VALID INEQUALITIES FOR MIXED INTEGER LINEAR PROGRAMS

Lecture Notes, Lausanne June 21-23, 2004

Gérard Cornuéjols

LIF, Faculté des Sciences de Luminy, Marseille, France and Tepper School of Business, Carnegie Mellon Univ, Pittsburgh, PA gc0v@andrew.cmu.edu

1. Lift and Project Cuts for Mixed 0,1 Programs

Let $S = \{x \in \{0, 1\}^n \times \mathbb{R}^p_+ : Ax \ge b\}.$

Here $Ax \geq b$ includes $x_j \geq 0$ for all $j = 1, \ldots, n + p$, and $x_j \leq 1$ for $j = 1, \ldots, n$.

Balas, Ceria and Cornuéjols study the following "lift-and-project" procedure:

Step 0: Select $j \in \{1, \ldots, n\}$.

Step 1: Generate the nonlinear system $x_j(Ax-b) \ge 0$ and $(1-x_j)(Ax-b) \ge 0$.

Step 2: Linearize the system by substituting y_i for $x_i x_j$, $i \neq j$, and x_j for x_j^2 . Call this polyhedron M_i .

Step 3: Project M_j onto the x-space, call the resulting polyhedron P_j .

Theorem 1: $P_j = \text{Conv } \{(Ax \ge b, x_j = 0) \cup (Ax \ge b, x_j = 1)\}$

Proof: Call P^* the set in the RHS. To show $P_j \subseteq P^*$, we take $\alpha x \geq \beta$ valid for P^* . Since it's valid for $Ax \geq b, x_j = 0$ we can find a λ such that $\alpha x + \lambda x_j \geq \beta$ is valid for P. Similarly, we can find μ such that $\alpha x + \mu(1 - x_j) \geq \beta$ is valid for P.

So, $(1-x_j)(\alpha x + \lambda x_j - \beta) \ge 0$ and $x_j(\alpha x + \mu(1-x_j) - \beta) \ge 0$ are valid for the nonlinear system of Step 1, and their sum is too.

$$\alpha x + (\lambda + \mu)(x_j - x_j^2) - \beta \ge 0$$

Step 2 replaces x_j^2 by x_j , this gives $\alpha x \geq b$ valid for M_j , and thus for P_j .

To show $P^* \subseteq P_j$, let \overline{x} be a point in $Ax \ge b, x_j = 0$ or in $Ax \ge b, x_j = 1$. Define $\overline{y}_i = \overline{x}_i \overline{x}_j$ for $i \ne j$. Then $(\overline{x}, \overline{y}) \in M_j$ since $\overline{x}_j^2 = \overline{x}_j$. So, $\overline{x} \in P_j$. By convexity of P_j it follows that $P^* \subseteq P_j$.

Theorem 2: $P_n(P_{n-1}(\cdots P_2(P_1)\ldots)) = \text{Conv } S$

Proof: by induction. Let $S_t = \{x \in \{0,1\}^t \times \mathbb{R}^{n-t+p}_+ : Ax \geq b\}$. We want to show $P_t(P_{t-1}(\cdots P_2(P_1)\ldots)) = \text{Conv } S_t$. This is true for t=1 by Theorem 1 so consider $t \geq 2$. Suppose that this is true for t-1. By IH we have equality to

$$P_t(P_{t-1}(\cdots P_2(P_1)...)) = P_t(\text{Conv } S_{t-1})$$

so by Theorem 1,

= Conv ((Conv
$$(S_{t-1}) \cap x_t = 0$$
) \cup (Conv $(S_{t-1}) \cap x_t = 1$))

For any set S that lies entirely on one side of a hyperplane H, the following equality holds

$$Conv (S) \cap H = Conv (S \cap H)$$

To prove this, one can use the definition of the convex hull (we leave it as an exercise). Therefore

$$\begin{split} P_t(P_{t-1}(\cdots P_2(P_1)\ldots)) &= \text{Conv } ((\text{Conv } (S_{t-1}\cap x_t=0)) \cup (\text{Conv } (S_{t-1}\cap x_t=1))) \\ &= \text{Conv } ((S_{t-1}\cap x_t=0) \cup (S_{t-1}\cap x_t=1)) = \text{Conv } S_t \end{split}$$

