
An Architecture for
Secure Fault-Tolerant Global Applications

Tom Chothia
Department of Computer Science
Stevens Institute of Technology

Hoboken, NJ 07040.
tomc@cs.stevens-tech.edu

Dominic Duggan
Department of Computer Science
Stevens Institute of Technology

Hoboken, NJ 07040.
dduggan@cs.stevens-tech.edu

Abstract— Applications are increasingly being developed over
the Internet, and Internet programming languages seek new ab-
stractions for programming what is in effect a “global computer.”
The characteristics of the evolving Internet environment have
led to new ways of thinking about how to structure such global
applications. We advocate a programming language approach
to building Internet applications that reflects this change in
viewpoint. This approach has a particular emphasis on the
demands of fault-tolerant applications, while being centrally
concerned with safeguarding security.

I. GLOBAL COMPUTING AND INTERNET PROGRAMMING

The last decade has seen an explosion in the use of the
Internet as a platform for delivering e-commerce (B2B, B2C)
to the global economy. The increasing globalization of network
computing, particularly for e-commerce, has led to growing
interest in programming abstractions for what is in effect
a global virtual computer, hence the emergence of global
computing as a research area [1], as recognized for example
by the European Commission FET Proactive Initiative on
Global Computing. Today global applications are extending
their reach into ubiquitous wireless computing environments.

While RPC and RMI systems have automated the “easy”
aspects of network computing, dealing with independent fail-
ures continues to pose challenges for distributed application
developers [2], [3], [4], [5]. Technologies developing for
making local networked applications fault-tolerant may not be
appropriate to global applications [4]. The characteristics of
local and global environments are dissimilar, and numerous
impossibility results exist for the latter [6], [7]. Cardelli [1]
cites the aspects of global applications that differentiate them
from LAN applications. Rather than (as with LANs and the
pre-1990s Internet) there being ubiquitious secure point-to-
point communication channels between any two sites in the
network, the reality in the Internet today is that communication
channels must span administrative boundaries imposed by
firewalls, proxy servers and network address translators. All
of this highlights the demand for programming environments,
and particularly programming languages, that support building
global applications.

Fig. 1(a) describes the current state of the art in dis-
tributed computing over the Internet. The typical protocol
stack (of network layer for routing, transport layer for reliable

communication, and application layer) is complicated by the
increasing sophistication of the network environment [8]. Thus
network and transport protocols are increasingly creaking
under the demands of additional tasks such as security and
firewalls, network address translation, and load balancing [9].
In recognition of the problems that the developing Internet
environment is posing, there is a growing suggestion that
these additional tasks should be moved out of the lower layer
protocols and performed at higher layers in the protocol stack
[10], [11], [12], in the application layer or in some layer me-
diating between the application and the transport, as depicted
in Fig. 1(b). In the latter figure we posit a “connection” layer
that is part of, or layered underneath, the application layer, as
has indeed been suggested in the networks community [21],
[22], [12]. For example IETF RFC 3235 offers guidelines
for applications that need to navigate across administrative
domains delimited by network address translators [11]. We
regard this as the essence of global computing and Internet
programming languages [1], distinguishing them from local
computing and LAN programming languages.

II. FAULT TOLERANCE IN DISTRIBUTED PROGRAMMING
LANGUAGES

Achieving atomic failure is recognized as an essential step in
building fault-tolerance into distributed applications. Various
mechanisms have been proposed for achieving atomic failure.
Transactions [13] have been adopted as a basic mechanism
in some distributed programming languages for supporting
the building of fault-tolerant applications. This was pioneered
in the Argus distributed language [14], and subsequently in
object-oriented distributed languages such as Avalon/C++ and
Venari/ML [15], [16]. Transactions are an essential compo-
nent in various well-known distributed computing platforms,
including CORBA OTS, COM MTS, and Java Jini and Jav-
aBeans [17], [18], [19], [20].

