
Guessing Attacks in the pi-calculus with a
Computational Justification

Tom Chothia

tomc@lix.polytechnique.fr
Laboratoire d’Informatique (LIX)

École Polytechnique (CNRS)
91128 Palaiseau Cedex - France

Abstract. This paper presents an extension of the pi-calculus that can reason
about brute force and guessing attacks. We relate new name declarations in the
pi-calculus with random sampling in the computational model of security. The
scope of a new name can then be expanded at a comparable cost as it would take
to guess the randomly sampled value in the computational setting. We provide
a function that calculates the cost of a given attack, taking into account the ease
with which the attacker can confirm its guesses. We argue the correctness of this
calculus by relating it to the computational model of security. We show that if the
cost of an attack in the calculus is less than exponential in a security parameter,
then there exists a polynomial time Turing machine that can defeat the process
with non-negligible probability. On the other hand, if there is no sub-exponential
cost attack, then the process is just as safe as its spi-calculus counterpart, and so
the use of guessable names does not help the attacker.

1 Introduction

This paper is primarily concerned with guessing attacks on protocols. Randomly guess-
ing values can be an effective way to break a protocol. However, guessing attacks are
handled poorly by most formal security analysis techniques, including the spi-calculus
[AG97] with its model based on free and bound names. Our aim in this paper is to pro-
vide a pi-calculus based model of guessing attacks with most of the simplicity of the
formal model and some of the power of the computational model [GM84, BM84].

The spi-calculus based security analysis method use a mini-language with a con-
struct to create new names. These new names can never be guessed, so an attacker must
trick a process into giving away its secrets. The computational security model, on the
other hand, is based on the random sampling of key values followed by a complexity
analysis of the run time of any possible attacker.

In assembling our calculus we equate the new name declaration of the pi-calculus
and random sampling in the computational model. In our calculus we write new a : Dn
to mean that a is a new name, randomly sampled from a domain of size n. To avoid
the difficult complexity analysis required by the computational model we only allow
the attacker to take advantage of the limited domain size through a guess operation:
guess x : Dn. This operation allows an attacker to correctly guess a value from a domain,
but at a cost. An attacking process can use this guess operation to try to break a protocol.

The attackers trace maps out a path to be followed later by another brute force attack. A
real attacker would have to use trial and error to guess values, look for confirmations of
their guesses and be prepared to go back and guess again. We can calculate the cost of
this more complicated guessing attack from a single trace of a successful attack in the
calculus using a simple function on traces. This function can find the cost of multiple
guesses, taking into account exactly when the attacker can get their guesses confirmed.
For a given protocol, the higher the value of the minimum cost attack the safer the
protocol will be.

We show the correctness of the calculus and the cost function by relating our model
back to the spi-calculus and to the computational model. First we add a security pa-
rameter for domain sizes. We define a Turing machine attacker that can interact with a
process. In our calculus we translate new names as random bit strings chosen from a
domain of size equal to the new name’s domain size, whereas for the spi-calculus all
names are mapped to bit strings with the same length as the security functions, hence
they cannot be guessed in sub-exponential time. We also give a safety criterion for
these Turing machine attackers. For our first theorem, we show that if there is a sub-
exponential cost attack in our calculus then the process is unsafe in the computational
model, i.e. there exists a polynomial time Turing machine that can defeat the safety
criterion. By adding short guessable names we have changed the spi-calculus model of
security and we must be sure that we have not allowed new attacks that fall outside of
our model. Our second theorem proves that if there exists a correct mapping for the
spi-calculus, then there is also a correct mapping for our calculus. This result shows
that in shortening some of the new names in the guessing calculus, we do not allow for
any new attacks that cannot be found in the calculus itself.

Work such as [AR00, BPW03, Lau04, MW04] has proved that there is a compu-
tationally correct mapping from the formal Dolev-Yao model [DY83] to the computa-
tional model. Mitchell, Scedrov et al. [MRST01] limit the pi-calculus to run in polyno-
mial time. So, if a protocol can be broken in this calculus, we know it can also be broken
by a polynomial computational attacker. The main difference between their work and
the work we present here, is that they limit the non-determinism of a processes to en-
sure that it runs in polynomial time, whereas we do not limit the run time of the calculi
process attacker instead, we ensure that the only action that is of use in a computational
attack is the guess action and we cost that accordingly.

Zunino and Degano [ZD04] enhance the standard Dolev-Yao attacker so that it can
guess a key. Using computational security methods they show that there is a negligible
probability of these kind of guesses succeeding and so standard Dolev-Yao attacker is
just as powerful as the enhanced one.

There is a great deal of work on the subject of attacks based on guessing poorly
chosen passwords, for instance Gong et al. [GLNS93] on the computational side and
Lowe [Low02], Delaune and Jacquemard [DJ04] and Corin et. al [CMAFE03] on the
formal side. This work focuses on the idea that passwords are often chosen poorly
and so can sometimes be guessed by dictionary attacks. Much of this work considers
decryption functions to simply map bit strings to bit strings and so, in order to verify
the guess of a key from an encrypted message you must have access to that encrypted
message and know the message’s contents.

