248 Chapter 15. Connectivity and Gomory-Hu trees

The equivalence classes are called the *k*-edge-connected components of *G*. So the 1-edge connected components of *G* coincide with the components of *G*, and can be found in linear time by Corollary 6.6a. Also for k = 2, the *k*-edge-connected components can be found in linear time (Karzanov [1970]; we follow the proof of Tarjan [1972]):

Theorem 15.12. Given an undirected graph G = (V, E), its 2-edge-connected components can be found in linear time.

Proof. We may assume that G is connected, since by Corollary 6.6a, the components of G can be found in linear time.

Choose $s \in V$ arbitrarily, and consider a depth-first search tree T starting at s. Orient each edge in T away from s. For each remaining edge e = uv, there is a directed path in T that connects u and v. Let the path run from u to v. Then orient e from v to u. This gives the orientation D of G.

Then any edge not in T belongs to a directed circuit in D. Moreover, any edge in T that is not a cut edge, belongs to a directed circuit in D. Then the 2-edge-connected components of G coincide with the strong components of D. By Theorem 6.6, these components can be found in linear time.

More on finding 2-edge-connected components can be found in Gabow [2000a].

15.4. Gomory-Hu trees

In previous sections of this chapter we have considered the problem of determining a minimum cut in a graph, where the minimum is taken over all pairs s, t. The *all-pairs minimum-size cut problem* asks for a minimum s - t cut for all pairs of vertices s, t. Clearly, this can be solved in time $O(n^2\tau)$, where τ is the time needed for finding a minimum s - t cut for any given s, t.

Gomory and Hu [1961] showed that for *undirected* graphs it can be done faster, and that there is a concise structure, the Gomory-Hu tree, to represent all minimum cuts. Similarly for the capacitated case.

Fix an undirected graph G = (V, E) and a capacity function $c : E \to \mathbb{R}_+$. A *Gomory-Hu tree* (for G and c) is a tree T = (V, F) such that for each edge e = st of T, $\delta(U)$ is a minimum-capacity s - t cut of G, where U is any of the two components of T - e. (Note that it is not required that T is a subgraph of G.)

Gomory and Hu [1961] showed that for each G, c there indeed exists a Gomory-Hu tree, and that it can be found by n - 1 minimum-cut computations.

For distinct $s, t \in V$, define r(s, t) as the minimum capacity of an s - t cut. The following triangle inequality holds:

(15.13)
$$r(u,w) \ge \min\{r(u,v), r(v,w)\}$$

for all distinct $u, v, w \in G$. Now a Gomory-Hu tree indeed describes concisely minimum-capacity s - t cuts for all s, t:

Theorem 15.13. Let T = (V, F) be a Gomory-Hu tree. Consider any $s, t \in V$, the s-t path P in T, an edge e = uv on P with r(u, v) minimum, and any component K of T-e. Then r(s,t) = r(u,v) and $\delta(K)$ is a minimum-capacity s-t cut.

Proof. Inductively, (15.13) gives $r(s,t) \ge r(u,v)$. Moreover, $\delta(K)$ is an s-t cut, and hence $r(s,t) \le c(\delta(K)) = r(u,v)$.

To show that a Gomory-Hu tree does exist, we first prove:

Lemma 15.14 α . Let $s, t \in V$, let $\delta(U)$ be a minimum-capacity s - t cut in G, and let $u, v \in U$ with $u \neq v$. Then there exists a minimum-capacity u - v cut $\delta(W)$ with $W \subseteq U$.

Proof. Consider a minimum-capacity $u - v \operatorname{cut} \delta(X)$. By symmetry we may assume that $s \in U$ (otherwise interchange s and t), $t \notin U$, $s \in X$ (otherwise replace X by $V \setminus X$), $u \in X$ (otherwise interchange u and v), and $v \notin X$. So one of the diagrams of Figure 15.2 applies.

