
Chapter 18

Linear programming methods

and the bipartite matching

polytope

The weighted matching problem for bipartite graphs discussed in the previ-
ous chapter is related to the ‘matching polytope’ and the ‘perfect matching
polytope’, and can be handled with linear programming methods by the
total unimodularity of the incidence matrix of a bipartite graph.
In this chapter, graphs can be assumed to be simple.

18.1. The matching and the perfect matching polytope

Let G = (V, E) be a graph. The perfect matching polytope Pperfect matching(G)
of G is defined as the convex hull of the incidence vectors of perfect matchings
in G. So Pperfect matching(G) is a polytope in R

E .
The perfect matching polytope is a polyhedron, and hence can be de-

scribed by linear inequalities. The following are clearly valid inequalities:

(18.1) (i) xe ≥ 0 for each edge e,
(ii) x(δ(v)) = 1 for each vertex v.

These inequalities are generally not enough (for instance, not for K3). How-
ever, as Birkhoff [1946] showed, for bipartite graphs they are enough:

Theorem 18.1. If G is bipartite, the perfect matching polytope of G is de-

termined by (18.1).

Proof. Let x be a vertex of the polytope determined by (18.1). Let F be the
set of edges e with xe > 0. Suppose that F contains a circuit C. As C has
even length, EC = M ∪ N for two disjoint matchings M and N . Then for ε

close enough to 0, both x + ε(χM − χN ) and x − ε(χM − χN ) satisfy (18.1),
contradicting the fact that x is a vertex of the polytope. So (V, F ) is a forest,
and hence by (18.1), F is a perfect matching.
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Figure 18.1

The implication cannot be reversed, as is shown by the graph in Figure
18.1.

Theorem 18.1 was shown by Birkhoff in the terminology of doubly stochas-
tic matrices. A matrix A is called doubly stochastic if A is nonnegative and
each row sum and each column sum equals 1. A permutation matrix is an
integer doubly stochastic matrix (so it is {0, 1}-valued, and has precisely one
1 in each row and in each column). Then:

Corollary 18.1a (Birkhoff’s theorem). Each doubly stochastic matrix is a

convex combination of permutation matrices.

Proof. Directly from Theorem 18.1, by taking G = Kn,n.

Theorem 18.1 also implies a characterization of the matching polytope
for bipartite graphs. For any graph G = (V, E), the matching polytope

Pmatching(G) of G is the convex hull of the incidence vectors of matchings
in G. So again it is a polytope in R

E . The following are valid inequalities for
the matching polytope:

(18.2) (i) xe ≥ 0 for each edge e,
(ii) x(δ(v)) ≤ 1 for each vertex v.

Then:

Corollary 18.1b. The matching polytope of G is determined by (18.2) if and

only if G is bipartite.

Proof. To see necessity, suppose that G is not bipartite, and let C be an odd
circuit in G. Define xe := 1

2
if e ∈ C and xe := 0 otherwise. Then x satisfies

(18.2) but does not belong to the matching polytope of G.
To see sufficiency, let G be bipartite and let x satisfy (18.2). Let G′ and

x′ be a copy of G and x, and add edges vv′, where v′ is the copy of v ∈ V .
Define y(vv′) := 1 − x(δ(v)). Then x, x′, y satisfy (18.1) with respect to
the new graph, and hence by Theorem 18.1, it is a convex combination of
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incidence vectors of perfect matchings in the new graph. Hence x is a convex
combination of incidence vectors of matchings in G.

Notes. Birkhoff derived Corollary 18.1a from Hall’s marriage theorem (Theo-
rem 22.1), which is equivalent to Kőnig’s matching theorem. (Also Dulmage and
Halperin [1955] derived Birkhoff’s theorem from Kőnig’s matching theorem.) Other
proofs were given by von Neumann [1951,1953], Dantzig [1952], Hoffman and
Wielandt [1953], Koopmans and Beckmann [1955,1957], Hammersley and Mauldon
[1956] (a polyhedral proof based on total unimodularity), Tompkins [1956], Mirsky
[1958], and Vogel [1961]. A survey was given by Mirsky [1962]. More can be found
in Johnson, Dulmage, and Mendelsohn [1960], Nishi [1979], and Brualdi [1982].

