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The equivalence classes are called the k-edge-connected components of G. So
the 1-edge connected components of G coincide with the components of G, and can
be found in linear time by Corollary 6.6a. Also for k = 2, the k-edge-connected
components can be found in linear time (Karzanov [1970]; we follow the proof of
Tarjan [1972]):

Theorem 15.12. Given an undirected graph G = (V, E), its 2-edge-connected com-

ponents can be found in linear time.

Proof. We may assume that G is connected, since by Corollary 6.6a, the compo-
nents of G can be found in linear time.

Choose s ∈ V arbitrarily, and consider a depth-first search tree T starting at
s. Orient each edge in T away from s. For each remaining edge e = uv, there is
a directed path in T that connects u and v. Let the path run from u to v. Then
orient e from v to u. This gives the orientation D of G.

Then any edge not in T belongs to a directed circuit in D. Moreover, any edge
in T that is not a cut edge, belongs to a directed circuit in D. Then the 2-edge-
connected components of G coincide with the strong components of D. By Theorem
6.6, these components can be found in linear time.

More on finding 2-edge-connected components can be found in Gabow [2000a].

15.4. Gomory-Hu trees

In previous sections of this chapter we have considered the problem of deter-
mining a minimum cut in a graph, where the minimum is taken over all pairs
s, t. The all-pairs minimum-size cut problem asks for a minimum s − t cut
for all pairs of vertices s, t. Clearly, this can be solved in time O(n2τ), where
τ is the time needed for finding a minimum s − t cut for any given s, t.

Gomory and Hu [1961] showed that for undirected graphs it can be done
faster, and that there is a concise structure, the Gomory-Hu tree, to represent
all minimum cuts. Similarly for the capacitated case.

Fix an undirected graph G = (V, E) and a capacity function c : E → R+.
A Gomory-Hu tree (for G and c) is a tree T = (V, F ) such that for each edge
e = st of T , δ(U) is a minimum-capacity s− t cut of G, where U is any of the
two components of T − e. (Note that it is not required that T is a subgraph
of G.)

Gomory and Hu [1961] showed that for each G, c there indeed exists a
Gomory-Hu tree, and that it can be found by n − 1 minimum-cut computa-
tions.

For distinct s, t ∈ V , define r(s, t) as the minimum capacity of an s − t

cut. The following triangle inequality holds:

(15.13) r(u, w) ≥ min{r(u, v), r(v, w)}

for all distinct u, v, w ∈ G. Now a Gomory-Hu tree indeed describes concisely
minimum-capacity s − t cuts for all s, t:
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Theorem 15.13. Let T = (V, F ) be a Gomory-Hu tree. Consider any s, t ∈
V , the s−t path P in T , an edge e = uv on P with r(u, v) minimum, and any

component K of T −e. Then r(s, t) = r(u, v) and δ(K) is a minimum-capacity

s − t cut.

Proof. Inductively, (15.13) gives r(s, t) ≥ r(u, v). Moreover, δ(K) is an s − t

cut, and hence r(s, t) ≤ c(δ(K)) = r(u, v).

To show that a Gomory-Hu tree does exist, we first prove:

Lemma 15.14α. Let s, t ∈ V , let δ(U) be a minimum-capacity s − t cut in

G, and let u, v ∈ U with u �= v. Then there exists a minimum-capacity u − v

cut δ(W ) with W ⊆ U .

Proof. Consider a minimum-capacity u − v cut δ(X). By symmetry we may
assume that s ∈ U (otherwise interchange s and t), t �∈ U , s ∈ X (otherwise
replace X by V \ X), u ∈ X (otherwise interchange u and v), and v �∈ X. So
one of the diagrams of Figure 15.2 applies.
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Figure 15.2

In particular, δ(U ∩X) and δ(U \X) are u−v cuts. If t �∈ X, then δ(U ∪X)
is an s − t cut. As

(15.14) c(δ(U ∩ X)) + c(δ(U ∪ X)) ≤ c(δ(U)) + c(δ(X))

and

(15.15) c(δ(U ∪ X)) ≥ c(δ(U)),

we have c(δ(U ∩ X)) ≤ c(δ(X)). So δ(U ∩ X) is a minimum-capacity u − v

cut.
If t ∈ X, then δ(X \ U) is an s − t cut. As

(15.16) c(δ(U \ X)) + c(δ(X \ U)) ≤ c(δ(U)) + c(δ(X))
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and

(15.17) c(δ(X \ U)) ≥ c(δ(U)),

we have c(δ(U \ X)) ≤ c(δ(X)). So δ(U \ X) is a minimum-capacity u − v

cut.

This lemma is used in proving the existence of Gomory-Hu trees:

Theorem 15.14. For each graph G = (V, E) and each capacity function

c : E → R+ there exists a Gomory-Hu tree.

Proof. Define a Gomory-Hu tree for a set R ⊆ V to be a pair of a tree (R, T )
and a partition (Cr | r ∈ R) of V such that:

(15.18) (i) r ∈ Cr for each r ∈ R,
(ii) δ(U) is a minimum-capacity s− t cut for each edge e = st ∈ T ,

where U :=
⋃

u∈K

Cu and K is a component of T − e.