In Section 2, we review some background work, including the pi and spi-calculi and
the computational security model. Section 3 introduces the pi-calculus with guessing,
and the cost function for attacks is giving in Subsection 3.4. We address the correct-
ness of our system in Section 4 and finally we conclude and discuss further work in
Section 5. We provide a summary of the calculus’s technical details in an appendix.
A longer vision of this paper, with extended descriptions and proofs is available at
www.lix.polytechnique.fr/∼tomc.

2 Background: Formal and Computational Analysis

This paper is aimed at combining some aspects of computational analysis methods with
formal process analysis in the pi-calculus. So, this section first reviews protocol analysis
in the pi and spi-calculi and then outlines how computational methods can be used to
prove much stronger results.

2.1 The pi and spi-calculus

The pi-calculus is a miniature concurrent language. This language is simple enough to
allow formal analysis while expressive enough to describe most interesting concurrent
processes. The exact syntax given to the pi-calculus varies from paper to paper; here we
use the following:

Process P,Q ::= 0
| send a〈b〉
| rec a(x);P
| new a;P
| !P
| (P | Q)
| [a = b];P

The first piece of syntax 0, represents the stopped process. The send operation
broadcasts the name b over channel a. The next operation receives a name over the
channel a and substitutes it for x in the continuing process P. The new operation creates
a new communication channel. The bang operator ! can perform recursion by spinning
off an arbitrary number of copies of a process. The bar | represents two processes run-
ning in parallel and finally the match operation, [a = b];P executes P if and only if a is
equal to b.

The key reduction rule of the calculus allows two processes to communicate:

send a〈b〉 | rec a(x);P−→ P[b/x]

One of the most important aspects of the pi-calculus is that new names are both
new and unguessable, for instance the process new a;rec a(x);P can never receive a
communication on the channel a, no matter what the surrounding processes might try.
This also means that there is no way to write down an attacker that tries every possible
value until it “finds” the right one.

In order to model a larger number of interesting protocols the spi-calculus extends
the pi-calculus with primitives for encryption. A new term is added, of the form {M}N ,
to mean the message M encrypted with the key N. These terms can be decrypted using
an operation of the form: case L o f {x}N in P. If a process provides the correct key, the
semantics rule for decryption substitutes the encrypted value for the variable:

case {M}N o f {x}N in P−→ P[M/x]

Encryption of the message M with the key N is performed by simply writing the
term {M}N .

The small size and expressivity of the spi-calculus makes the detailed analysis of
processes possible. This including the analysis of security properties, as shown by
Abadi and Gordon [AG97]. We briefly summarize some of this work here.

An attacker is modelled as a context, written C[] which is any possible surround-
ing term, into which the process being attacked may be plugged. This means that the
attacker can access any of the process’s free names (those not bound by a new or input
operator) and use these to communicate with the process in anyway it chooses. The
attacker may also perform any computations it wishes using the spi-calculus.

System(M) ≡ new pwd;(Client | Server(M))
Client ≡ new reply;send ser〈pwd,reply〉

| rec reply x;P(x)
Server(M) ≡ !rec ser (x,y); [x = pwd];send y 〈 M 〉

This system is comprised of a client and a server. The server listens for a connection
on a public channel, this connection is made up of a password and a reply channel. The
server then checks the password and, if it is correct, replies with the message M. The
password is private between the client and the server, therefore no attacker may know,
or guess, it and hence the message M is safe.

We could prove this formally by showing that the for any M and M ′, if P(M) has the
same visible actions as P(M′) then the system System(M) has the same visible actions
as System(M′) which would in turn imply that for all hostile attackers A, the process
A[Systems(M)] has the same visible actions as A[System(M′)] and so P cannot leak the
message M to the attacker A.

2.2 The Computational Security Model

Implementations of formal processes are susceptible to attacks that are “outside their
model”. For example, a new name that is implemented as a bit can be correctly guessed
with a one in two chance. Whereas, the spi-calculus model of the process might say that
this value is a bound name and hence is guaranteed to be unguessable (alternatively the
name could be free, then the attacker would always know it).

The computational model of security avoids some of these problems by modelling
attackers as polynomial Turing machines and values as bit strings [GM84, BM84]. This
means that the attacker can carry out any computational feasible operation. Secret val-
ues in this model are randomly chosen from a probability distribution. Given a proba-
bility distribution Dn of size n, we write: x r

← Dn to mean that x is a value that has been
randomly sampled from that distribution.

A security criterion is used to judge the safety of a given process. The choice of
which criterion to use will depend on the exact nature of the required security property.
However, a typical criterion defines the attackers advantage to equal the probability
that, for some sampled value, the attacker can correctly identify that value, minus the
probability that the attacker incorrectly identifies the value.

Attackers are probabilistic, polynomial time Turing machines (PRTMs), this is a
Turing machine that runs in polynomial time in some security parameter and has the
ability to make a random choice. It is enough for these attackers to return 0 or 1 de-
pending on what they believe to be the result of their attack.