Our work is concerned with providing support for fault
tolerance for global applications. Specifically we are interested
in supporting fault tolerance protocols for such applications,
and the implications for these protocols of the restructuring
of protocols in Fig. 1. As an example, the Java Jini system
[19] has support for fault tolerance, with its provision for
transactions. The most important aspect of this support is a set

Connect Connect

Network

Application

Transport

Application

Transport

Network Network

Application

Transport

Application

Transport

Network

Firewalls etc

Firewalls etc

(a) (b)
Fig. 1. Structuring protocol layers in global computing

Connect Connect

Connect Connect

Network

Transport Transport

Network

Transactions Transactions

Network

Transport Transport

Network

Application Application

TransactionsTransactions

Application Application

(a) (b)

Connection Connection

Fig. 2. Structuring fault tolerance protocol layers in global computing

of interfaces for achieving atomic commitment using the two-
phase commit protocol, and a default implementation for this
protocol. Such transaction systems are typically presented as
a middleware layer between the application and the transport
layers. However an implementation of the two-phase commit
protocol, or for that matter any atomic commitment protocol,
requires the ability of the transaction system to deliver protocol
messages to different sites in the network. Therefore, as
depicted in Fig. 2(a), the approach of layering a transaction
system above the transport layer again raises the problem of
complicating a protocol layer (transactions) with issues that

belong to other layers.

We advocate the approach depicted in Fig. 2(b), where we
move the transaction layer above a “connection” layer that
handles the delivery of protocol messages across administra-
tive domains [21], [22], [12]. The important point is that the
transaction system is decoupled from the navigation of global
environments that is the distinguishing characteristic of global
computing. There are no “hidden” implicit communications
in the model; if nodes in the system collaborating in a fault
tolerance protocol need to communicate, they may typically
rely on the the application or some “connection” layer to

provide this communication.
There are obvious security issues with this approach, and

these security issues are the focus of our work. The essential
point is, given that the connection layer may not necessarily
be trusted, how do we specify the trust guarantees that must
somehow be satisfied for the application as a whole to function
correctly? Consider if an e-commerce application is using two-
phase commit to effect a transfer of funds from a buyer to a
vendor. The trusted part of the system is represented by the
databases at the buyer and vendor databases. An inconsistent
state is reached if the buyer’s database records a withdrawal
but there is no record of the deposit in the vendor’s database, or
vice versa. The untrusted part of the system is the e-commerce
application that is contacting the databases as part of its busi-
ness. Since this application is facilitating the communication
between the buyer and vendor databases, navigating between
administrative domains, we must consider the communication
system as effectively part of the e-commerce application, and
therefore similarly untrusted. Our approach is motivated by the
security implications of the proposed restructuring of protocols
for global computing. It is clear that our approach is not
only applicable to fault tolerance protocols, but to the general
structuring of global applications where we wish to decouple
the communication aspects of the application from the global
coordination aspects.

Although we have couched this discussion in terms of a
network protocol stack, the point is more general than this, and
could be couched more generally in terms of services required
and supplied. Our approach decouples the coordination aspects
of fault tolerance (e.g., two phase commit protocol) from the
communication aspects, and we must somehow specify the
trust guarantees required of this communication system. These
trust guarantees can then be checked using a combination of
static and dynamic checking; the latter will at some point
rely on cryptographic operations (digital signing). Our focus
in this article is on the specifying the interface between the
transaction system and the communication system, and not for
example on the connection layer.

III. AN ARCHITECTURE FOR GLOBAL COORDINATION

An overview of our architecture is provided in Fig. 1. It
consists of three layers of calculi, small kernel programming
languages that demonstrate the basic features of our approach.
These calculi represent different views of a global system:

1) A high-level design view, where the enforcement of
global coordination should be isolated from the de-
tails of communication between remote parties (the ac-
calculus).

2) A high-level “typed” implementation view, that realizes
the high-level and relates to it in a precise way that fa-
cilitates verification of its correctness (the pac-calculus).