We show by induction on |R| that for each nonempty R ⊆ V there exists a
Gomory-Hu tree for R. Then for R = V we have a Gomory-Hu tree.

If |R| = 1, (15.18) is trivial, so assume |R| ≥ 2. Let δ(W ) be a minimum-
capacity cut separating at least one pair of vertices in R. Contract V \ W to
one vertex, v′ say, giving graph G′. Let R′ := R ∩ W . By induction, G′ has
a Gomory-Hu tree (R′, T ′), (C ′

r
| r ∈ R′) for R′.

Similarly, contract W to one vertex, v′′ say, giving graph G′′. Let R′′ :=
R \ W . By induction, G′′ has a Gomory-Hu tree (R′′, T ′′), (C ′′

r
| r ∈ R′′) for

R′′.
Now let r′ ∈ R′ be such that v′ ∈ C ′

r′ . Similarly, let r′′ ∈ R′′ be such that
v′′ ∈ C ′′

r′′ . Let T := T ′ ∪ T ′′ ∪ {r′r′′}, Let Cr′ := C ′

r′ \ {v′} and let Cr := C ′

r

for all other r ∈ R′. Similarly, let Cr′′ := C ′′

r′′ \ {v′′} and let Cr := C ′′

r
for all

other r ∈ R′′.
Now (R, T ) and the Cr form a Gomory-Hu tree for R. Indeed, for any

e ∈ T with e �= r′r′′, (15.18) follows from Lemma 15.14α. If e = r′r′′, then
U = W and δ(W ) is a minimum-capacity r′ − r′′ cut (as it is minimum-
capacity over all cuts separating at least one pair of vertices in R).

The method can be sharpened to give the following algorithmic result:

Theorem 15.15. A Gomory-Hu tree can be found by n − 1 applications of

a minimum-capacity cut algorithm.

Proof. In the proof of Theorem 15.14, it suffices to take for δ(W ) just a
minimum-capacity s − t cut for at least one pair s, t ∈ R. Then δ(W ) is also
a minimum-capacity r′ − r′′ cut. For suppose that there exists an r′ − r′′ cut
δ(X) of smaller capacity. We may assume that s ∈ W and t �∈ W . As δ(W ) is
a minimum-capacity s− t cut, δ(X) is not an s− t cut. So it should separate
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s and r′ or t and r′′. By symmetry, we may assume that it separates s and r′.
Then it also as is a u−v cut for some edge uv on the s−r′ path in T ′. Let uv

determine cut δ(U). This cut is an s − t cut, and hence c(δ(U)) ≥ c(δ(W )).
On the other hand, c(δ(U)) ≤ c(δ(X)), as δ(U) is a minimum-capacity u − v

cut. This contradicts our assumption that c(δ(X)) < c(δ(W )).

This implies for the running time:

Corollary 15.15a. A Gomory-Hu tree can be found in time O(nτ) time, if

for any s, t ∈ V a minimum-capacity s − t cut can be found in time τ .

Proof. Directly from Theorem 15.15.

Notes. The method gives an O(m2) method to find a Gomory-Hu tree for the
capacity function c = 1, since O(m2) = O(

∑
v

d(v)m), and for each new vertex v a
minimum cut can be found in time O(d(v)m). Hao and Orlin [1992,1994] gave an
O(n3)-time method to find, for given graph G = (V, E) and s ∈ V , all minimum-
size s − t cuts for all t �= s (with push-relabel). Shiloach [1979b] gave an O(n2m)
algorithm to find a maximum number of edge-disjoint paths between all pairs of
vertices in an undirected graph. Ahuja, Magnanti, and Orlin [1993] showed that the
best directed all-pairs cut algorithm takes Ω(n2) max-flow iterations.

For planar graphs, Hartvigsen and Mardon [1994] gave an (n2 log n + m) al-
gorithm to find a Gomory-Hu tree (they observed that this bound can be derived
also from Frederickson [1987b]). This improves a result of Shiloach [1980a], who
gave an O(n2(log n)2)-time algorithm to find minimum-size cuts between all pairs
of vertices in a planar graph.

Theorem 15.13 implies that a Gomory-Hu tree for a graph G = (V, E) is a
maximum-weight spanning tree in the complete graph on V , for weight function
r(u, v). However, not every maximum-weight spanning tree is a Gomory-Hu tree
(for G = K1,2, c = 1, only G itself is a Gomory-Hu tree, but all spanning trees on
V K1,2 have the same weight).

More on Gomory-Hu trees can be found in Elmaghraby [1964], Hu and Shing
[1983], Agarwal, Mittal, and Sharma [1984], Granot and Hassin [1986], Hassin
[1988], Chen [1990], Gusfield [1990], Hartvigsen and Margot [1995], Talluri [1996],
Goldberg and Tsioutsiouliklis [1999,2001], and Hartvigsen [2001b]. Generalizations
were given by Cheng and Hu [1990,1991,1992] and Hartvigsen [1995] (to matroids).

15.4a. Minimum-requirement spanning tree

Hu [1974] gave the following additional application of Gomory-Hu trees. Let G =
(V, E) be an undirected graph and let r : E → R+ be a ‘requirement’ function (say,
the number of telephone calls to be made between the end vertices of e).

We want to find a tree T on V minimizing

(15.19)
∑

e∈E

r(e)distT (e),