The chance of the attacker defeating the criterion must become very small, very
quickly as the size of the security parameter grows. More formally, we say that the
attackers advantage be negligible. Where a function f is negligible if for all c there
exists N such that for all x > N we have that f (x) < x−c.

As an example of a simple criterion, one could say that an encryption scheme E is
safe if

Adv(n) = Pr[x r
← Dn,k

r
← Keyn : A(n,Ek(x),x) = 1]

−Pr[x,y r
← Dn,k

r
← Keyn : A(n,Ek(y),x) = 1]

is negligible. In this criterion, the attacker is given the length of the security parameter,
a random element and an encrypted value. The attacker must answer 1 if it believes that
the value it has been giving is the same as the encrypted value and 0 if it believes the
values are different.

A stronger, and more realistic criterion might give the attacker the ability to use the
encryption algorithm, this is done in the form of an oracle and we write A f () to mean
the attacker has access to an oracle to perform the function f with its chosen input. So,
for instance, a criterion to ensure that the attacker does not know when the same value
has been encrypted a number of times could be written as

Adv(n) = Pr[k r
← Keyn : AEk(−)(n) = 1] − Pr[k r

← Keyn,x
r
← D : AEk(x)(n) = 1]

where the false oracle Ek(x) ignores the value the attacker gave it to encrypt and always
returns the encryption of x with the key k.

The computational method captures, and hence defends against, a wide range of
possible attacks, including guessing attacks. However, proofs in this model can be dif-
ficult and are impossible to automate. The aim of our work is to provide some of the
benefits of computational analysis of guessing attacks without involving the user in any
difficult proofs.

3 The pi-calculus with Guessing

This section introduces the pi-calculus extended with guessing, the pi-g calculus. We do
this in a number of stages, in the hope of illustrating the motivation behind the design
decisions and elucidating some of the finer details. The first stage introduces the guess
action, next we consider the cost of multiple guesses, and thirdly we show that the cost
of an attack can be reduced if the attacker can get easy a confirmation of their guess.
Finally, we note that only certain kinds of actions give reliable confirmations and we
build our cost function accordingly.

3.1 A Guessing Rule

Given a protocol with a fixed password, there is a difference between finding a general
guessing attack on the protocol and an attack that guesses the password for one partic-
ular run of the protocol. The pi-calculus handles this quite neatly, by using a new name
for the secret value, for instance, a system in which processes P and Q share a password
pwd against an attacker A could be written as:

new pwd;(P | Q) | A

This marks out the password as important to the correctness of the process and
ensures that the attack can never come up with the name without being told. However,
this can sometimes entrust too much security in the new name; a password consisting
of a single bit, for instance, can be easily guessed.

As mentioned above, the computational model randomly samples these names. In
this setting we would write:

pwd r
← Dn : P(pwd) | Q(pwd) | A

This stops the attacker from just knowing the password at the start of the attack
because the same attack must work for different, randomly sampled values of pwd.
This model does allow for a brute force attack, however it forces anyone using this
method to perform a statistical analysis on the run time complexity of A.

To bring these two methods closer we work in the pi-calculus and allow a new name
to be sampled from a domain of a given size, writing

new pwd : Dn;(P | Q) | A

to mean pwd is a new value, shared between P and Q, sampled from a domain of size
n. To avoid the need to do nasty analysis we force the attacker to declare when it is
attempting to guess a value and pay a cost proportional to the size of the domain. With
the reduction rule

new pwd : Dn;P | guess x : Dn;A
→pwd:n new pwd : Dn;(P | A[gpwd/x])

which means that the attacker guesses the name pwd at a cost of n.
The distinct name gpwd is a correct guess of the name pwd. We do not substitute

pwd for x directly as we will later need to find out when a guess is confirmed. This
label on the reduction, as with all the other labels, records information necessary for
calculating the cost of the attack; no label ever affects the reduction of a process. A new
name declared of the form new a : Dn binds both a and ga, furthermore we only allow
names of the form ga to be declared with the guess operator.

Whereas before, in the pi-calculus, an attacker could only acquire knowledge of a
new name by being told it, now the attacker can also use the guess action and pay the
cost of a brute force attack on a value of the given domain size.

3.2 Multiple Guesses

Now we have allowed the attacker to make a single guess we must calculate the cost of
multiple guesses. Below we give a simple system in which a process shares a 128 bit
password with another process Q. An attacker A will try to guess this password one bit
at a time.

Process ≡ new chn,rew,b1 : D2...b128 : D2;(send a〈chn,rew〉 | rec chn(x1); [x1 = b1]; ...
...rec chn(x128); [x128 = bn];send rew〈reward〉) | Q)

Attacker ≡ rec a(chn,rew);(!(guess b : D2;send chn〈b〉) | rec rew(x))

The password process announces a secure channel, chn. It then listens on this new
channel for the bits of the password. One by one, the received bits are tested against the
bits of the true password and if they all match the reward is broadcast.