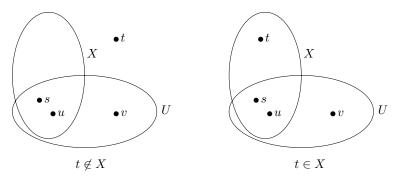


Figure 15.2

In particular, $\delta(U \cap X)$ and $\delta(U \setminus X)$ are u - v cuts. If $t \notin X$, then $\delta(U \cup X)$ is an s - t cut. As

(15.14)
$$c(\delta(U \cap X)) + c(\delta(U \cup X)) \le c(\delta(U)) + c(\delta(X))$$

and

(15.15)
$$c(\delta(U \cup X)) \ge c(\delta(U)),$$

we have $c(\delta(U \cap X)) \leq c(\delta(X))$. So $\delta(U \cap X)$ is a minimum-capacity u - v cut.

If $t \in X$, then $\delta(X \setminus U)$ is an s - t cut. As

(15.16)
$$c(\delta(U \setminus X)) + c(\delta(X \setminus U)) \le c(\delta(U)) + c(\delta(X))$$

250 Chapter 15. Connectivity and Gomory-Hu trees

and

(15.17) $c(\delta(X \setminus U)) \ge c(\delta(U)),$

we have $c(\delta(U \setminus X)) \leq c(\delta(X))$. So $\delta(U \setminus X)$ is a minimum-capacity u - v cut.

This lemma is used in proving the existence of Gomory-Hu trees:

Theorem 15.14. For each graph G = (V, E) and each capacity function $c : E \to \mathbb{R}_+$ there exists a Gomory-Hu tree.

Proof. Define a *Gomory-Hu tree for* a set $R \subseteq V$ to be a pair of a tree (R, T) and a partition $(C_r \mid r \in R)$ of V such that:

 $\begin{array}{ll} (15.18) & (\mathrm{i}) \ r \in C_r \ \mathrm{for \ each} \ r \in R, \\ & (\mathrm{ii}) \ \delta(U) \ \mathrm{is \ a \ minimum-capacity} \ s-t \ \mathrm{cut} \ \mathrm{for \ each \ edge} \ e=st \in T, \\ & \mathrm{where} \ U:=\bigcup_{u \in K} C_u \ \mathrm{and} \ K \ \mathrm{is \ a \ component} \ \mathrm{of} \ T-e. \end{array}$

We show by induction on |R| that for each nonempty $R \subseteq V$ there exists a Gomory-Hu tree for R. Then for R = V we have a Gomory-Hu tree.

If |R| = 1, (15.18) is trivial, so assume $|R| \ge 2$. Let $\delta(W)$ be a minimumcapacity cut separating at least one pair of vertices in R. Contract $V \setminus W$ to one vertex, v' say, giving graph G'. Let $R' := R \cap W$. By induction, G' has a Gomory-Hu tree (R', T'), $(C'_r \mid r \in R')$ for R'.

a Gomory-Hu tree (R', T'), $(C'_r | r \in R')$ for R'. Similarly, contract W to one vertex, v'' say, giving graph G''. Let $R'' := R \setminus W$. By induction, G'' has a Gomory-Hu tree (R'', T''), $(C''_r | r \in R'')$ for R''.

Now let $r' \in R'$ be such that $v' \in C'_{r'}$. Similarly, let $r'' \in R''$ be such that $v'' \in C''_{r''}$. Let $T := T' \cup T'' \cup \{r'r''\}$, Let $C_{r'} := C'_{r'} \setminus \{v'\}$ and let $C_r := C'_r$ for all other $r \in R'$. Similarly, let $C_{r''} := C''_{r''} \setminus \{v''\}$ and let $C_r := C''_r$ for all other $r \in R''$.

Now (R,T) and the C_r form a Gomory-Hu tree for R. Indeed, for any $e \in T$ with $e \neq r'r''$, (15.18) follows from Lemma 15.14 α . If e = r'r'', then U = W and $\delta(W)$ is a minimum-capacity r' - r'' cut (as it is minimum-capacity over all cuts separating at least one pair of vertices in R).

