
Chapter 24

Cardinality nonbipartite

matching

In this chapter we consider maximum-cardinality matching, with as key
results Tutte’s characterization of the existence of a perfect matching (im-
plying the Tutte-Berge formula for the maximum-size of a matching) and
Edmonds’ polynomial-time algorithm to find a maximum-size matching.
As in Section 16.1, we call a path P an M-augmenting path if P has odd
length and connects two vertices not covered by M , and its edges are alter-
natingly out of and in M . By Theorem 16.1, a matching M has maximum
size if and only if there is no M -augmenting path.
We say that a matching M covers a vertex v if v is incident with an edge
in M . If M does not cover v, we say that M misses v.
In this chapter, graphs can be assumed to be simple.

24.1. Tutte’s 1-factor theorem and the Tutte-Berge

formula

A basic result of Tutte [1947b] characterizes graphs that have a perfect match-
ing. Berge [1958a] observed that it implies a min-max formula for the maxi-
mum size of a matching in a graph, the Tutte-Berge formula.

Call a component of a graph odd if it has an odd number of vertices. For
any graph G, let

(24.1) o(G) := number of odd components of G.

Let ν(G) denotes the maximum size of a matching. Then:

Theorem 24.1 (Tutte-Berge formula). For each graph G = (V, E),

(24.2) ν(G) = min
U⊆V

1

2
(|V | + |U | − o(G − U)).

Proof. To see ≤, we have for each U ⊆ V :

(24.3) ν(G) ≤ |U | + ν(G − U) ≤ |U | + 1

2
(|V \ U | − o(G − U))

= 1

2
(|V | + |U | − o(G − U)).
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We prove the reverse inequality by induction on |V |, the case V = ∅
being trivial. We can assume that G is connected, since otherwise we can
apply induction to the components of G.

First assume that there exists a vertex v covered by all maximum-size
matchings. Then ν(G−v) = ν(G)−1, and by induction there exists a subset
U ′ of V \ {v} with

(24.4) ν(G − v) = 1

2
(|V \ {v}| + |U ′| − o(G − v − U ′)).

Then U := U ′ ∪ {v} gives equality in (24.2), since

(24.5) ν(G) = ν(G − v) + 1 = 1

2
(|V \ {v}| + |U ′| − o(G − v − U ′)) + 1

= 1

2
(|V | + |U | − o(G − U)).

So we can assume that there is no such v. In particular, ν(G) < 1

2
|V |.

We show that there exists a matching of size 1

2
(|V | − 1), which implies the

theorem (taking U := ∅).
Indeed, suppose to the contrary that each maximum-size matching M

misses at least two distinct vertices u and v. Among all such M, u, v, choose
them such that the distance dist(u, v) of u and v in G is as small as possible.

If dist(u, v) = 1, then u and v are adjacent, and hence we can augment
M by the edge uv, contradicting the maximality of |M |. So dist(u, v) ≥ 2,
and hence we can choose an intermediate vertex t on a shortest u − v path.
By assumption, there exists a maximum-size matching N missing t. Choose
such an N with |M ∩ N | maximal.

By the minimality of dist(u, v), N covers both u and v. Hence, as M and
N cover the same number of vertices, there exists a vertex x �= t covered
by M but not by N . Let x ∈ e = xy ∈ M . Then y is covered by some edge
f ∈ N , since otherwise N ∪{e} would be a matching larger than N . Replacing
N by (N \ {f}) ∪ {e} would increase its intersection with M , contradicting
the choice of N .

(This proof is based on the proof of Lovász [1979b] of Edmonds’ matching
polytope theorem.)

The Tutte-Berge formula immediately implies Tutte’s 1-factor theorem.
A perfect matching (or 1-factor) is a matching covering all vertices of the
graph.

Corollary 24.1a (Tutte’s 1-factor theorem). A graph G = (V, E) has a
perfect matching if and only if G − U has at most |U | odd components, for
each U ⊆ V .

