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1. Lift and Project Cuts for Mixed 0,1 Programs

Let S = {z € {0,1}" x R} : Az > b}.
Here Az > bincludes z; > Oforall j=1,...,n+p,andz; <lforj=1,...,n
Balas, Ceria and Cornuéjols study the following “lift-and-project” procedure:

Step 0: Select j € {1,...,n}.

Step 1: Generate the nonlinear system z;(Az —b) > 0 and (1 — z;)(Az —b) > 0.

Step 2: Linearize the system by substituting y; for z;z;, i # j, and z; for a:?. Call this
polyhedron M;.

Step 3: Project M; onto the z-space, call the resulting polyhedron P;.

Theorem 1: P; = Conv {(Az > b,z; =0) U (Az > b,z; = 1)}

Proof: Call P* the set in the RHS. To show P; C P*, we take az > (3 valid for P*.
Since it’s valid for Az > b,z; = 0 we can find a A such that az + Az; > 3 is valid for P.
Similarly, we can find g such that az + (1 — z;) > 3 is valid for P.

So, (1 — z;)(az + Az; — 8) 2 0 and zj(az + (1l — z;) — B) > 0 are valid for the nonlinear
system of Step 1, and their sum is too.

az + (A + p)(z; —z?) -8=>0
Step 2 replaces x? by z;, this gives ax > b valid for M;, and thus for P;.
To show P* C Pj, let T be a point in Az > bz; = O or in Az > b,z; = 1. Define

Ui ='T,-fj for i # j. Then (Z,7) € M; since E? = Z;. So, T € P;. By convexity of P; it
follows that P* C P;. O

* Theorem 2: P,(P,_1(--- P2(F)...)) = Conv §

Proof: by induction. Let S; = {z € {0,1} x R?™*"? : Az > b}. We want to show
Py(Pi—1(--- P2(Py)...)) = Conv S;. This is true for t = 1 by Theorem 1 so consider ¢ > 2.
Suppose that this is true for ¢ — 1. By IH we have equality to

P(Per(-- P2(P1)...)) = P(Conv S;_1)
so by Theorem 1,
= Conv ((Conv (St—1) Nz = 0) U(Conv (Si-1) Nz¢ = 1))
For any set S that lies entirely on one side of a hyperplane H, the following equality holds

Conv (S)N H = Conv (SN H)
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To prove this, one can use the definition of the convex hull (we leave it as an exercise).
Therefore

Py(Pi—1(-+- P2(Py)...)) = Conv ((Conv (S;—; Nz = 0)) U (Conv (S¢—; Nz = 1)))
= Conv ((Si—1 Nzs = 0) U (Si—1 Nz¢ = 1)) = Conv S;

Cut generation LP:
Mj={zeR}P yeRY™ : Ay—bz; >0, Az —Ay+bz;>b , y;=z;}
The first two constraints come from linearizing the inequalities of Step 1. We don’t really

need y;. Let A; be A without the j-th column. By modifying the coefficient matrix of =
appropriately, we can rewrite M; as

Mj={zeR¥? yeR™ ! . Adjz—Ajy>b and Bjz+ Ajy >0}
We want to project out the y variables. This is done using the cone Q = {(u,v) : —ud; +
vA; =0,u > 0,v > 0}. Namely the set P; can be written like this
P,={ze ]R:’_"'P - (uf-lj + véj)z > ub for all (u,v) € Q}
Given a fractional solution Z, we want ax > [ valid for P; which is a cut, i.e. aT < .
Thus a = uﬁj +vB;j and 8 = ub for (u,v) € Q. Now we have our cut generation LP to get
a deepest cut.
max 3 — aT subject to o = ufi,- +v3j and 3 = ub, —ud; +vA; =0,u>0,v>0.

This along with a normalization constraint to truncate the cone will do. For example, we
could add the constraint )~ u; + > v; = 1.

-

Another (equivalent) way of describing P; is by using Theorem 1, which shows that P; is
the convex hull of the union of two polyhedra. Again, such a description involves additional
variables which can then be projected out. We state a general result about union of polyhe-
dra, which is of independent interest. Assume we have bounded and nonempty polyhedra.

We want the union
\/ Az <b (1)
Denote the following conditions by (2 )
Azt < by
Arz® < bry,

gl4z? 4. 4ot =2
it tk=1
yi € {0,1} fori =1,2,...,%

Proposition z satisfies (1) if and only if there exists z!,...,z* v;,...,yx such that
(z,z,...,z% y1,...,y) satisfies (2).

Proof: To prove = is obvious, if z satisfies Az < b! take z; = z,y; = 1, others 0.