Cut generation LP:

$$M_i = \{x \in \mathbb{R}^{n+p}_+, y \in \mathbb{R}^{n+p}_+ : Ay - bx_j \ge 0 , Ax - Ay + bx_j \ge b , y_j = x_j\}$$

The first two constraints come from linearizing the inequalities of Step 1. We don't really need y_j . Let A_j be A without the j-th column. By modifying the coefficient matrix of x appropriately, we can rewrite M_j as

$$M_j = \{ x \in \mathbb{R}^{n+p}_+, y \in \mathbb{R}^{n+p-1}_+ : \tilde{A}_j x - A_j y \ge b \text{ and } \tilde{B}_j x + A_j y \ge 0 \}$$

We want to project out the y variables. This is done using the cone $Q = \{(u, v) : -uA_j + vA_j = 0, u \ge 0, v \ge 0\}$. Namely the set P_j can be written like this

$$P_j = \{ x \in \mathbb{R}_+^{n+p} : (u\tilde{A}_j + v\tilde{B}_j)x \ge ub \text{ for all } (u,v) \in Q \}$$

Given a fractional solution \overline{x} , we want $\alpha x \geq \beta$ valid for P_j which is a cut, i.e. $\alpha \overline{x} < \beta$. Thus $\alpha = u\tilde{A}_j + v\overline{B}_j$ and $\beta = ub$ for $(u, v) \in Q$. Now we have our cut generation LP to get a deepest cut.

$$\max \beta - \alpha \overline{x}$$
 subject to $\alpha = u\tilde{A}_j + v\tilde{B}_j$ and $\beta = ub$, $-uA_j + vA_j = 0$, $u \ge 0$, $v \ge 0$.

This along with a normalization constraint to truncate the cone will do. For example, we could add the constraint $\sum u_i + \sum v_i = 1$.

Another (equivalent) way of describing P_j is by using Theorem 1, which shows that P_j is the convex hull of the union of two polyhedra. Again, such a description involves additional variables which can then be projected out. We state a general result about union of polyhedra, which is of independent interest. Assume we have bounded and nonempty polyhedra. We want the union

$$\bigvee_{i=1}^{k} A_i x \le b^i \tag{1}$$

Denote the following conditions by (2)

$$A_{1}x^{1} \leq b^{1}y_{1}$$

$$\vdots$$

$$A_{k}x^{k} \leq b^{k}y_{k}$$

$$x^{1} + x^{2} + \dots + x^{k} = x$$

$$y_{1} + \dots + y_{k} = 1$$

$$y_{i} \in \{0, 1\} \text{ for } i = 1, 2, \dots, k$$

Proposition x satisfies (1) if and only if there exists $x^1, \ldots, x^k, y_1, \ldots, y_k$ such that $(x, x^1, \ldots, x^k, y_1, \ldots, y_k)$ satisfies (2).

Proof: To prove \Rightarrow is obvious, if x satisfies $A_1x \leq b^1$ take $x_1 = x, y_1 = 1$, others 0. \Leftarrow , say $y_1 = 1$ WLOG, then $y_2, \ldots, y_k = 0$. Because $A_ix \leq b^i$ is bounded, the only solution to $A_ix^i \leq 0$ is $x^i = 0$ for $i = 2, \ldots, k$. Thus $x = x^1$ and therefore x satisfies $A^1x \leq b^1$, i.e.

x satisfies (1). \square

Remark: To show that the formulation (2) is correct, we can relax the assumption "all $\{x: A_i x \leq b^i\}$ are bounded" by "all $\{x: A_i x \leq b^i\}$ have the same recession cone", i.e. the set $\{x: A_i x \leq 0\}$ is the same for all i.

Theorem: (Balas 1979) The convex hull of the solutions of (2) is obtained by replacing $y_i \in \{0,1\}$ by $0 \le y_i \le 1$ in the last line of the formulation.

Proof: Let (3) denote the set obtained by replacing $y_i \in \{0,1\}$ by $0 \le y_i \le 1$ in (2). Clearly the convex hull of the solutions of (2) is contained in (3). Now we show the converse. Consider a solution $z = (x, x^1, \ldots, x^k, y_1, \ldots, y_k)$ of (3). Write z as the convex combination $\sum_{i:y_i \ne 0} y_i z^i$, where $z^i = (\frac{x^i}{y_i}, 0, \ldots, 0, \frac{x^i}{y_i}, 0, \ldots, 0, 1, 0, \ldots, 0)$. It is easy to verify that z^i is a feasible solution of (2), proving the theorem. \square

This theorem has important consequences: It shows that one can optimize over the union of k polyhedra by solving a linear program.