Proof. Directly from the Tutte-Berge formula (Theorem 24.1), since G has
a perfect matching if and only if ν(G) ≥ 1

2
|V |.
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24.1a. Tutte’s proof of his 1-factor theorem

The original proof of Tutte [1947b] of his 1-factor theorem (Corollary 24.1a), with
a simplification of Maunsell [1952], and smoothed by Halton [1966] and Lovász
[1975d], is as follows.

Suppose that there exist graphs G = (V, E) satisfying the condition, but not
having a perfect matching. Fixing V , take such a graph G with G simple and |E|
as large as possible. Let U := {v ∈ V | v is adjacent to every other vertex of G}.
We show that each component of G − U is a complete graph.

Suppose to the contrary that there are distinct a, b, c �∈ U with ab, bc ∈ E and
ac �∈ E. By the maximality of |E|, adding ac to E makes that G has a perfect match-
ing (since the condition is maintained under adding edges). So G has a matching
M missing precisely a and c. As b �∈ U , there exists a vertex d with bd �∈ E. Again
by the maximality of |E|, G has a matching N missing precisely b and d. Now each
component of M△N contains the same number of edges in M as in N — otherwise
there would exist an M - or N -augmenting path, and hence a perfect matching in
G, a contradiction. So the component P of M△N containing d is a path starting at
d, with first edge in M and last edge in N , and hence ending at a or c; by symmetry
we may assume that it ends at a. Moreover, P does not traverse b. Then extending
P by the edge ab gives an N -augmenting path, and hence a perfect matching in G
— a contradiction.

So each component of G − U is a complete graph. Moreover, by the condition,
G−U has at most |U | odd components. This implies that G has a perfect matching,
contradicting our assumption.

More proofs were given by Gallai [1950,1963b], Edmonds [1965d], Balinski
[1970], Anderson [1971], Brualdi [1971d], Hetyei [1972,1999], Mader [1973], and
Lovász [1975a,1979b].

24.1b. Petersen’s theorem

The following theorem of Petersen [1891] is a consequence of Tutte’s 1-factor theo-
rem (a graph is cubic if it is 3-regular):

Corollary 24.1b (Petersen’s theorem). A bridgeless cubic graph has a perfect
matching.

Proof. Let G = (V, E) be a bridgeless cubic graph. By Tutte’s 1-factor theorem,
we should show that G − U has at most |U | odd components, for each U ⊆ V .

Each odd component of G−U is left by an odd number of edges (as G is cubic),
and hence by at least three edges (as G is bridgeless). On the other hand, U is
left by at most 3|U | edges, since G is cubic. Hence G − U has at most |U | odd
components.

24.2. Cardinality matching algorithm

The idea of finding an M -augmenting path to increase a matching M is
fundamental in finding a maximum-size matching. However, the simple trick
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for bipartite graphs, of orienting the edges based on the colour classes of the
graph, does not extend to the nonbipartite case. Yet one could try to find
an M -augmenting path by finding an ‘M -alternating walk’, but such a walk
can run into a loop that cannot simply be deleted. It was Edmonds [1965d]
who found the trick to resolve this problem, namely by ‘shrinking’ the loop
(for which he introduced the term ‘blossom’). Then applying recursion to a
smaller graph solves the problem1.

Let G = (V, E) be a graph, let M be a matching in G, and let X be the set
of vertices missed by M . A walk P = (v0, v1, . . . , vt) is called M -alternating if
for each i = 1, . . . , t− 1 exactly one of the edges vi−1vi and vivi+1 belongs to
M . Note that one can find a shortest M -alternating X − X walk of positive
length, by considering the auxiliary directed graph D = (V, A) with

(24.6) A := {(u, v) | ∃x ∈ V : ux ∈ E, xv ∈ M}.

Then each M -alternating X −X walk of positive length yields a directed X −
N(X) path in D, and vice versa (where N(X) denotes the set of neighbours
of X).