3) A lower-level “untyped” implementation view that rep-
resents a generic set of primitives into which the layer
above can be compiled (the sac-calculus).

At the core of all of these calculi is a very simple generic
message-passing language, the bare minimum that one can

Local Logs for Global State

Capabilities as Proofs of Local State

Basic Crypto Operations

Logs
Message passing
Remote log query

Logs
Message passing
Proofs of
 remote state
Type− based
 digital signing

Logs
Message passing
Digital signing

Abstraction
mapping

Compilation

Stub
compiler

11

22

33

Fig. 3. An Architecture for Secure Fault Tolerant Global Computing

expect for any distributed programming language. Our kernel
language is the asynchronous pi-calculus [23], [24], [25], a
popular calculus for reasoning about distributed programming
languages. The calculus’ simple structure makes it amenable to
reasoning about process equivalence, and this has been used
for example in reasoning about security protocols and fault
tolerance protocols implemented in the pi-calculus.

In the following subsections we provide more details about
the design-level view and the typed implementation-level view.
To make this more concrete, we provide an example API in a
hypothetical extension of the Java programming language in
Fig. 4.

A. Local Logs for Global State

In terms of the structuring of fault tolerance protocols
advocated in Fig. 2(b), the first issue to be addressed in our
work is the problem of the implicit communication require-
ments of fault tolerance protocols, such as two-phase commit.
It is desirable to isolate the communication requirements
of fault tolerance protocols from the other communication
requirements of an application, and to make these requirements
explicit as an interface to the “application.”

The first of the calculi in our framework is the ac-calculus.
This calculus uses a notion of logs to achieve the explication of
the communication requirements of fault tolerance protocols.
Fault tolerant applications can be designed using operations

����������	�
��������
�	���	���
�������������	�
�����������
������� ����
���"!$#����������	�
��������
�	���	���
���%�&�'�(�
���
�'����)�����&�����	������+*�&���� ��&�'�
����������-,.����������	�
����+�0/1�32�2�24#����������	�����������	�
�������&�'�
�5�
����-,.����������	�
�������
������������6/7�32�2�24##
����������	+	���
���%�&�'�(�
���
�'�����8���9 ��:���������7%�&�'�(�
���
�'����)�; ����
��+	���
��<9�&>=�=?��������� ��:���������7����������	�
������<#; ����
��+	���
��1@���&��������+��:���������7����������	�
������<#; ����
��+	���
��1@���=?�����������
���&�����:���������7����������	�
������7A����6BC����
��������DE��
�������	�����
�����"!F#; ����
��+	���
��7��������
������ ��:��������������������	�
�����������
�����G��
���=?�����������
���&��H!I#
2�2�2����������	7*�&����+@���@���=�9G=��-,J/��

requires: the executing transaction has an @���=?�����������
���&�� log entry
all transactions listed as participants have ��������
������ log entries��K���L2M��&�'�
����������N,.����5 9�&>=�=?���������-,J/�/?!#����������	7*�&����+@�����
�����9G=��-,J/��

requires: the executing transaction has a ��������
������ log entry
the administrator transaction has a 9�&>=�=?��������� log entry��K���L2M��&�'�
����������N,.����5 9�&>=�=?���������-,J/�/?!#����������	7*�&����+@�����
�����@����-,J/��

requires: the executing transaction has a ��������
������ log entry
the administrator transaction has an @���&�������� log entry��K���L2M��&�'�
����������N,.����5+@���&��������-,J/�/O!##