Back to lift-and-project. One can obtain a stronger relaxation (Sherali-Adams) by skipping Step 0 and considering the nonlinear constraints $x_j(Ax-b) \ge 0$ and $(1-x_j)(Ax-b) \ge 0$ for all $j=1,\ldots,n$ in Step 1. Then, in Step 2, variables y_{ij} are introduced for all $i=1,\ldots,n+p$ and $j=1,\ldots,n$ with $i\ne j$. An even stronger relaxation can be obtained as follows:

Lovász-Schrijver Relaxation:

Step 1: Generate the nonlinear system $x_j(Ax - b) \ge 0$ and $(1 - x_j)(Ax - b) \ge 0$ for all j = 1, ..., n.

Step 2: Linearize the system by substituting y_{ij} for x_ix_j , for all $i=1,\ldots,n+p$, $j=1,\ldots,n$ such that $j\neq i$, and x_j for x_j^2 for all $j=1,\ldots,n$. Denote by Y the symmetric $(n+1)\times(n+1)$ matrix with the vector $(1,x_1,\ldots,x_n)$ in row 0, in column 0 and in the diagonal, and entry y_{ij} in row i and column j for $i,j=1,\ldots,n$ and $i\neq j$. Call M the convex set in \mathbb{R}^{n+p}_+ of all (x,y) that satisfy the above linear inequalities and such that Y is a positive semidefinite matrix.

Step 3: Project M onto the x-space, call N the resulting convex set.

Obviously $N \subseteq \bigcap_{j=1}^n P_j$. A major interest in the Lovász and Schrijver procedure is due to the fact that one can optimize a linear function over M in polynomial time.

2. Gomory Mixed integer cut:

Let

$$S = \{ x \in \mathbb{Z}_+^n, y \in \mathbb{R}_+^p : \sum_{j \in N} a_j x_j + \sum_{j \in J} g_j y_j = b \}$$

Let $b = \lfloor b \rfloor + f_0$ where $0 < f_0 < 1$. Let $a_j = \lfloor a_j \rfloor + f_j$ where $0 \le f_j < 1$.

$$\sum_{f_j \le f_0} f_j x_j + \sum_{f_j > f_0} (f_j - 1) x_j + \sum_{j \in J} g_j y_j = k + f_0$$

k is some integer so $k \leq -1$ or $k \geq 0$. So, we get the disjunction

$$\sum_{f_j \le f_0} \frac{f_j}{f_0} x_j - \sum_{f_j > f_0} \frac{1 - f_j}{f_0} x_j + \sum_{j \in J} \frac{g_j}{f_0} y_j \ge 1$$

OR

$$-\sum_{f_{j} \le f_{0}} \frac{f_{j}}{1 - f_{0}} x_{j} + \sum_{f_{j} > f_{0}} \frac{1 - f_{j}}{1 - f_{0}} x_{j} - \sum_{j \in J} \frac{g_{j}}{1 - f_{0}} y_{j} \ge 1$$

This is of the form $a^1x \ge 1$ or $a^2x \ge 1$ which implies $\sum_j \max(a_j^1, a_j^2)x \ge 1$ for $x \ge 0$. What is the maximum? It is easy since one coefficient is positive and one negative for each variable.

$$\sum_{f_j \le f_0} \frac{f_j}{f_0} x_j + \sum_{f_j > f_0} \frac{1 - f_j}{1 - f_0} x_j + \sum_{g_j > 0} \frac{g_j}{f_0} y_j - \sum_{g_j < 0} \frac{g_j}{1 - f_0} y_j \ge 1$$

This is valid for S, it is the Gomory mixed integer cut (GMI cut).

Let us compare the GMI cut applied to the pure integer program (g_j) 's= 0) with another cut introduced by Gomory, the Gomory fractional cut

$$\sum_{f_j \le f_0} f_j x_j + \sum_{f_j > f_0} f_j x_j \ge f_0$$

This is to be compared with the Gomory Mixed Integer Cut:

$$\sum_{f_1 \le f_0} f_j x_j + \frac{f_0}{1 - f_0} \sum_{f_1 \ge f_0} (1 - f_j) x_j \ge f_0$$

So, we're comparing $f_0/(1-f_0)*(1-f_j)$ with f_j , the comparison is always < when $f_j > f_0$, so the GMI cut dominates the fractional cut.