An M -alternating walk P = (v0, v1, . . . , vt) is called an M -flower if t is
odd, v0, . . . , vt−1 are distinct, v0 ∈ X, and vt = vi for some even i < t.
Then the circuit (vi, vi+1, . . . , vt) is called an M -blossom (associated with
the M -flower).

v0 v1 v2 v3

v5 v6

vt−2vt−1

v4 = vt

edge in M

edge not in M

vertex covered by M

vertex not covered by M

Figure 24.1

An M -flower

The core of the algorithm is the following observation. Let G = (V, E) be
a graph and let B be a subset of V . Denote by G/B the graph obtained by
contracting (or shrinking) B to one new vertex, called B. That is, G/B has
vertex set (V \ B) ∪ {B}, and for each edge e of G an edge obtained from e
by replacing any end vertex in B by the new vertex B. (We ignore loops that
may arise.) We denote the new edge again by e. (So its ends are modified,

1 The idea of applying shrinking recursively to matching problems was introduced by
Petersen [1891], and was applied in an algorithmic way by Brahana [1917].
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but not its name.) We say that the new edge is the image (or projection) of
the original edge.

For any matching M , let M/B denote the set of edges in G/B that are
images of edges in M not spanned by B. Obviously, if M intersects δ(B) in at
most one edge, then M/B is a matching in G/B. In the following, we identify
a blossom with its set of vertices.

Theorem 24.2. Let B be an M -blossom in G. Then M is a maximum-size
matching in G if and only if M/B is a maximum-size matching in G/B.

Proof. Let B = (vi, vi+1, . . . , vt).
First assume that M/B is not a maximum-size matching in G/B. Let P

be an M/B-augmenting path in G/B. If P does not traverse vertex B of
G/B, then P is also an M -augmenting path in G. If P traverses vertex B, we
may assume that it enters B with some edge uB that is not in M/B. Then
uvj ∈ E for some j ∈ {i, i + 1, . . . , t}.

(24.7) If j is odd, replace vertex B in P by vj , vj+1, . . . , vt.
If j is even, replace vertex B in P by vj , vj−1, . . . , vi.

In both cases we obtain an M -augmenting path in G. So M is not maximum-
size.

Conversely, assume that M is not maximum-size. We may assume that
i = 0, that is, vi ∈ X, since replacing M by M△EQ, where Q is the path
(v0, v1, . . . , vi), does not modify the theorem. Let P = (u0, u1, . . . , us) be an
M -augmenting path in G. If P does not intersect B, then P is also an M/B-
augmenting path in G/B. If P intersects B, we may assume that u0 �∈ B.
(Otherwise replace P by its reverse.) Let uj be the first vertex of P in B.
Then (u0, u1, . . . , uj−1, B) is an M/B-augmenting path in G/B. So M/B is
not maximum-size.

Another useful observation is:

Theorem 24.3. Let P = (v0, v1, . . . , vt) be a shortest M -alternating X − X
walk. Then either P is an M -augmenting path or (v0, v1, . . . , vj) is an M -
flower for some j ≤ t.

Proof. Assume that P is not a path. Choose i < j with vj = vi and with j
as small as possible. So v0, . . . , vj−1 are all distinct.

If j − i would be even, we can delete vi+1, . . . , vj from P so as to obtain a
shorter M -alternating X − X walk. So j − i is odd. If j is even and i is odd,
then vi+1 = vj−1 (as it is the vertex matched to vi = vj), contradicting the
minimality of j.

Hence j is odd and i is even, and therefore (v0, v1, . . . , vj) is an M -flower.
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We now describe an algorithm (the matching-augmenting algorithm) for
the following problem:

(24.8) given: a matching M ;
find: an M -augmenting path, if any.

Denote the set of vertices missed by M by X.

(24.9) If there is no M -alternating X −X walk of positive length, there
is no M -augmenting path.
If there exists an M -alternating X − X walk of positive length,
choose a shortest one, P = (v0, v1, . . . , vt) say.
Case 1: P is a path. Then output P .
Case 2: P is not a path. Choose j such that (v0, . . . , vj) is an
M -flower, with M -blossom B. Apply the algorithm (recursively)
to G/B and M/B, giving an M/B-augmenting path P in G/B.
Expand P to an M -augmenting path in G (cf. (24.7)).