The attacker A cannot know the bits of the password because they are new names
bound to P and Q. However, it can guess each bit with a cost of 2 (or a 1 in 2 chance of
being correct). After the attacker has made a guess at all 128 bits of the password it will
have a 1 in 2128 chance of having correctly guessed the password and hence the cost of
these guesses should be 2128. So, in this case, we multiply the cost of each successive
guess. It should be noted that the process A does not perform an attack of cost 2128 on
the process P, rather 2128 is the cost of performing a successful attack along the lines of
the attack attempted by A.

3.3 Confirmation of a Guess

Multiplying the costs of all guesses in a trace will sometimes overestimate the cost of
an attack. The multiplication of the costs reflects the idea that all possible combinations
of guesses must be tried. However, if the attacker can get one of their guesses confirmed
as correct, when only part of the way through the attack, then the confirmed guess will
not have to be retried and will therefore not contribute to the cost of future guesses.

For example, consider the fairly moronic extension to our prior password system
given below. The processes function in the same way as before, except this time an
acknowledgment is broadcast after receiving each bit.

Process ≡ new chn,rew,b1 : D2...b128 : D2;
(send a〈chn,rew〉 | rec chn(x1);(send ack | [x1 = b1];(...

...rec chn(x128);(send ack | [x128 = b128];(send rew〈reward〉)...) | Q)

Because the system tests each bit before listening for the next bit these acknowl-
edgments confirm the guess of the previous bit as correct. This means that any brute
force attack based on guessing and then listening for an acknowledgement would only
have to try a guess at each bit once making the total cost for the new attacker 128+1.
These confirmations effectively prune the search tree of all the possible combinations
of guesses.

To allow dependences to be tracked we extend the syntax of the calculus with a
dependence marker. This marker takes the form: (ga)P and behaves in exactly the same
way as the processes P. The point of the marker is to record that the process P is only
running because the guess ga has been shown to equal a. The key semantic rule for this
is:

[ga = a];P→(a) (ga)P

The label (a) signals that this action build a dependence on the guess being correct.
A guess is confirmed when a signal that depends on the guess being correct passes

from the process to the attacker. So, we make the attacker and victim explicit by sepa-
rating them using a double bar || . The following reductions illustrate both these mech-
anisms:

new a:Dn; rec b(x); [x = a];send b〈c〉 →a:n new a:Dn; (rec b(x); [x = a];send b〈c〉
|| guess y:Dn;send b〈y〉 | rec b(x);A || send b〈ga〉 | rec b(x);A)

→ new a:Dn;([ga = a];send b〈c〉 || rec b(x));A
→(a) new a:Dn;((ga)send b〈c〉 || rec b(x);A)
→a:b〈~c〉new a:Dn; (0 || A)

The name a, from a domain of size n, is only known by the process on the left hand
side of the double bar. In the first reduction the attacker guesses this name, hence the
reduction is labelled with a : n to indicate that the name a has been guessed at cost n. The
second step is a communication between the attacker and the process. Now, we come to
the match [ga = a]. This match will go ahead as, for the sake of computing the cost, we
consider the guesses to be correct. However, we must leave a dependence marker to say
that the resulting process is only running because a guess has been shown to be correct.
In the final step another communication happens and as the send is dependent on a guess
of a being correct and as the communication takes place between the main process and
the attacker, the guess of the name a is possibly confirmed by the communication of~c
over the channel b. We indicate this by the a : b〈~c〉 label on the reduction. It is left to
the cost function to work out if the confirmation is reliable. This results in the rule for
confirmations:

(−→ga)send b〈~c〉 || rec b(~x)A→(~a:b〈~c〉) P || A[b/x]

Communication is performed in the same away as the pi-calculus, except the de-
pendence marker can be passed from one part of the system to another so as to catch
indirect comfirmations.

(−→gc)send a〈~b〉 | (−→gd)rec a(~x);P→ (−→gc ,
−→gd)P[b/x]

A final semantics rule, not given here, allows any of the other rules to be applied
inside an unguarded context.

The dependence markers are added to the calculus purely to aid the analysis of
a process. They would not be present in any implemented system. When an attacker
receives a message from an action of the form (ga)send a〈b〉 they only see the send a〈b〉

part. So, if along with a confirming signal there are other similar signals that do not
confirm a guess, the attacker could not be sure which one they have received and so the
signal does not definitely show the guess to be correct. As an example, we ask the reader
to again consider the password process given above. There, a correct guess is confirmed
by a signal on the channel ack. However, if we added a continually repeating output on
the channel ack in parallel with the orginal process then the receipt of an ack signal by
the attacker would be meaningless and would not help it prune down the search tree of
possible guesses. So, when the cost function is presented with a possible confirmation
it uses the state of the process from when the dependence was first built, to test if the
confirming action would be possible without the guess being correct.

3.4 Cost of a Trace

When an attacker finds a guessing attack for a protocol, the attacking process does not
have to model the ways in which it may try different guesses and keep track of the
guesses already made. This would lead to a more complicated system, which would
require the kinds of analysis seen in the computational model. Instead, we restrict the
only type of computation that can be used to find secret names to the guess action. We
can then calculate the cost of these guess actions separately. It should be noted that
we do not calculate the chance of the attacking process being correct. Rather, our cost
function calculates the cost in terms of computing power or number of tries, a brute
force attacker would need to successfully follow the same path as the attacking pi-g
calculus process. The length of the trace cannot be a function of the security parameter.
Therefore we only considered traces of finite length, where a polynomial or exponential
cost of an attack comes from the use of the guess action.