Application: Let $P:=\{(x,y)\in\mathbb{R}^{n+p}_+:Ax+Gy\leq b\}$ be a rational polyhedron and let $S:=\{x\in\mathbb{Z}^n_+,y\in\mathbb{R}^p_+:Ax+Gy\leq b\}$. Add slack variables Ax+Gy+s=b. Define $S':=\{x\in\mathbb{Z}^n_+,(y,s)\in\mathbb{Z}^{p+m}_+:Ax+Gy+s=b\}$. For any $\lambda\in\mathbb{R}^m$, the equation $\lambda(Ax+Gy+s)=\lambda b$ can be used to generate a GMI cut valid for S'. Eliminating s=b-Ax-Gy from this inequality, we get a valid inequality for S, in the space \mathbb{R}^{n+p} of the variables x,y. Let us also call these inequalities GMI cuts. Define the Gomory f integer closure of f to be obtained from f by adding all the f GMI cuts.

3. Split cuts

Let $P := \{(x, y) \in \mathbb{R}^{n+p} : Ax + Gy \leq b\}$ where A, G, b have rational entries, and let $S := P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$. For $\pi \in \mathbb{Z}^n$ and $\pi_0 \in \mathbb{Z}$, define

$$\Pi_1 := P \cap \{(x, y) : \pi x \le \pi_0\}$$

$$\Pi_2 := P \cap \{(x, y) : \pi x \ge \pi_0 + 1\}$$

Clearly $S \subseteq \Pi_1 \cup \Pi_2$.

Therefore any inequality $cx + hy \le c_0$ that is valid for $\Pi_1 \cup \Pi_2$ is also valid for S. An inequality $cx + hy \le c_0$ is called a *split inequality* if there exists $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ such that $cx + hy \le c_0$ is valid for $\Pi_1 \cup \Pi_2$.

The intersection of all split cuts, denoted by P^1 , is called the *split closure* of P.

Theorem: (Cook, Kannan and Schrijver 1990) If P is a rational polyhedron, the split closure of P is a rational polyhedron.

For $k \geq 2$, P^k denotes the split closure of P^{k-1} and it is called the k^{th} split closure of P. It follows from the above theorem that P^k is a polyhedron. Unlike for the pure integer case, there is in general no finite r such that $P^r = Conv(S)$, as shown by the following example.

Example: Let $S := \{(x_1, x_2, y) \in \mathbb{Z}^2 \times \mathbb{R} : x_1 \geq y, x_2 \geq y, x_1 + x_2 + 2y \leq 2\}$. Starting from $P := \{(x_1, x_2, y) \in \mathbb{R}^3 : x_1 \geq y, x_2 \geq y, x_1 + x_2 + 2y \leq 2\}$, we claim that there is no finite r such that $P^r = Conv(S)$.

To see this, note that P is a simplex with vertices $O=(0,0,0),\ A=(2,0,0),\ B=(0,2,0)$ and $C=(\frac{1}{2},\frac{1}{2},\frac{1}{2}).\ S$ is contained in the plane y=0. More generally, consider a simplex P with vertices O,A,B and $C=(\frac{1}{2},\frac{1}{2},t)$ with t>0. Let $C_1=C$, let C_2 be the point on the edge from C to A with coordinate $x_1=1$ and C_3 the point on the edge from C to B with coordinate $x_2=1$. Observe that no split disjunction removes all three points C_1,C_2,C_3 . Let Q_i be the intersection of all split cuts that do not cut off C_i . All split cuts belong to at least one of these three sets, thus $P^1=Q_1\cap Q_2\cap Q_3$. Let S_i be the simplex with vertices O,A,B,C_i . Clearly, $S_i\subseteq Q_i$. Thus $S_1\cap S_2\cap S_3\subseteq P^1$. It is easy to verify that $(\frac{1}{2},\frac{1}{2},\frac{t}{3})\in S_i$. Thus $(\frac{1}{2},\frac{1}{2},\frac{t}{3})\in P^1$. By induction, $(\frac{1}{2},\frac{1}{2},\frac{t}{3k})\in P^k$.