The correctness of this algorithm follows from Theorems 24.2 and 24.3. It
gives a polynomial-time algorithm to find a maximum-size matching, which
is a basic result of Edmonds [1965d].

Theorem 24.4. Given a graph, a maximum-size matching can be found in
time O(n2m).

Proof. The algorithm directly follows from algorithm (24.9), since, starting
with M = ∅, one can iteratively apply it to find an M -augmenting path P
and replace M by M△EP . It terminates if there is no M -augmenting path,
whence M is a maximum-size matching.

By using (24.6), path P in (24.9) can be found in time O(m). Moreover,
the graph G/B can be constructed in time O(m). Since the recursion has
depth at most n, an M -augmenting path can be found in time O(nm). Since
the number of augmentations is at most 1

2
n, the time bound follows.

This implies for perfect matchings:

Corollary 24.4a. A perfect matching in a graph (if any) can be found in
time O(n2m).

Proof. Directly from Theorem 24.4, as a perfect matching is a maximum-size
matching.

24.2a. An O(n3) algorithm

The matching algorithm described above consists of a series of matching augmenta-
tions. Each matching augmentation itself consists of a series of two steps performed
alternatingly:
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(24.10) finding an M -alternating walk, and
shrinking an M -blossom,

until the M -alternating walk is simple, that is, is an M -augmenting path.
Each of these two steps can be done in time O(m). Since there are at most

n shrinkings and at most n matching augmentations, we obtain the O(n2m) time
bound.

If we want to save time we must consider speeding up both the walk-finding
step and the shrinking step. In a sense, our description above gives a brute-force
polynomial-time method. The O(m) time bound for shrinking gives us time to
construct the shrunk graph completely, by copying all vertices that are not in the
blossom, by introducing a new vertex for the shrunk blossom, and by introducing
for each original edge its ‘image’ in the shrunk graph. The O(m) time bound for
finding an M -alternating walk gives us time to find, after any shrinking, a walk
starting just from scratch.

In fact, we cannot do much better if we explicitly construct the shrunk graph.
But if we modify the graph only locally, by shrinking the M -blossom B and remov-
ing loops and parallel edges, this can be done in time O(|B|n). Since the sum of |B|
over all M -blossoms B is O(n), this yields a time bound of O(n2) for shrinking.

To reduce the O(m) time for walk-finding, we keep data from the previous walk-
search for the next walk-search, with the help of an M -alternating forest, defined
as follows.

edge in M

edge not in M

vertex covered by M

vertex not covered by M

X

Figure 24.2

An M -alternating forest
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Let G = (V, E) be a simple graph and let M be a matching in G. Define X
to be the set of vertices missed by M . An M-alternating forest is a subset F of E
satisfying:

(24.11) F is a forest with M ⊆ F , each component of (V, F ) contains either
exactly one vertex in X or consists of one edge in M , and each path
in F starting in X is M -alternating

(cf. Figure 24.2). For any M -alternating forest F , define

(24.12) even(F ) := {v ∈ V | F contains an even-length X − v path},
odd(F ) := {v ∈ V | F contains an odd-length X − v path},
free(F ) := {v ∈ V | F contains no X − v path}.

Then each u ∈ odd(F ) is incident with a unique edge in F \ M and a unique edge
in M . Moreover:

(24.13) if there is no edge connecting even(F ) and even(F ) ∪ free(F ), then M
is a maximum-size matching.

Indeed, if there is no such edge, even(F ) is a stable set in G − odd(F ). Hence,
setting U := odd(F ):

(24.14) o(G − U) ≥ |even(F )| = |X| + |odd(F )| = (|V | − 2|M |) + |U |,
and hence M has maximum size by (24.2).