The cost of guesses are calculated and added to the total as they are confirmed and
the cost of the unconfirmed guesses is calculated at the end of the trace. We calculate
the cost of a trace, defined by the grammar T ::= P→α T |P, using an auxiliary function
that has a list of current guesses and another list that stores the states in which the
dependences where first build.

cost o f trace(T) = cost(T, [], [])

The cost function has five cases. The first is that of a guess being made by the
attacker.

cost(P→a:n T,gu,com f) = cost(T, (a,n);gu,com f)

The guess and its cost are added to the list of current guesses, gu. In the second case
a dependence on a guess being correct is built up inside the protocol and we add the
process state to the com f list.

cost(P→(a) T,gu,com f) =
cost(T, gu, (a : P);com f) i f (a : Q) /∈ com f
cost(T, gu,com f) i f (a : Q) ∈ com f

The confirmation rule is the most complicated. To simplify matters we introduce
a short hand for the produce of the costs (the second elements) of the list of current
guesses: Π snd [(a1,n1), ...,(ai,ni)] = n1×n2× ...×ni. The action tag (~a,b〈~c〉) tells us
that guesses of the elements of the set~a are potentially being confirmed by a communi-
cation of the names~c over the channel b. We then check in the confirmation list to see
if the system could have made the same communication if each guess had been wrong.
If it could not have been then the confirmation is real.

cost(P→(~a,b〈~c〉) T,gu,com f) = Π snd (gu[(ai,mi−1)/(ai,mi)])

+ cost(T,gu\{(a1,m1)...,a j,m j)},com f)

where a1, ...,a j are all the names in~a such that
(ai,Q) ∈ com f and (ai,mi) ∈ gu and new d;Q{d/gai}; C[send b〈ĉ〉]

If the attacker knows the contents of the message c, the attacker can use this to look
for confirmations, so ĉ =~c. However, if any of ~c are secret names within the protocol
then the attacker will not be able to distinguish it from any other secret name from
the same domain. So that element of ĉ can be any bound name that is unknown to the
attacker and is drawn from the same domain. The cost produce by the confirmation
is the produce of the costs of each guess, with one subtracted from all the confirmed
guesses (as one path for each confirmed guess will continue) plus the cost of the rest of
the trace, with the confirmed guesses removed from the list of current guesses. It would
be possible for the confirmation action to come from a second dependency not from the
state Q, however Q could reduce to the process that made this second dependence and
so could perform the same actions.

It is unnecessary for this rule to confirm a guess of the messages contents. If the
broadcast of this message was dependent on a guess of c then the guess of c will be au-
tomatically confirmed. If the broadcast was not dependent on the guess then the attacker
can read the value of c from this action and so does not have to guess it at all.

We do not give the attacker full control over the protocols scheduler; as we do
not wish to find attacks that only work for particular, pathological schedulers. We also
do not demand that the scheduler gives equal weight to each possible action, as this
is an unrealistic assumption. Rather, our aim is to find attacks that will work for any
reasonable scheduler on which a protocol may be run, so we define our system for any
scheduler that assigns a non-zero probability to any possible action.

It would be quite possible for an attacker to make a guess and wait for an action
it believes confirms a guess but in fact receive a reply from a different reduction that
does not confirm the guess at all. For now, we say that it is unsafe for the security
of the processes to depend on the scheduler avoiding these confirming states, but we
will also give a computational argument for this in Section 4 that proves, that for any
fair scheduler, this definition of a confirming state is enough to correctly find a process
insecure.

When we come to the end of a trace we multiply the remaining guesses to get the
final cost.

cost(P,gu,com f) = Π snd gu

If a reduction does not fit into any of the above categories it has no effect on the
cost, as shown by the last case.

cost(P→ T) = cost(T,gu,com f)

3.5 Encryption

Encryption is an essential part of many interesting protocols. We can add encryption
to our calculus in the manner of the spi-calculus, by adding the name {a}k to mean
the name a encrypted with the key k, and adding the operator decrypt a as {x}k;P to
decrypt, encrypted messages. Decryption adds another way in which a guess can be
confirmed and dependences built up. Firstly, when a protocol uses decryption with a
real key and a guess it sets up a dependence:

decrypt {b}a as {x}ga ;P→(a) (ga)P[b/x]
decrypt {b}ga as {x}a;P→(a) (ga)P[b/x]

Secondly, an attacker’s guess at a key can be confirmed directly by attempting to
decrypt a message encrypted with the real key. This leads to a secondary decryption
rule just for the attacker:

decrypt {b}a as{x}ga ;A→(ga,0) A[b/x]

The 0 indicates that this action always confirmation the guess and these action is treated
as an exception by the cost function.