18.2. Totally unimodular matrices from bipartite graphs

In this section we show that the results on matchings discussed above can
also be derived from linear programming duality with total unimodularity
(Hoffman [1956b]).

Let A be the V × E incidence matrix of a graph G = (V, E). The matrix
A generally is not totally unimodular. E.g., if G is the complete graph K3 on
three vertices, then the determinant of A is equal to +2 or −2.

However, the following can be proved (necessity can also be derived di-
rectly from the total unimodularity of the incidence matrix of a directed
graph (Theorem 13.9) — we give a direct proof):

Theorem 18.2. A graph G = (V, E) is bipartite if and only if its incidence

matrix A is totally unimodular.

Proof. Sufficiency. Assume that A is totally unimodular and G is not bipar-
tite. Then G has a circuit of odd length, t say. The submatrix of A induced
by the vertices and edges in C is a t × t matrix with exactly two ones in
each row and each column. As t is odd, the determinant of this matrix is ±2,
contradicting the total unimodularity of A.

Necessity. Let G be bipartite. We show that A is totally unimodular. Let
B be a square submatrix of A, of order t × t say. We show that detB equals
0 or ±1 by induction on t. If t = 1, the statement is trivial. So let t > 1. We
distinguish three cases.

Case 1: B has a column with only 0’s. Then detB=0.
Case 2: B has a column with exactly one 1. In that case we can write

(possibly after permuting rows or columns):

(18.3) B =

(

1 bT

0 B′

)

,

for some matrix B′ and vector b, where 0 denotes the all-zero vector in R
t−1.

By the induction hypothesis, detB′ ∈ {0,±1}. Hence, by (18.3), detB ∈
{0,±1}.
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Case 3. Each column of B contains exactly two 1’s. Then, since G is
bipartite, we can write (possibly after permuting rows):

(18.4) B =

(

B′

B′′

)

,

in such a way that each column of B′ contains exactly one 1 and each column
of B′′ contains exactly one 1. So adding up all rows in B′ gives the all-one
vector, and also adding up all rows in B′′ gives the all-one vector. The rows
of B therefore are linearly dependent, and hence detB=0.

18.3. Consequences of total unimodularity

Let G = (V, E) be a bipartite graph and let A be its V ×E incidence matrix.
Consider Kőnig’s matching theorem (Theorem 16.2): the maximum size of a
matching in G is equal to the minimum size of a vertex cover in G. This can
be derived from the total unimodularity of A as follows. By Corollary 5.20a,
both optima in the LP-duality equation

(18.5) max{1Tx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ 1T}

have integer optimum solutions x∗ and y∗. Now x∗ necessarily is the incidence
vector of a matching and y∗ is the incidence vector of a vertex cover. So we
have Kőnig’s matching theorem.

One can also derive the weighted version of Kőnig’s matching theorem,
Egerváry’s theorem (Theorem 17.1): for any weight function w : E → Z+,
the maximum weight of a matching in G is equal to the minimum value of
∑

v∈V yv, where y ranges over all y : V → Z+ with yu + yv ≥ we for each
edge e = uv of G. To derive this, consider the LP-duality equation

(18.6) max{wTx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ wT}.

By the total unimodularity of A, these optima are attained by integer x∗ and
y∗, and we have the theorem.

The min-max relation for minimum-weight perfect matching (Theorem
17.5) follows similarly.

One can also derive the characterizations of the matching polytope and
perfect matching polytope of a bipartite graph (Theorem 18.1 and Corollary
18.1b) from the total unimodularity of the incidence matrix of a bipartite
graph. This amounts to the fact that the polyhedra

(18.7) {x | x ≥ 0, Ax ≤ 1}

and

(18.8) {x | x ≥ 0, Ax = 1}

are integer polyhedra, by the total unimodularity of A.