Now algorithmically, we keep, next to E and M , an M -alternating forest F . We
keep the set of vertices by a doubly linked list. We keep for each vertex v, the edges
in E, M , and F , incident with v as doubly linked lists. We also keep the incidence
functions χeven(F ) and χodd(F ). Moreover, we keep for each vertex v of G one edge
ev = vu with u ∈ even(F ), if such an edge exists.

Initially, F := M and for each v ∈ V we select an edge ev = vu with u ∈ X (if
any). The iteration is:

(24.15) Find a vertex v ∈ even(F ) ∪ free(F ) for which ev = vu exists.
Case 1: v ∈ free(F ). Add uv to F . Let vw be the edge in M incident
with v. For each edge wx incident with w, set ex := wx.
Case 2: v ∈ even(F ). Find the X − u and X − v paths P and Q in
F .
Case 2a: P and Q are disjoint. Then P and Q form with uv an
M -augmenting path.
Case 2b: P and Q are not disjoint. Then P and Q contain an
M -blossom B. For each edge bx with b ∈ B and x �∈ B, set ex := Bx.
Replace G by G/B and remove all loops and parallel edges from E,
M , and F .

The number of iterations is at most |V |, since, in each iteration, |V | + |free(F )|
decreases by at least 2 (one of these terms decreases by at least 2 and the other
does not change). We end up either with a matching augmentation or with the
situation that there is no edge connecting even(F ) and even(F ) ∪ free(F ), in which
case M has maximum size by (24.13).

It is easy to update the data structure in Case 1 in time O(n). In Case 2, the
paths P and Q can be found in time O(n), and hence in Case 2a, the M -augmenting
path is found in time O(n).
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Finally, the data structure in Case 2b can be updated in O(|B|n) time2. Also
a matching augmentation in G/B can be transformed to a matching augmentation
in G in time O(|B|n). Since |B| is bounded by twice the decrease in the number of
vertices of the graph, this takes time O(n2) overall.

Hence a matching augmentation can be found in time O(n2), and therefore:

Theorem 24.5. A maximum-size matching can be found in time O(n3).

Proof. From the above.

The first O(n3)-time cardinality matching algorithm was published by Balin-
ski [1969], and consists of a depth-first strategy to find an M -alternating forest,
replacing shrinking by a clever labeling technique.

Bottleneck in a further speedup is storing the shrinking. With the disjoint set
union data structure of Tarjan [1975] one can obtain an O(nmα(m, n))-time algo-
rithm (Gabow [1976a]). A special set union data structure of Gabow and Tarjan
[1983,1985] gives an O(nm)-time algorithm. An O(

√
n m)-time algorithm was an-

nounced (with partial proof) by Micali and Vazirani [1980]. A proof was given by
Blum [1990], Vazirani [1990,1994], and Gabow and Tarjan [1991] (cf. Peterson and
Loui [1988]).

24.3. Matchings covering given vertices

Brualdi [1971d] derived from Tutte’s 1-factor theorem the following extension
of the Tutte-Berge formula:

Theorem 24.6. Let G = (V, E) be a graph and let T ⊆ V . Then the maxi-
mum size of a subset S of T for which there is a matching covering S is equal
to the minimum value of

(24.16) |T | + |U | − oT (G − U)

over U ⊆ V . Here oT (G−U) denotes the number of odd components of G−U
contained in T .

Proof. For any matching M in G and any U ⊆ V , at most |U | odd com-
ponents of G − U can be covered completely by M . So M misses at least
oT (G−U)− |U | vertices in T . This shows that the minimum is not less than
the maximum.

To see equality, let µ be equal to the minimum. Let C be a set disjoint
from V with |C| = |V | and let C ′ ⊆ C with |C ′| = |T |−µ. Make a new graph
H by extending G by C, in such a way that C is a clique, each vertex in C ′

2 For each Z ∈ {E, M, F}, we scan the vertices b in B, and for b ∈ B we scan the Z-
neighbours w of b. If w does not belong to B and was not met as a Z-neighbour of an
earlier scanned vertex in B, we replace bw by Bw in Z. Otherwise, we delete bw from
Z.
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is adjacent to each vertex in V , and each vertex in C \ C ′ is adjacent to each
vertex in V \ T .