<, say y; = 1 WLOG, then ys,...,yx = 0. Because A;xz < b* is bounded, the only solution
to A;z* <0isz* =0fori =2,...,k. Thus z = z! and therefore z satisfies Alz < b!, i.e.



z satisfies (1). O

Remark: To show that the formulation (2) is correct, we can relax the assumption “all
{z : Aiz < b'} are bounded” by “all {z : A;z < b'} have the same recession cone”, i.e. the
set {z : A;z <0} is the same for all .

Theorem: (Balas 1979) The convex hull of the solutions of (2) is obtained by replac-
ing y; € {0,1} by 0 < y; < 1 in the last line of the formulation.

Proof: Let (3) denote the set obtained by replacing y; € {0,1} by 0 < % < 1 in (2).
Clearly the convex hull of the solutions of (2) is contained in (3). Now we show the con-
verse. Consider a solution z = (:r,:rl,_...,x",yl,._..,yk) of (3). Write z as the convex
combination Z,-:y‘.#oyiz", where z' = (:—:,0, ..., 0, %’;‘,0, ...,0,1,0,...,0). It is easy to ver-

ify that 2* is a feasible solution of (2), proving the theorem. O

This theorem has important consequences: It shows that one can optimize over the union
of k polyhedra by solving a linear program.

Back to lift-and-project. One can obtain a stronger relaxation (Sherali-Adams) by skipping
Step 0 and considering the nonlinear constraints z;(Az—b) > 0 and (1-x;)(Axz~b) > 0 for
allj =1,...,nin Step 1. Then, in Step 2, variables y;; are introduced forall i = 1,...,n+p
and j = 1,...,n with i # j. An even stronger relaxation can be obtained as follows:

Lovasz-Schrijver Relaxation:

Step 1: Generate the nonlinear system z;(Az —b) > 0 and (1 — z;)(Az — b) = 0 for all
=1 v S

Step 2: Linearize the system by substituting y;; for z;z;, foralli=1,...,n+p,j=1,...,n
such that j # ¢, and z; for x? forall j = 1,...,n. Denote by Y the symmetric (n+1)x(n+1)
matrix with the vector (1,zy,...,2,) in row 0, in column 0 and in the diagonal, and entry
yij in row 7 and column j for 7,j = 1,...,n and i # j. Call M the convex set in ]R'_:_+” of
all (z,y) that satisfy the above linear inequalities and such that Y is a positive semidefinité
matrix.

Step 3: Project M onto the z-space, call N the resulting convex set.

Obviously N C N7_;P;. A major interest in the Lovdsz and Schrijver procedure is due to
the fact that one can optimize a linear function over M in polynomial time.



2. Gomory Mixed integer cut:
Let .
S={zeZyeR; : Y az;+ > gjy; =b}
JEN JjE€J
Let b= |b] + fo where 0 < fp < 1.
Let aj = |a;j] + f; where 0 < f; < 1.

Y fimi+ D (fi-Dai+ ) gy; = k+fo
fi<fo fi>fo jedJ
k is some integer so k < —1 or k > 0. So we get the disjunction

S fe- X lm e S 2

f;<fn fi>fo jed

L= fj 9;
o zj + T B ;=2 1
Zl fo™? Z1—f0J 1—.f0
f; (fO f; >f0
This is of the form a'z > 1 or a®z > 1 which implies Z:j max a;,aJ )z > 1forz > 0.
What is the maximum? It is easy since one coefficient is positive and one negative for each

variable. f:
J 9j )
Z J+Zl ‘”J*Z Zl_foyi z 1
f;<fo fi>fo 9j >0 9;<0
This is valid for S, it is the Gomory mixed integer cut (GMI cut).

OR

Let us compare the GMI cut applied to the pure integer program (g;'s= 0) wn:h another
cut introduced by Gomory, the Gomory fractional cut

Z fj:rj+ Z f_-,':L‘j > fo

figfo fi=fo
This is to be compared with the Gomory Mixed Integer Cut:

> fizi+ f Y A-fz; 2 fo

fj _<.f0 fJ >fo
So, we're comparing fo/(1— fo)*(1— f;) with f;, the comparison is always < when f; > fo,
so the GMI cut dominates the fractional cut.

Application: Let P := {(z,y) € R}" : Az + Gy < b} be a rational polyhedron and
let $:={z € Zl,ye R, : Az + Gy < b}. Add slack variables Az + Gy + s = b.
. Define 8" := {z € Z},(y,s) € Zi™ . Az 4+ Gy+ s = b}. For any A € R™, the
equation A\(Az + Gy + s) = Ab can be used to generate a GMI cut valid for S’. Eliminating
s = b — Az — Gy from this inequality, we get a valid inequality for S, in the space R™*? of
the variables z,y. Let us also call these inequalities GMT cuts. Define the Gomory mized
integer closure of P to be obtained from P by adding all the GMI cuts.