As mentioned in the introduction, some formal definitions would not consider this
a correct confirmation of ga if the attacker did not already know the encrypted value b.
However, the truth of this assumption will depend on the exact implementation. So we
err on the side of caution, and allow the attacker to confirm their guess by decryption
alone.

4 The Correctness of the pi-g Calculus

This section gives a computational base to the calculus. We allow domain sizes to be
parameterized on a security parameter and then show that if there is a successfully, finite
attack in the pi-g calculus with less than exponential cost in the security parameter, then
the process is unsafe in the computational setting. In particular, it can be defeated by
a brute force guessing attack. This result justifies the design of the cost function given
in Subsection 3.4, and in particular the reduction in the cost of an attack due to the
confirmation of a guess.

The counterpart to this theorem, that the lack of a sub-exponential cost attack im-
plies safety in the computational model, is harder to prove because the Turing machine
attacker may be able to carry out attacks outside the model of the calculus. We could
prove this safety theorem by way of the computational correctness of the spi-calculus.
However, we are only interested in showing that the guessing extensions to the spi-
calculus are correct. So, we show that the safety of the spi-calculus is enough to prove

the safety of the pi-g calculus, and hence our extensions do not introduce any new er-
rors.

We wish to pit a Turing Machine attacker against a protocol written in the process
calculus. We do this by modelling the attacker as a Turing machine with an oracle that
can run the process being attacked any number of times, for this we write AP or AP(~a)

for the process P parameterise on the names~a.
The oracle can compute reductions of the calculus process P using the semantic

rules for the calculus. The Turing machine A interacts with the oracle by means of two
tapes, one for output, onto which the oracle will write outputs visible to the attacker
and another tape for input, from which the oracle can read messages from the attacker
and insert them in to the appropriate part of the process. Names are implemented as
random bit strings that are at least as long as the security parameter, hence making
them hard to guess in sub-exponential time. The process P would have no other access
to the security parameter, unlike the attacker. To start a new run of the process the
attacker writes a special symbol onto the tape along with a bit string. Appending this
bit string then distinguishes the bit string names of this new concurrent run. Mitchell et
al. describe a simple implementation of the pi-calculus as a Turing machine [MRST01]
where, unlike us, they aim to show the polynomial time reductions of a sub-set of the
pi-calculus.

Definition 1. For a spi-calculus process P the term A(Pn) is the Turing machine A which
has access to an oracle that behaves in a similar manner to the spi-calculus process P,
as outlined above, in particular all bound names in P are mapped to bit strings at least
as long as the security parameter n.

It should be noted that the behaviour of the encoding of P will not exactly match the
behaviour of the spi-calculus process, because the attacking Turing machine A can find
a bound name in exponential time. Instead, we match safety in the spi-calculus with
safety against a polynomial time attacker in the computational setting.

To formalise exactly what we mean by a successful attack we consider the set of spi-
calculus processes that are parameterised on a given constant P(c). In the spi-calculus,
a process is considered safe when the process P(c1) indistinguishable from the process
P(c2) for all names c1 and c2. To relate this definition of safe to the computational
model we reformalise this to say that a process P(c) is safe if and only if there does not
exist a process A() such that P(c) || A(c) performs an output on c and P(a) || A(c) does
not perform an output on c.

In the computational setting the attacker is given access to an oracle with a secret bit
string, and the attacker is also given another, possibly different bit string. The attacker
will answer “1” if it believes the value it was given is the same as the secret and “0”
otherwise. The difference between these probabilities, of the attacker getting it right
and getting it wrong, is the attackers advantage:

Adv(n) = Pr[s r
←Dn : APn(s)(n, f n(P),s) = 1]−Pr[s, t r

←Dn : APn(s)(n, f n(P), t) = 1]

The attacker has access to the free, public names of the process. We slightly abuse our
notation here by using letters to represent names in the calculi processes and the bit
strings that represent those names in the computational setting.

We say that the process P is safe in the computational setting if the advantage
function Adv(n) is negligible for all probabilistic, polynomial time Turing machines
(PRTMs) A, otherwise we say it is unsafe. As mentioned above, we are interested in
finding attacks on protocols that work in any reasonable situation, therefore we require
the attacker A to work with non-negligible probability for any scheduler than assigns
a non-zero, constant probability to any possible action. Processes in the pi-g calculus
can be treated in the same way. Except pi-g calculus names are mapped to random
bit-strings with the same length as the size of their domains.

Now that we have a model in which a protocol can be attacked, we need to be
sure that a successful attack in the model implies the possibility of a successful attack
in an implementation of the protocol. We show this by proving that, if there exists an
attack on a protocol in the pi-g calculus then the computational equivalent system can
be broken by a polynomial time Turing machine.

Theorem 1. Given a process with a secret value P(s), if there exists a sub-exponential
cost, finite attack on the process in the pi-g calculus then there also exists a proba-
bilistic, polynomial Turing machine that makes the advantage function Adv(n) non-
negligibly. In particular this attack takes polynomial time multiplied by the cost of the
attack in the pi-g calculus.

Proof. (Sketch)
Assuming the existence of a sub-exponential cost attack in the pi-g calculus; we

sketch the construction of a polynomial time Turing machine that will find the secret
value with small but non-negligible probability.

