2 + x4 ≤ 4
2x1 + x2 ≤ 3

x2 + 4x3 + x4 ≤ 3.
(9)

The dual problem is found to be: find y1 , y2 , y3 to minimize 4y1 + 3y2 + 3y3 subject to
the constraints yi ≥ 0 for all i , and

y1 + 2y2 ≥ 2
3y1 + y2 + y3 ≥ 4

4y3 ≥ 1
y1 + y3 ≥ 1.

(10)

The vector (x1 , x2, x3, x4) = (1, 1, 1/2, 0) satisfies the constraints of the maximum prob-
lem and the value of the objective function there is 13/2. The vector (y1, y2, y3) =
(11/10, 9/20, 1/4) satisfies the constraints of the minimum problem and has value there of
13/2 also. Hence, both vectors are optimal for their respective problems.

As a corollary of the Duality Theorem we have

The Equilibrium Theorem. Let x∗ and y∗ be feasible vectors for a standard maximum
problem (1) and its dual (2) respectively. Then x∗ and y∗ are optimal if, and only if,

y∗

i = 0 for all i for which
∑n

j=1
aijx

∗

j < bi (11)

and
x∗

j = 0 for all j for which
∑m

i=1
y∗

i aij > cj (12)

Proof. If: Equation (11) implies that y∗

i = 0 unless there is equality in
∑

j aijx
∗

j ≤ bi .
Hence

m
∑

i=1

y∗

i bi =
m

∑

i=1

y∗

i

n
∑

j=1

aijx
∗

j =
m

∑

i=1

n
∑

j=1

y∗

i aijx
∗

j . (13)
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Similarly Equation (12) implies

m
∑

i=1

n
∑

j=1

y∗

i aijx
∗

j =

n
∑

j=1

cjx
∗

j . (14)

Corollary 2 now implies that x∗ and y∗ are optimal.

Only if: As in the first line of the proof of Theorem 1,

n
∑

j=1

cjx
∗

j ≤

m
∑

i=1

n
∑

j=1

y∗

i aijx
∗

j ≤

m
∑

i=1

y∗

i bi. (15)

By the Duality Theorem, if x∗ and y∗ are optimal, the left side is equal to the right side
so we get equality throughout. The equality of the first and second terms may be written
as

n
∑

j=1

(

cj −

m
∑

i=1

y∗

i aij

)

x∗

j = 0. (16)

Since x∗ and y∗ are feasible, each term in this sum is nonnegative. The sum can be zero
only if each term is zero. Hence if

∑m

i=1
y∗

i aij > cj , then x∗

j = 0. A symmetric argument

shows that if
∑n

j=1
aijx

∗

j < bi , then y∗

i = 0.

Equations (11) and (12) are sometimes called the complementary slackness con-

ditions. They require that a strict inequality (a slackness) in a constraint in a standard
problem implies that the complementary constraint in the dual be satisfied with equality.

As an example of the use of the Equilibrium Theorem, let us solve the dual to the
introductory numerical example. Find y1 , y2 , y3 to minimize 4y1 + 12y2 + y3 subject to
y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, and

y1 + 4y2 − y3 ≥ 1
2y1 + 2y2 + y3 ≥ 1. (17)

We have already solved the dual problem and found that x∗

1
> 0 and x∗

2
> 0. Hence, from

(12) we know that the optimal y∗ gives equality in both inequalities in (17) (2 equations
in 3 unknowns). If we check the optimal x∗ in the first three main constraints of the
maximum problem, we find equality in the first two constraints, but a strict inequality in
the third. From condition (11), we conclude that y∗

3
= 0. Solving the two equations,

y1 + 4y2 = 1
2y1 + 2y2 = 1

we find (y∗

1 , y∗

2) = (1/3, 1/6). Since this vector is feasible, the “if” part of the Equilibrium
Theorem implies it is optimal. As a check we may find the value, 4(1/3)+12(1/6) = 10/3,
and see it is the same as for the maximum problem.

In summary, if you conjecture a solution to one problem, you may solve for a solution
to the dual using the complementary slackness conditions, and then see if your conjecture
is correct.
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Interpretation of the dual. In addition to the help it provides in finding a solution,
the dual problem offers advantages in the interpretation of the original, primal problem.
In practical cases, the dual problem may be analyzed in terms of the primal problem.

As an example, consider the diet problem, a standard minimum problem of the form
(2). Its dual is the standard maximum problem (1). First, let us find an interpretation of
the dual variables, x1, x2, . . . , xn . In the dual constraint,

n
∑

j=1

aijxj ≤ bi, (18)

the variable bi is measured as price per unit of food, Fi , and aij is measured as units
of nutrient Nj per unit of food Fi . To make the two sides of the constraint comparable,
xj must be measured in of price per unit of food Fi . (This is known as a dimensional

analysis.) Since cj is the amount of Nj required per day, the objective function,
∑n

1
cjxj ,

represents the total price of the nutrients required each day. Someone is evidently trying
to choose vector x of prices for the nutrients to maximize the total worth of the required
nutrients per day, subject to the constraints that x ≥ 0 , and that the total value of the
nutrients in food Fi , namely,

∑n

j=1
aijxj , is not greater than the actual cost, bi , of that

food.

We may imagine that an entrepreneur is offering to sell us the nutrients without the
food, say in the form of vitamin or mineral pills. He offers to sell us the nutrient Nj at a
price xj per unit of Nj . If he wants to do business with us, he would choose the xj so
that price he charges for a nutrient mixture substitute of food Fi would be no greater than
the original cost to us of food Fi . This is the constraint, (18). If this is true for all i , we
may do business with him. So he will choose x to maximize his total income,

∑n

1
cjxj ,

subject to these constraints. (Actually we will not save money dealing with him since the
duality theorem says that our minimum,

∑m

1
yibi , is equal to his maximum,

∑n

1
cjxj .)

The optimal price, xj , is referred to as the shadow price of nutrient Nj . Although no
such entrepreneur exists, the shadow prices reflect the actual values of the nutrients as
shaped by the market prices of the foods, and our requirements of the nutrients.

Exercises.

1. Find the dual to the following standard minimum problem. Find y1 , y2 and y3 to
minimize y1 + 2y2 + y3 , subject to the constraints, yi ≥ 0 for all i , and

y1 − 2y2 + y3 ≥ 2
−y1 + y2 + y3 ≥ 4
2y1 + y3 ≥ 6
y1 + y2 + y3 ≥ 2.

2. Consider the problem of Exercise 1. Show that (y1, y2, y3) = (2/3, 0, 14/3) is
optimal for this problem, and that (x1, x2, x3, x4) = (0, 1/3, 2/3, 0) is optimal for the dual.
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3. Consider the problem: Maximize 3x1+2x2+x3 subject to x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,
and

x1 − x2 + x3 ≤ 4
2x1 + x2 + 3x3 ≤ 6
−x1 + 2x3 ≤ 3

x1 + x2 + x3 ≤ 8.

(a) State the dual minimum problem.

(b) Suppose you suspect that the vector (x1, x2, x3) = (0, 6, 0) is optimal for the
maximum problem. Use the Equilibrium Theorem to solve the dual problem, and then
show that your suspicion is correct.

4. (a) State the dual to the transportation problem.

(b) Give an interpretation to the dual of the transportation problem.
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