3. Split cuts

Let P := {(z,y) € R"*? : Az + Gy < b} where A, G, b have rational entries,
and let S:= PN (Z" x RP).
For # € Z™ and mp € Z, define

II, ;=Pn{(z,y) : 7z < mo}

Iy := Pn{(z,y) : 7z >m+1}
Clearly S C IT; UTls.
Therefore any inequality ex + hy < ¢g that is valid for IT) U Il is also valid for S. An
inequality cz + hy < ¢ is called a split inequality if there exists (m,m) € Z™*! such that
cx + hy < ¢ is valid for II; U Ils.
The intersection of all split cuts, denoted by P!, is called the split closure of P.

Theorem: (Cook, Kannan and Schrijver 1990) If P is a rational polyhedron, the split
closure of P is a rational polyhedron.

For k > 2, P* denotes the split closure of P*~1 and it is called the k* split closure of P. It
follows from the above theorem that P¥ is a polyhedron. Unlike for the pure integer case,
there is in general no finite » such that P™ = Conv(S), as shown by the following example.

Example: Let S = {(z1,22,¥y) € 72 x R:zm2y x>y z1+22+2y < 2}. Starting
from P := {(z1,z2,y) € R® : 7y >y, 2 > y, 71 + z2 + 2y < 2}, we claim that there is no
finite r such that P" = Conv(S). s

To see this, note that P is a simplex with vertices O = (0,0,0), A = (2,0,0), B = (0,2,0)
and C = (%, %, %) S is contained in the plane y = 0. More generally, consider a simplex
P with vertices O, A, B and C = (%, %,t) with ¢t > 0. Let C; = C, let Cy be the point on
the edge from C to A with coordinate z; = 1 and C3 the point on the edge from C to B
with coordinate o = 1. Observe that no split disjunction removes all three points Cy, Ca,
C3. Let Q; be the intersection of all split cuts that do not cut off C;. All split cuts belong
to at least one of these three sets, thus P! = Q; N Qy N Q3. Let S; be the simplex with
vertices O, A, B, C;. Clearly, S; C Q;. Thus S; N S;NS3 C P, It is easy to verify that

(%, %, %) € S;. Thus (%, %,%) € Pl. By induction, (%, %, 5‘;) € Pk,

However, for mixed 0,1 programs, Theorem 2 of Section 1 implies that P" = Conv(S)
. (Indeed, the lift-and-project polytope P; contains the split closure of P by Theorem 1 of
Section 1. Similiarly, P;(P;)) contains the 2"¢ split closure, etc).

Example: Cornuéjols and Li observed that the n* split closure is needed for 0,1 programs,
i.e. there are examples where P*¥ % Conuv(S) for all k < n. They use the following well-
known polytope studied by Chvétal, Cook, and Hartmann:

= 1
Pocy = {z € [0,1)"| ZJ:J-+Z(1 ~j)2 5, forall JC{1,2,-+ ,n}}
J1€J J€J
Let F; be the set of all vectors z € R" such that j components of z are % and each of the

remaining n — j components are equal to 0 or 1. The polytope Pocp is the convex hull of
F.
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Lemma: If a polyhedron P C R™ contains F}, then its split closure P! contains Fj;1.
Proof: It suffices to show that, for every (m,m) € Z™*!, the polyhedron IT = Conv((P N
{z| 7z < mo}) U (PN {z| 7z > mg + 1})) contains F;,1. Let v € Fj;; and assume w.l.o.g.
that the first 7 + 1 elements of v are equal to % If rv € Z, then clearly v € I1. If 7v & Z,
then at least one of the first j + 1 components of 7 is nonzero. Assume w.l.o.g. that m; > 0.
Let vy, v2 € F}; be equal to v except for the first component which is 0 and 1 respectively.
Notice that v = 21322 Clearly, each of the intervals [rvy, 7v] and [rv, wvg] contains an inte-
ger. Since 7wz is a continuous function, there are points #; on the line segment Conv(v, v;)
and 75 on the line segment Conv(v,v) with 79 € Z and oy € Z. This means that 9; and
¥y are in I1. Since v € Conuv(9;,02), this implies v € II. O
Starting from P = Pocp and applying the lemma recursively, it follows that the (n — 1)st
split closure of Pccy contains F,, which is nonempty. Since Conv(Pcepn{0, 1}") is empty,
the n** split closure is needed to obtain Conv(Pccy N {0,1}"). O

Nemhauser and Wolsey proved that the split closure and the GMI closure are identical. To
simplify the proof, we will assume that P is bounded. The following lemma will be useful.