However, for mixed 0,1 programs, Theorem 2 of Section 1 implies that $P^n = Conv(S)$ (Indeed, the lift-and-project polytope P_1 contains the split closure of P by Theorem 1 of Section 1. Similarly, $P_2(P_1)$) contains the 2^{nd} split closure, etc).

Example: Cornuéjols and Li observed that the n^{th} split closure is needed for 0,1 programs, i.e. there are examples where $P^k \neq Conv(S)$ for all k < n. They use the following well-known polytope studied by Chvátal, Cook, and Hartmann:

$$P_{CCH} \equiv \{x \in [0,1]^n | \sum_{j \in J} x_j + \sum_{j \notin J} (1 - x_j) \ge \frac{1}{2}, \text{ for all } J \subseteq \{1, 2, \dots, n\} \}$$

Let F_j be the set of all vectors $x \in \mathbb{R}^n$ such that j components of x are $\frac{1}{2}$ and each of the remaining n-j components are equal to 0 or 1. The polytope P_{CCH} is the convex hull of F_1 .

Lemma: If a polyhedron $P \subseteq R^n$ contains F_j , then its split closure P^1 contains F_{j+1} . Proof: It suffices to show that, for every $(\pi, \pi_0) \in Z^{n+1}$, the polyhedron $\Pi = Conv((P \cap \{x | \pi x \leq \pi_0\}) \cup (P \cap \{x | \pi x \geq \pi_0 + 1\}))$ contains F_{j+1} . Let $v \in F_{j+1}$ and assume w.l.o.g. that the first j+1 elements of v are equal to $\frac{1}{2}$. If $\pi v \in Z$, then clearly $v \in \Pi$. If $\pi v \not\in Z$, then at least one of the first j+1 components of π is nonzero. Assume w.l.o.g. that $\pi_1 > 0$. Let $v_1, v_2 \in F_j$ be equal to v except for the first component which is 0 and 1 respectively. Notice that $v = \frac{v_1 + v_2}{2}$. Clearly, each of the intervals $[\pi v_1, \pi v]$ and $[\pi v, \pi v_2]$ contains an integer. Since πx is a continuous function, there are points \tilde{v}_1 on the line segment $Conv(v, v_1)$ and \tilde{v}_2 on the line segment $Conv(v, v_2)$ with $\pi \tilde{v}_1 \in Z$ and $\pi \tilde{v}_2 \in Z$. This means that \tilde{v}_1 and \tilde{v}_2 are in Π . Since $v \in Conv(\tilde{v}_1, \tilde{v}_2)$, this implies $v \in \Pi$. \square Starting from $P = P_{CCH}$ and applying the lemma recursively, it follows that the (n-1)st split closure of P_{CCH} contains F_n , which is nonempty. Since $Conv(P_{CCH} \cap \{0,1\}^n)$ is empty, the n^{th} split closure is needed to obtain $Conv(P_{CCH} \cap \{0,1\}^n)$. \square

Nemhauser and Wolsey proved that the split closure and the GMI closure are identical. To simplify the proof, we will assume that P is bounded. The following lemma will be useful.

Lemma: Assume P is bounded and nonempty. Let $cx + hy \le c_0$ be a split cut. Then there exist $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ and $\alpha, \beta \in \mathbb{R}_+$ such that

$$cx + hy - \alpha(\pi x - \pi_0) \le c_0$$
 and $cx + hy + \beta(\pi x - (\pi_0 + 1)) \le c_0$

are both valid for P.

Proof: By definition of a split cut, there exist $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ such that $cx + hy \leq c_0$ is valid for $\Pi_1 \cup \Pi_2$. Consider $\Pi_1 = \{(x, y) : Ax + Gy \leq b, \pi x \leq \pi_0\}$. If $\Pi_1 = \emptyset$, then choose $\alpha \geq \frac{cx^t + hy^t - c_0}{\pi x^t - \pi_0}$ for all the extreme points (x^t, y^t) of P. This implies