The attacking Turing machine will intercept the same outputs and send the same
inputs to the oracle as attacking pi-g calculus process sent to the original process. The
trace generated in the pi-g calculus represents just one possible reduction of the process.
However each action was found in a finite number of steps so there is a non-negligible
probability that the protocol will behave in the same way as it did in the pi-g calculus
trace.

When a pi-g calculus process guesses a value from domain of size n, the attacking
Turing Machine will make n copies of itself. Each of these copies then reruns the proto-
col to get to the same point in the attack. These reruns can be done in polynomial time,
in the security parameter, and with a non-negligible chance of successes.

When one of the Turing machines sees an action that verifies a guess in the pi-g
calculus attack, that machine assumes that its guess is correct and halts all the machines
that corresponded to other guesses. There is a non-negligible probability that the guess
has been correctly confirmed.

So, we have a parallel Turing machine that mimics the attack found in the pi-g
calculus and takes polynomial time multiplied by the cost of the attack in the pi-g cal-
culus. Hence, if the cost for the attack is sub-exponential, we have the Turing machine
required by the computational criterion and the computation process is unsafe.

By extending and changing the spi-calculus model to make the pi-g calculus there
is a possibility that we have allowed a new class of attacks that are outside the model of
the pi-g calculus but are accounted for by the spi-calculus. This is especially possible
with the switch from representing values as bit strings at least as long as the security

parameter, as we do in the spi-calculus encoding, to representing values as possibly
constant length strings, as we may in the pi-g calculus. We address this in our second
theorem:

Theorem 2. If, for a spi-calculus process, the advantage function Adv(n) is negligible
for all PRTMs only when there exist a successful spi-calculus attacker then:

if a pi-g process P does not admit a sub-exponential cost attack then the advantage
function pi-g Adv(n) is negligible for all PRTMs.

Proof. (Sketch)
Let Pg be a pi-g process for which there are no sub-exponential attack. Assume, for

contradiction, that there exists an PRTM A such that Adv(n) is non-negligible
As the cost of the attack is sub-exponential we know that the attacking process only

guesses a finite number of sub-exponential names. So, we can write the process Pg as
new a1 : Dn1 , ..,ai : Dni ;Q where a1 to ai are the names guessed by the attacker. We use
structural equivalence to unwind any replications that generated the guessed names.

As the PRTM A breaks Pg, we can construct another machine, A2 that breaks Q, by
giving the true values of a1 to ai to A. However the part of Q involved in the attack can
be considered as a spi-calculus process, and as we are assuming that the computational
encoding of the spi-calculus is correct, there must exists a spi-calculus attacker that
defeats Q, say R. Then the pi-g calculus process guess a1 : Dn1 , ..,ai : Dni ;R defeats Pg
with sub-exponential cost, giving us our contradiction.

5 Conclusions

We have presented an extension of the pi-calculus that can model simple guessing at-
tacks. The new name operator in the pi-calculus is equated with random sampling in the
computational model with the result that a new name can be guessed. We only allow
a correct guess to originate from a guess operator, this simplifies the cost analysis of
attacks. In order to show correctness we related our work to the computational model.
Our first theorem proved that if the cost of an attack in our calculus is less than exponen-
tial then the process is unsafe because we can construct a PRTM attacker that defeats
the process with non-negligible probability. Our other main result showed that if there
are no sub-exponential attacks on a process then it is safe from guessing attacks.

Further work will include proving the computational correctness of the spi-calculus.
This would follow the same lines as previous work on the computational correctness of
the Dolev-Yao model.

An interesting extension of the calculus would be to allow the protocol and attacker
to directly use the security parameter. It would then be necessary to limit the calculus
to polynomial run time in much the same way as Mitchell et al.’s polynomial-time
pi-calculus [MRST01]. Another interesting direction might be to make the protocols
scheduler explicit and to look for probabilistic conformations for particular schedulers.

We are particularly interested in using this calculus to distinguish between real se-
cure systems where the leaking, or guessing, of a small number of values leads to the
entire system being compromised and secure systems in which all secret values must
be guessed in order to compromise the whole system. An automated checking system
would make the analysis of large protocols in the pi-g calculus much more practical.

Bibliography

[AG97] Martı́n Abadi and Andrew D. Gordon. A calculus for cryptographic pro-
tocols: The spi calculus. In Fourth ACM Conference on Computer and
Communications Security, pages 36–47. ACM Press, 1997.

[AR00] Martı́n Abadi and Phillip Rogaway. Reconciling two views of cryptogra-
phy (the computational soundness of formal encryption). In International
Conference on Theoretical Computer Science (IFIP TCS2000), 2000.

[BM84] Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM Journal on Computing,
13:850–864, 1984.

[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic
library with nested operations. In 10th ACM Conference on Computer
and Communications Security (CCS), 2003.

[CMAFE03] R. Corin, S. Malladi, J. Alves-Foss, and S. Etalle. Guess what? Here is a
new tool that finds some new guessing attacks. In Workshop on Issues in
the Theory of Security (WITS), 2003.