Lemma: Assume P is bounded and nonempty. Let cx + hy < ¢ be a split cut. Then there
exist (m,m) € Z"*! and «, 8 € R, such that

cx + hy — a(rz — my) < ¢p and
cx + hy + B(rz — (mo + 1)) < e
are both valid for P.

Proof: By definition of a split cut, there exist (7, mg) € Z™*! such that cz + hy < ¢g is
valid for IT; U IIy. Consider ITy = {(z,y) : Az + Gy < b, nz < mp}.

If II; = 0, then choose a > c’::r—‘:,@—;_;;"" for all the extreme points (z*, ") of P. This implies
that cz + hy — a(mrz — m) < ¢g is valid for P. Now consider the case where IT; # (). Then,
by Farkas’s lemma, Dz < d implies vz < «q if and only if there exists v > 0 such that.
vD = v and vy > vd. [This is also a consequence of LP -duality: max{yz : Dz <d} =
min{vd : vD =+, v > 0} < 5p.] Therefore there exist u > 0,v > 0 such that

cx + hy = u(Az + Gy) + anz
and cg > ub + amp

Since u(Az + Gy) < ub is valid for P, it follows that cz + hy — a(rz — mg) < ¢g is also valid
for P.

‘A similar argument applied to Il shows that ex + hy + B(rz — (7o + 1)) < ¢p is valid for
P for some 5 > 0. O

Theorem: Let P := {(z,y) € R}*” : Az + Gy < b} be a bounded rational polyhedron
and let S := PN (Z" x RP). The split closure of P is identical to the Gomory mixed integer
closure of P.

Proof: We may assume that the constraints z > 0 and y > 0 are part of Az + Gy < b in
the description of P.
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Consider first a GMI cut. Its derivation was obtained by arguing that k = ap—3)_ fi<fo %iT5—
prfo(aj + 1)z; is an integer, and either £ < —1 or £ > 0. This is a disjunction of the
form mz < mp or mx > my + 1 with (7, mp) € Z™*1. Thus the derivation of the GMI cut
implies that it is a split inequality.

Conversely, let ez + hy < ¢y be a split cut. By the previous lemma, there exists (7, mg) €
Z™*! and o, 8 € R, such that

(1) ex + hy — a(rz — mp) < ¢p and

(2) ez +hy+B(rz — (mo+1)) <
are both valid for P. We can assume o > 0 and 3 > 0 since, otherwise, cz + hy < ¢g is valid
for P and therefore also to its Gomory mixed integer closure. We now apply the Gomory
mixed integer procedure to (1) and (2). Introduce slack variables s; and s; in (1) and (2)
respectively and subtract (1) from (2).

(a+ B)mz + 59— 81 = (a+ B)mo + S
Dividing by a + 3 we get

S92 _ S1 .

a+8 a+p8 a+ B
From this equation, we can derive a GMI cut. Note that fo = a—_% and that the continuous
variable s9 has a positive coefficient while s, has a negative coefficient. So the GMI cut is

T+ o +

1 1
agﬂsz-b Btp 5121
a+8 1_a+

which simplifies to
1 1
ik asl + BSQ > 1

We now replace s; and s, as defined by the equations (1) and (2) to get the GMI cut in the
space of the z,y vaviables. The resulting inequality is

cx + hy < ¢p. .
Therefore cz + hy < ¢y is a GMI cut. O '

4. Intersection Cuts
Intersection cuts were introduced by Balas. They are split cuts obtained from a basis of
the linear programming relaxation. For convenience, we assume that the constraints are in
equality form.
Az =b, > 0, z; integer for j € Ny,

where A € R™*", b€ R™ and N; C N :={1,2,...,n}. Wlog assume A is of full row rank.
Let P ={z >0 : Az = b}. Let B index m linearly independent columns of A (B is a
basis) and J := N \ B index the non-basic variables. The conic polyhedron associated with
B is given by:

(1) P(B):={zeR": Az =band z; >0 for j € J}.

The set P(B) is the relaxation of P obtained by deleting the non-negativity constraints on
the basic variables. Observe that P(B) is a translate of a polyhedral cone. Specifically,
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we may write P(B) = C + %, where C is the polyhedral cone C := {z € R" : Az =0
and z; > 0 for j € J}, and Z solves the system Az = b and z; = 0 for j € J. The vector
7 € R" is the basic solution corresponding to the basis B.