If H has a perfect matching M , then M contains at most |C ′| = |T | − µ
edges connecting T and C (since T is not connected to C \C ′). Hence at least
µ vertices in T are covered by edges in M spanned by V , as required.

So we may assume that H has no perfect matching. Then by Tutte’s 1-
factor theorem, there is a set W of vertices of H such that H − W has at
least |W | + 2 odd components (since |V | + |C| is even).

If C ′ �⊆ W , then H − W has only one component (since each vertex in C ′

is adjacent to every other vertex), a contradiction. If C ⊆ W , then H−W has
at most |V | components, while |W | + 2 ≥ |C| + 2 = |V | + 2, a contradiction.

So C ′ ⊆ W and C \ C ′ �⊆ W . Then at most one component of H − W
is not contained in T (since C \ C ′ is a clique and each vertex in C \ C ′ is
adjacent to each vertex in V \ T ). Let U := W ∩ V . Then

(24.17) oT (G − U) = oT (H − W ) ≥ o(H − W ) − 1 > |W | ≥ |C ′| + |U |
= |T | − µ + |U |,

contradicting the definition of µ.

(This theorem was also given by Las Vergnas [1975b].)
A consequence is a result of Lovász [1970c] on sets of vertices covered by

matchings:

Corollary 24.6a. Let G = (V, E) be a graph and let T be a subset of V .
Then G has a matching covering T if and only if T contains at most |U | odd
components of G − U , for each U ⊆ V .

Proof. Directly from Theorem 24.6.

(This theorem was also given by McCarthy [1975].)

24.4. Further results and notes

24.4a. Complexity survey for cardinality nonbipartite matching

O(n2m) Edmonds [1965d] (cf. Witzgall and Zahn [1965])

O(n3)
Balinski [1969] (also Gabow [1973,1976a],
Karzanov [1976], Lawler [1976b])

O(nmα(m, n)) Gabow [1976a]

O(n5/2)
Even and Kariv [1975], Kariv [1976] (also Bartnik
[1978])

O(
√

n m log n) Even and Kariv [1975], Kariv [1976]

≫
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continued

O(
√

n m log log n) Kariv [1976]

O(
√

n m + n1.5+ε) Kariv [1976] for each ε > 0

O(
√

n m)

announced by Micali and Vazirani [1980], full
proof in Blum [1990], Vazirani [1990,1994], and
Gabow and Tarjan [1991](cf. Gabow and Tarjan
[1983,1985])

∗ O(
√

n m logn
n2

m
) Goldberg and Karzanov [1995]

Here ∗ indicates an asymptotically best bound in the table. (Kameda and Munro
[1974] claim to give an O(nm)-time cardinality matching algorithm, but the proof
contains some errors which I could not resolve.)

Gabow and Tarjan [1988a] observed that the method of Micali and Vazirani
[1980] also implies that one can find, for given k, a matching of size at least
ν(G)− n

k
in time O(km). They derived that a maximum-size matching M minimiz-

ing maxe∈M w(e) can be found in time O(
√

n log n m). (the ‘bottleneck matching
problem’).

Mulmuley, Vazirani, and Vazirani [1987a,1987b] showed that ‘matching is as
easy as matrix inversion’, which is especially of interest for the parallel complexity.

24.4b. The Edmonds-Gallai decomposition of a graph

There is a canonical set U that attains the minimum in (24.2). It has the property
that the odd components of G−U cover an inclusionwise minimal set of vertices, and
is given by the Edmonds-Gallai decomposition, independently found by Edmonds
[1965d] and Gallai [1963a,1964].

Let G = (V, E) be a graph. The Edmonds-Gallai decomposition of G is the
partition of V into D(G), A(G), and C(G) defined as follows (recall that N(U) :=
{v ∈ V \ U | ∃u ∈ U : uv ∈ E}):

(24.18) D(G) := {v ∈ V | there exists a maximum-size matching missing v},
A(G) := N(D(G)),
C(G) := V \ (D(G) ∪ A(G)).