[DJ04] S. Delauune and F. Jacquemard. A theory of guessing attacks and its
complexity. Technical report, ENS de Cachan, 2004.

[DY83] D. Dolev and A.C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[GLNS93] L. Gong, M. A. Lomas, R. M. Needham, and J. H. Saltzer. Protecting
poorly chosen secrets from guessing attacks. IEEE Journal on Selected
Areas in Communications, 11(5):648–656, 1993.

[GM84] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, 1984.

[Lau04] Peeter Laud. Symmetric encryption in automatic analyses for confiden-
tiality against active adversaries. In Proceedings of 2004 IEEE Sympo-
sium on Security and Privacy, pages 71–85, 2004.

[Low02] Gavin Lowe. Analysing protocols subject to guessing attacks. In Work-
shop on Issues in the Theory of Security (WITS), 2002.

[MRST01] J. Mitchell, A. Ramanathan, A. Scedrov, and V. Teague. A probabilis-
tic polynomial-time calculus for analysis of cryptographic protocols. In
Mathematical Foundations of Programming Semantics, 2001.

[MW04] D. Micciancio and B. Warinschi. Soundness of formal encryption in the
presence of active adversaries. In Proceedings of the Theory of Cryptog-
raphy Conference, pages 133–155. Springer, 2004.

[ZD04] Roberto Zunino and Pierpaolo Degano. A note on the perfect encryption
assumption in a process calculus. In Foundations of Software Science and
Computation Structures: 7th International Conference, FOSSACS 2004,
2004.

A Technical Summary

Network ::= P || A

Processes P,Q,A ::= 0
& Attackers | send a〈~b〉

| rec a(~x);P
| !P
| (P | Q)
| [a = b];P
| new a : Dn;P
| guess x : Dn;P
| decrypt a as {x}k;P

In general only attackers will use the guess operation and only processes will use
secret names. The full semantics of the calculus is given in Figure 1.

(−→gc)send a〈~b〉 | (−→gd)rec a(~x);P→ (−→gc ,
−→gd)P[b/x]

(−→ga)send b〈~c〉 || rec b(~x)A→(~a:b〈~c〉) 0 || A[b/x]

[a = a]P→ P [ga = a]P→ga (ga)P

new a : Dn;(P || guess x;A)→a:n new a : Dn;(P || A[ga/x])

decrypt {b}a as {x}a;P→ P[b/x] decrypt {b}a as{x}ga ;A→(ga,0) A[b/x]

decrypt {b}a as {x}ga ;P→(a) (ga)P[b/x] decrypt {b}ga as {x}a;P→(a) (ga)P[b/x]

For unguarded C[] if P→α P′ then C[P]→α C[P′]

Fig. 1. The Semantics of the pi-g calculus

Structural equivalence is the smallest congruence relation satisfying the following
equalities:

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R)

P | 0 ≡ P rec a(~b);P ≡ rec a(~c);P[~c/~b] ~c∩ f n(P) = {}
!P ≡ P | !P new a : Dn;P ≡ new b : Dn;P[b/a] {b,ga}∩ f n(P) = {}

new a : Dn;0 ≡ 0 new a : Dn;P | Q ≡ new a : Dn;(P | Q) {a,ga}∩ f n(Q) = {}
new a : Dn;new b : Dn;P ≡ new b : Dn;new a : Dn;P

cost(P→a:n T,gu,com f) = cost(T, (a,n);gu,com f)

cost(P→(a) T,gu,com f) =

cost(T, gu, (a : P);com f) i f (a : Q) /∈ com f
cost(T, gu,com f) i f (ga : Q) ∈ com f

cost(P→α T,gu,com f) = Π snd (gu[(ai,mi−1)/(ai,mi)])
+ cost(T,gu\{(a1,m1)...,a j,m j)},com f)

where if α = (~a,b〈~c〉) then a1, ...,a j are all the names in ~a such that
(ai,Q) ∈ com f and (ai,mi) ∈ gu and new d;Q{d/gai}; C[send b〈ĉ〉]

and if α = (a,0) then a1 = a

cost(P,gu,com f) = Π snd gu cost(P→ T) = cost(T,gu,com f)

Fig. 2. The Cost of a Trace

A Note on Encryption

We require that the encryption function used in the computational model is repeti-
tion concealing, which-key concealing and message-length concealing. This extremely
strong kind of encryption is termed type-0 security by Abardi and Rogaway [AR00]
and is defined as making the following criterion negligible for all PRTMs.

Adv Enc(n) = Pr[k,k′ r
← Keysn : AEk(−),Ek′(−)(n) = 1]

− Pr[k r
← Keysn : AEk(0),Ek(0)(n) = 1]

Encrypting a key with itself can be problematic, even when done indirectly [GM84].
So, we deviate slighting from the original spi-calculus and automatically consider pro-
cesses which do this unsafe.

In later work it might be interesting to consider an extension of our current system
that would allow the attacker to easily guess a key from a message containing and
encrypted by that key, or even a series of messages that indirectly encrypt one key with
itself.