The extreme rays of the polyhedral cone C' can be obtained by first solving the system
Az = b in terms of the basic variables, which yields the simpler tableau:

(2) T =x; + Zﬁ,‘jl‘j, 1 € B,

jedJ
The extreme rays of C can be obtained from the coefficients of the simplex tableau as
follows. Given j € J, define the vector r:

. —aj if ke B,
(3) "71 = 1 if k=7,
0 otherwise.

The conic polyhedron P(B) can then be written as P(B) = Z+ cone ({r’ }jes)s where
cone ({r? };jes) denotes the polyhedral cone generated by the vectors {r} jeg. Observe
that, since there are |J| = n —m non-basic variables, P(B) has exactly n —m extreme rays.

We now derive the intersection cut. Let D(m,mp) denote an arbitrary split disjunction
7z < 7 or Tz > 7o+ 1. Assume Z violates the disjunction D(m, ), and define e(m, mp) :=
7TF — 7y to be the amount by which Z violates the first term of the disjunction. Since
7o < T % < mg+ 1, we have 0 < e(m, mp) < 1. Also, for j € J, define scalars:

€(m,mo B T. .3
—_(1;7:7)- if wtr? <0, -

(4) aj(m,mo) = L=qrro) if xTrd > 0,
+00 otherwise.

The interpretation of the numbers a;(m,mg) for j € J is the following. Let z/(a) := &+ ar?,
where a € R, denote the half-line starting in # in the direction 77. The value a;(, m)
is the smallest value of @ € R, such that z7(a) satisfies the disjunction D(m, 7). In other
words, the point 27 (a;(, mp)) is the intersection of the half-line starting in Z in direction r’
with the hyperplane 77z = mg or the hyperplane 77z = 7y + 1. Note that aj(m,m) = 400
when the direction 77 is parallel to the hyperplane 77z = 7. Given the numbers a;(, o)
for j € J, the intersection cut associated with B and D(r,7p) is given by:

Y
) 2 atm) >
This inequality is valid for Py(B) := P(B)N{z > 0 : =z, integer for j € Ny} since it is
a split cut. In fact, the intersection cut gives a complete description of the set of points
in P(B) that satisfy the disjunction D(m, 7). Andersen, Cornuéjols and Li showed that
intersection cuts are sufficient for describing the split closure of P. Let B* denote the set
of all bases of A. We have:

n Conv (PN({z : me < m}U{z : mz>mo+1}))
(m,mo)EZNI 1
= ﬂ ﬂ Conv (P(B)N({z : mz < mp}U{z : 7z > mp+ 1})).
BeB* (n,m)eZNI+1
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The following lemma shows that GMI cuts derived from rows of the simplex tableau can be
obtained from (5) by choosing an appropriate disjunction D(m, m):

Lemma 1 Let B be a basis of A, and let Z be the corresponding basic solution. Also,
let z; be a basic integer constrained variable, and suppose Z; is fractional. The MIG cut
obtained from the row of the simplex tableau, in which z; is basic, is given by the inequality
ZJEJ-@?E—S > 1, where 7} := |Z;], and for j € Np:

laij] if j € J and f; < fo,

i ) [ai;] ifje Jand f; > fo,
(6) =0 if 5 — i and
0 otherwise.

Proof: Let us compute a (7", ) for the above disjunction using formula (4), where j € J.
We have:

E(?T,TI'Q) = (Wi) I-— 71’6 == LI,‘J = Jo:

Using (3) and (6), we get

(7) (m*)Trd = mir] 1-f; ifj€ Nyand f; > fo,
—aij; if j € J\ NJ.

Now a;(ni, m}) follows from formula (4). This yields the MIG cut as claimed. O

_ o —f; ifj€ Njand f; < fo,
—mird =

There is a closed form formula for the Euclidian distance cut off by an intersection cut
derived from a split disjunction D(m,mg) and a basis B:

Lemma 2 Let B be a basis of A, let & be the corresponding basic solution, and let D(m, o)
be a split disjunction violated by . The distance d(B, m, o) cut off by the split cut derived
from B and D(w, ) satisfies:

(8) 5 P N— ‘
Lied oytrmol?

Proof: Let Tz > 1, where v € R", denote the intersection cut (5) derived from B and
the disjunction D(m,m). Then y; =0for j e N\ J, v; = a;_ﬂoi for j € J and 7% = 0.
Since v is a normal vector to the intersection cut (5), it follows that d(B,w,mg) satisfies
~T(Z + d(B, 7, mp) ﬂ"ﬁl?) = 1. Isolating d(B, 7, mg) in this expression gives the formula. O