It yields a ‘canonical’ certificate of maximality of a matching:

Theorem 24.7. U := A(G) attains the minimum in (24.2), D(G) is the union of
the odd components of G−U , and (hence) C(G) is the union of the even components
of G − U .

Proof. Case 1: D(G) is a stable set. Let M be a maximum-size matching and let
X be the set of vertices missed by M . Then each vertex v in A(G) is contained in
an edge uv ∈ M (as v �∈ D(G)). We show that u ∈ D(G). Assume that u �∈ D(G).

Since v ∈ A(G) = N(D(G)), there is an edge vw with w ∈ D(G). Let N be a
matching missing w. Then M△N contains a path component starting at a vertex in
X and ending at w. Let (v0, v1, . . . , vt) be this path, with v0 ∈ X and vt = w. Then
t is even and vi ∈ D(G) for each even i (because M△{v0v1, v2v3, . . . , vi−1vi} is a
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maximum-size matching missing vi). Hence, assuming u �∈ D(G), the edge vu is not
on P . So extending P by wv and vu gives a path Q. Then M△Q is a maximum-size
matching missing u. So u ∈ D(G).

As this is true for any v ∈ A(G), we see that part of M matches A(G) and
D(G) \ X. Hence

(24.19) o(G − U) ≥ |D(G)| = |X| + |A(G)| = |V | − 2|M | + |U |.
So U attains the minimum in (24.2), and moreover o(G − U) = |D(G)|, that is,
D(G) is the union of the odd components of G − U .

Case 2: D(G) spans some edge e = uv. Let M and N be maximum-size match-
ings missing u and v, respectively. Then M ∪ N contains a path component P
starting at u. If it does not end at v, then P ∪ {e} forms an N -augmenting path,
contradicting the maximality of N . So P ends at v, and hence P ∪ {e} gives an
M -blossom B.

Let G′ := G/B and M ′ := M/B and let X ′ be the set of vertices of G′ missed
by M ′. By Theorem 24.2, |M ′| = ν(G′). Then

(24.20) D(G′) = (D(G) \ B) ∪ {B},

since B ∈ D(G′) and since for each v ∈ V \ B:

(24.21) v ∈ D(G′) ⇐⇒ G′ has an even-length M ′-alternating X ′ − v path
⇐⇒ G has an even-length M -alternating X −v path ⇐⇒ v ∈ D(G).

This proves (24.20), which implies that A(G′) = A(G) and C(G′) = C(G). By
induction, D(G′) is the union of the odd components of G′ − U . Hence D(G) is
the union of the odd components of G − U (since B ⊆ D(G) by (24.20)). Also by
induction, |M ′| = 1

2
(|V ′| + |U | − o(G′ − U)). Hence |M | = 1

2
(|V | + |U | − o(G − U)),

since |V | − 2|M | = |V ′| − 2|M ′|.

So U = A(G) is the unique set attaining the minimum in (24.2) for which the
union of the odd components of G − U is inclusionwise minimal.

Note that:

(24.22) for any U attaining the minimum in (24.2), each maximum-size match-
ing M has exactly ⌊ 1

2
|K|⌋ edges contained in any component K of

G − U , and each edge of M intersecting U also intersects some odd
component of G − U .

This implies the following. Call a graph G = (V, E) factor-critical if G − v has a
perfect matching for each vertex v.

Corollary 24.7a. Let G = (V, E) be a graph. Then each component K of G[D(G)]
is factor-critical.

Proof. Directly from Theorem 24.7 and (24.22): if v ∈ K, then v ∈ D(G), and
hence G−v has a maximum-size matching M missing v. By (24.22), M has ⌊ 1

2
|K|⌋

edges contained in K. So K − v has a perfect matching.

The Edmonds-Gallai decomposition can be found in polynomial time, since
the set D(G) of vertices missed by at least one maximum-size matching can be
determined in polynomial time (with the cardinality matching algorithm). In fact,