The method can be sharpened to give the following algorithmic result:

Theorem 15.15. A Gomory-Hu tree can be found by n - 1 applications of a minimum-capacity cut algorithm.

Proof. In the proof of Theorem 15.14, it suffices to take for $\delta(W)$ just a minimum-capacity s - t cut for at least one pair $s, t \in R$. Then $\delta(W)$ is also a minimum-capacity r' - r'' cut. For suppose that there exists an r' - r'' cut $\delta(X)$ of smaller capacity. We may assume that $s \in W$ and $t \notin W$. As $\delta(W)$ is a minimum-capacity s - t cut, $\delta(X)$ is not an s - t cut. So it should separate

s and r' or t and r''. By symmetry, we may assume that it separates s and r'. Then it also as is a u-v cut for some edge uv on the s-r' path in T'. Let uv determine cut $\delta(U)$. This cut is an s-t cut, and hence $c(\delta(U)) \ge c(\delta(W))$. On the other hand, $c(\delta(U)) \le c(\delta(X))$, as $\delta(U)$ is a minimum-capacity u-v cut. This contradicts our assumption that $c(\delta(X)) < c(\delta(W))$.

This implies for the running time:

Corollary 15.15a. A Gomory-Hu tree can be found in time $O(n\tau)$ time, if for any $s, t \in V$ a minimum-capacity s - t cut can be found in time τ .

Proof. Directly from Theorem 15.15.

Notes. The method gives an $O(m^2)$ method to find a Gomory-Hu tree for the capacity function c = 1, since $O(m^2) = O(\sum_v d(v)m)$, and for each new vertex v a minimum cut can be found in time O(d(v)m). Hao and Orlin [1992,1994] gave an $O(n^3)$ -time method to find, for given graph G = (V, E) and $s \in V$, all minimum-size s - t cuts for all $t \neq s$ (with push-relabel). Shiloach [1979b] gave an $O(n^2m)$ algorithm to find a maximum number of edge-disjoint paths between all pairs of vertices in an undirected graph. Ahuja, Magnanti, and Orlin [1993] showed that the best directed all-pairs cut algorithm takes $\Omega(n^2)$ max-flow iterations.

For planar graphs, Hartvigsen and Mardon [1994] gave an $(n^2 \log n + m)$ algorithm to find a Gomory-Hu tree (they observed that this bound can be derived also from Frederickson [1987b]). This improves a result of Shiloach [1980a], who gave an $O(n^2(\log n)^2)$ -time algorithm to find minimum-size cuts between all pairs of vertices in a planar graph.

Theorem 15.13 implies that a Gomory-Hu tree for a graph G = (V, E) is a maximum-weight spanning tree in the complete graph on V, for weight function r(u, v). However, not every maximum-weight spanning tree is a Gomory-Hu tree (for $G = K_{1,2}$, $c = \mathbf{1}$, only G itself is a Gomory-Hu tree, but all spanning trees on $VK_{1,2}$ have the same weight).

More on Gomory-Hu trees can be found in Elmaghraby [1964], Hu and Shing [1983], Agarwal, Mittal, and Sharma [1984], Granot and Hassin [1986], Hassin [1988], Chen [1990], Gusfield [1990], Hartvigsen and Margot [1995], Talluri [1996], Goldberg and Tsioutsiouliklis [1999,2001], and Hartvigsen [2001b]. Generalizations were given by Cheng and Hu [1990,1991,1992] and Hartvigsen [1995] (to matroids).

15.4a. Minimum-requirement spanning tree

Hu [1974] gave the following additional application of Gomory-Hu trees. Let G = (V, E) be an undirected graph and let $r : E \to \mathbb{R}_+$ be a 'requirement' function (say, the number of telephone calls to be made between the end vertices of e).

We want to find a tree T on V minimizing

(15.19)
$$\sum_{e \in E} r(e) \operatorname{dist}_T(e),$$