If $\Pi_1 = \emptyset$, then choose $\alpha \ge \frac{cx + ny - c_0}{\pi x^t - \pi_0}$ for all the extreme points (x^t, y^t) of P. This implies that $cx + hy - \alpha(\pi x - \pi_0) \le c_0$ is valid for P. Now consider the case where $\Pi_1 \ne \emptyset$. Then, by Farkas's lemma, $Dz \le d$ implies $\gamma z \le \gamma_0$ if and only if there exists $v \ge 0$ such that $vD = \gamma$ and $\gamma_0 \ge vd$. [This is also a consequence of LP duality: $\max\{\gamma z : Dz \le d\} = \min\{vd : vD = \gamma, v \ge 0\} \le \gamma_0$.] Therefore there exist $u \ge 0, v \ge 0$ such that

$$cx + hy = u(Ax + Gy) + \alpha \pi x$$

and $c_0 \ge ub + \alpha \pi_0$

Since $u(Ax + Gy) \le ub$ is valid for P, it follows that $cx + hy - \alpha(\pi x - \pi_0) \le c_0$ is also valid for P.

A similar argument applied to Π_2 shows that $cx + hy + \beta(\pi x - (\pi_0 + 1)) \le c_0$ is valid for P for some $\beta \ge 0$. \square

Theorem: Let $P := \{(x,y) \in \mathbb{R}^{n+p}_+ : Ax + Gy \leq b\}$ be a bounded rational polyhedron and let $S := P \cap (\mathbb{Z}^n \times \mathbb{R}^p)$. The split closure of P is identical to the Gomory mixed integer closure of P.

Proof: We may assume that the constraints $x \ge 0$ and $y \ge 0$ are part of $Ax + Gy \le b$ in the description of P.

Consider first a GMI cut. Its derivation was obtained by arguing that $k = a_0 - \sum_{f_j \leq f_0} a_j x_j - \sum_{f_j > f_0} (a_j + 1) x_j$ is an integer, and either $k \leq -1$ or $k \geq 0$. This is a disjunction of the form $\pi x \leq \pi_0$ or $\pi x \geq \pi_0 + 1$ with $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$. Thus the derivation of the GMI cut implies that it is a split inequality.

Conversely, let $cx + hy \le c_0$ be a split cut. By the previous lemma, there exists $(\pi, \pi_0) \in \mathbb{Z}^{n+1}$ and $\alpha, \beta \in \mathbb{R}_+$ such that

(1)
$$cx + hy - \alpha(\pi x - \pi_0) \le c_0$$
 and

(2)
$$cx + hy + \beta(\pi x - (\pi_0 + 1)) \le c_0$$

are both valid for P. We can assume $\alpha > 0$ and $\beta > 0$ since, otherwise, $cx + hy \le c_0$ is valid for P and therefore also to its Gomory mixed integer closure. We now apply the Gomory mixed integer procedure to (1) and (2). Introduce slack variables s_1 and s_2 in (1) and (2) respectively and subtract (1) from (2).

$$(\alpha + \beta)\pi x + s_2 - s_1 = (\alpha + \beta)\pi_0 + \beta$$

Dividing by $\alpha + \beta$ we get

$$\pi x + \frac{s_2}{\alpha + \beta} - \frac{s_1}{\alpha + \beta} = \pi_0 + \frac{\beta}{\alpha + \beta}$$

From this equation, we can derive a GMI cut. Note that $f_0 = \frac{\beta}{\alpha + \beta}$ and that the continuous variable s_2 has a positive coefficient while s_1 has a negative coefficient. So the GMI cut is

$$\frac{\frac{1}{\alpha+\beta}}{\frac{\beta}{\alpha+\beta}}s_2 + \frac{\frac{1}{\alpha+\beta}}{1 - \frac{\beta}{\alpha+\beta}}s_1 \ge 1$$

which simplifies to

$$\frac{1}{\alpha}s_1 + \frac{1}{\beta}s_2 \ge 1.$$

We now replace s_1 and s_2 as defined by the equations (1) and (2) to get the GMI cut in the space of the x, y vaviables. The resulting inequality is

$$cx + hy \le c_0$$

Therefore $cx + hy \le c_0$ is a GMI cut. \square

4. Intersection Cuts

Intersection cuts were introduced by Balas. They are split cuts obtained from a basis of the linear programming relaxation. For convenience, we assume that the constraints are in equality form.

$$Ax = b, x \ge 0, x_i \text{ integer for } j \in N_I,$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ and $N_I \subseteq N := \{1, 2, \dots, n\}$. Wlog assume A is of full row rank. Let $P = \{x \geq 0 : Ax = b\}$. Let B index m linearly independent columns of A (B is a basis) and $J := N \setminus B$ index the non-basic variables. The conic polyhedron associated with B is given by:

(1)
$$P(B) := \{ x \in \mathbb{R}^n : Ax = b \text{ and } x_j \ge 0 \text{ for } j \in J \}.$$

The set P(B) is the relaxation of P obtained by deleting the non-negativity constraints on the basic variables. Observe that P(B) is a translate of a polyhedral cone. Specifically,

we may write $P(B) = C + \bar{x}$, where C is the polyhedral cone $C := \{x \in \mathbb{R}^n : Ax = 0 \text{ and } x_j \geq 0 \text{ for } j \in J\}$, and \bar{x} solves the system Ax = b and $x_j = 0$ for $j \in J$. The vector $\bar{x} \in \mathbb{R}^n$ is the basic solution corresponding to the basis B.

The extreme rays of the polyhedral cone C can be obtained by first solving the system Ax = b in terms of the basic variables, which yields the *simplex tableau*:

(2)
$$\bar{x}_i = x_i + \sum_{j \in J} \bar{a}_{ij} x_j, \qquad i \in B.$$

The extreme rays of C can be obtained from the coefficients of the simplex tableau as follows. Given $j \in J$, define the vector r^j :

(3)
$$r_k^j := \begin{cases} -\bar{a}_{kj} & \text{if } k \in B, \\ 1 & \text{if } k = j, \\ 0 & \text{otherwise.} \end{cases}$$

The conic polyhedron P(B) can then be written as $P(B) = \bar{x} + \text{cone}(\{r^j\}_{j \in J})$, where cone $(\{r^j\}_{j \in J})$ denotes the polyhedral cone generated by the vectors $\{r^j\}_{j \in J}$. Observe that, since there are |J| = n - m non-basic variables, P(B) has exactly n - m extreme rays.

We now derive the intersection cut. Let $D(\pi, \pi_0)$ denote an arbitrary split disjunction $\pi x \leq \pi_0$ or $\pi x \geq \pi_0 + 1$. Assume \bar{x} violates the disjunction $D(\pi, \pi_0)$, and define $\epsilon(\pi, \pi_0) := \pi^T \bar{x} - \pi_0$ to be the amount by which \bar{x} violates the first term of the disjunction. Since $\pi_0 < \pi^T \bar{x} < \pi_0 + 1$, we have $0 < \epsilon(\pi, \pi_0) < 1$. Also, for $j \in J$, define scalars:

(4)
$$\alpha_{j}(\pi, \pi_{0}) := \begin{cases} -\frac{\epsilon(\pi, \pi_{0})}{\pi^{T} r^{j}} & \text{if } \pi^{T} r^{j} < 0, \\ \frac{1 - \epsilon(\pi, \pi_{0})}{\pi^{T} r^{j}} & \text{if } \pi^{T} r^{j} > 0, \\ +\infty & \text{otherwise.} \end{cases}$$

The interpretation of the numbers $\alpha_j(\pi,\pi_0)$ for $j\in J$ is the following. Let $x^j(\alpha):=\bar x+\alpha r^j$, where $\alpha\in\mathbb{R}_+$, denote the half-line starting in $\bar x$ in the direction r^j . The value $\alpha_j(\pi,\pi_0)$ is the smallest value of $\alpha\in\mathbb{R}_+$ such that $x^j(\alpha)$ satisfies the disjunction $D(\pi,\pi_0)$. In other words, the point $x^j(\alpha_j(\pi,\pi_0))$ is the intersection of the half-line starting in $\bar x$ in direction r^j with the hyperplane $\pi^T x = \pi_0$ or the hyperplane $\pi^T x = \pi_0 + 1$. Note that $\alpha_j(\pi,\pi_0) = +\infty$ when the direction r^j is parallel to the hyperplane $\pi^T x = \pi_0$. Given the numbers $\alpha_j(\pi,\pi_0)$ for $j\in J$, the intersection cut associated with B and $D(\pi,\pi_0)$ is given by:

(5)
$$\sum_{j \in J} \frac{x_j}{\alpha_j(\pi, \pi_0)} \ge 1.$$

This inequality is valid for $P_I(B) := P(B) \cap \{x \geq 0 : x_j \text{ integer for } j \in N_I\}$ since it is a split cut. In fact, the intersection cut gives a complete description of the set of points in P(B) that satisfy the disjunction $D(\pi, \pi_0)$. Andersen, Cornuéjols and Li showed that intersection cuts are sufficient for describing the split closure of P. Let \mathcal{B}^* denote the set of all bases of A. We have:

$$\bigcap_{(\pi,\pi_0)\in\mathbb{Z}^{N_I+1}} \text{Conv} \ (P\cap (\{x\ :\ \pi x\leq \pi_0\}\cup \{x\ :\ \pi x\geq \pi_0+1\}))$$

$$=\bigcap_{B\in\mathbb{B}^*} \bigcap_{(\pi,\pi_0)\in\mathbb{Z}^{N_I+1}} \text{Conv} \ (P(B)\cap (\{x\ :\ \pi x\leq \pi_0\}\cup \{x\ :\ \pi x\geq \pi_0+1\})).$$

The following lemma shows that GMI cuts derived from rows of the simplex tableau can be obtained from (5) by choosing an appropriate disjunction $D(\pi, \pi_0)$:

Lemma 1 Let B be a basis of A, and let \bar{x} be the corresponding basic solution. Also, let x_i be a basic integer constrained variable, and suppose \bar{x}_i is fractional. The MIG cut obtained from the row of the simplex tableau, in which x_i is basic, is given by the inequality $\sum_{j\in J} \frac{x_j}{\alpha_j(\pi^i,\pi^i_0)} \geq 1$, where $\pi^i_0 := \lfloor \bar{x}_i \rfloor$, and for $j \in N_I$:

(6)
$$\pi_j^i := \begin{cases} \begin{bmatrix} \bar{a}_{ij} \end{bmatrix} & \text{if } j \in J \text{ and } f_j \leq f_0, \\ \lceil \bar{a}_{ij} \rceil & \text{if } j \in J \text{ and } f_j > f_0, \\ 1 & \text{if } j = i \text{ and } \\ 0 & \text{otherwise.} \end{cases}$$

Proof: Let us compute $\alpha_j(\pi^i, \pi_0^i)$ for the above disjunction using formula (4), where $j \in J$. We have:

$$\epsilon(\pi, \pi_0) = (\pi^i)^T \bar{x} - \pi_0^i = \bar{x}_i - \lfloor \bar{x}_i \rfloor = f_0.$$

Using (3) and (6), we get

(7)
$$(\pi^{i})^{T} r^{j} = \pi_{i}^{i} r_{i}^{j} - \pi_{j}^{i} r_{j}^{j} = \begin{cases} -f_{j} & \text{if } j \in N_{I} \text{ and } f_{j} \leq f_{0}, \\ 1 - f_{j} & \text{if } j \in N_{I} \text{ and } f_{j} > f_{0}, \\ -\bar{a}_{ij} & \text{if } j \in J \setminus N_{I}. \end{cases}$$

Now $\alpha_j(\pi^i, \pi_0^i)$ follows from formula (4). This yields the MIG cut as claimed. \square

There is a closed form formula for the Euclidian distance cut off by an intersection cut derived from a split disjunction $D(\pi, \pi_0)$ and a basis B:

Lemma 2 Let B be a basis of A, let \bar{x} be the corresponding basic solution, and let $D(\pi, \pi_0)$ be a split disjunction violated by \bar{x} . The distance $d(B, \pi, \pi_0)$ cut off by the split cut derived from B and $D(\pi, \pi_0)$ satisfies:

(8)
$$(d(B, \pi, \pi_0))^2 = \frac{1}{\sum_{j \in J^-(\alpha_j(\pi, \pi_0))^2}}$$

Proof: Let $\gamma^T x \geq 1$, where $\gamma \in \mathbb{R}^n$, denote the intersection cut (5) derived from B and the disjunction $D(\pi, \pi_0)$. Then $\gamma_j = 0$ for $j \in N \setminus J$, $\gamma_j = \frac{1}{\alpha_j(\pi, \pi_0)}$ for $j \in J$ and $\gamma^T \bar{x} = 0$. Since γ is a normal vector to the intersection cut (5), it follows that $d(B, \pi, \pi_0)$ satisfies $\gamma^T(\bar{x} + d(B, \pi, \pi_0)) = 1$. Isolating $d(B, \pi, \pi_0)$ in this expression gives the formula. \square