(a) Design Level

����������	+	���
���%�&�'�(�
���
�'�����8���9 ��:���������7%�&�'�(�
���
�'������; ����
��+	���
��19�&>=�=6���������0BP��������	�����
��+��DQ��:���������7����������	�
����0BP��DR�<#; ����
��+	���
��7@���&��������6BP��������	�����
��+��DQ��:���������7����������	�
����0BP��DF�1#; ����
��+	���
��7@���=?�G���������
���&��6BP��������	��G��
�����DS��:���������7����������	�
�����BP��DR�1A����0BC����
��������DQ��
�������	�����
�����"!F#; ����
��+	���
�����������
������6BP��������	��G��
�����DE��:���������7����������	�
����0BP��DR������
�����G��
���=?�����������
���&��H!I#2�2�2����������	7*�&�����@���@��G=09G=��6BP��������	��G��
�����D�,TA����0BP��������
������6BP��DTDQ����&�& ; �/<�
requires: the executing transaction has an @���=?�����������
���&�� log entry����&�& ; show: all transactions listed as participants have ��������
������ log entries��K���L2M��&�'�
����������N,.����5 9�&>=�=?���������6BC��K���������G��D�,J/�/O!#����������	7*�&�����@�����
�����9G=��0BP��������	�����
��+��D<,M9�&U=�=?���������6BP��DQ����&�& ; /<�
requires: the executing transaction has a ��������
������ log entry����&�& ; shows: the administrator transaction has a 9�&>=�=?��������� log entry��K���L2M��&�'�
����������N,.����5 9�&>=�=?���������6BC��K���������G��D�,J/�/O!##

(b) Implementation Level

Fig. 4. Example of Log-Based API in Java

for querying and modifying log entries. The querying oper-
ations may be applied to remote logs, but the modification
operations are restricted to local logs. By only allowing local
log modifications, we avoid incorporating primitive opera-
tions that require distributed agreement, which is provably
unimplementable in asynchronous systems [6], [7]. Where it
is necessary for a transaction to examine the logs of other
transactions, the semantics abstracts away from how this

communication is done.
Fig. 4(a) gives an API example using a hypothetical exten-

sion of Java with these abstractions. A log is composed of
propositions formed from a set of application-specific predi-
cates. In this example we use a set of predicates appropriate
to the two-phase set commit protocol. The local state for
global coordination is represented by a log, manipulated by
a log manager. A log manager has a set of operations for

VXW
Type YZY\[]_^a`�bdc egf Channel typeh ikjGl b A Principalh m?j `�bOn A Transactionh o e_p�q�r�r�r�qseHtOu Tuple typeh vxw�y c ezf Set type

(a) Types in the pi-calculus

{ W Value Y|Y\[}"q>~�qJ��qs��qs� Nameh � qJ�LqU�aqJ� Variableh o { p q�r�r�r�q { t u Tupleh � { p q�r�r�r�q { tL� Set� W
Processes YZY\[n yT�U� Stopped processh n w bx� { � b {6� Send message over {?�h jJw>�>w�lC��wS�F�>jJ��� { l b � Receive message on {h ��� � o���� q�r�r�r�q � tOu�[{I� � � Decompose tupleh ��}?� � {I��� � ��� � �Nh�� { �d {6� � �¢¡ Decompose seth b w�£ �<Y V l b � Create new name �h jJwT�Ow ` y � Replicationh ¤ � p h �¦¥�§ Parallel composition

(b) Syntax of the pi-calculus with sets

� W
Processes YZY¨[© �Uª ` £ ` lCy � ��«4¤�� § � l b �h © �Jª ` ���Ow bL� o { u £�lCy ^ rule-name

l b �¬ W
Transaction Y|Y\[� � � � Transactionh b w�£ �<Y V l b ¬ Scoped nameh ¤ ¬ p h ¬ ¥ § Parallel Composition W

Network YZY¨[}xc ¬ f Principalh b w�£ �<Y V l b Scoped nameh ¤ p h S¥�§ Parallel Compositionh � ��® � Log® W
Log Entry YZY¨[¯ h1«$¤ { § h�¤�® p�° ® ¥�§« W
Predicate YZY¨[r�r�r

(c) Extensions for the ac-calculus

Fig. 5. The ac-calculus

appending to the logs. Each such operation represents a step in
a protocol for global agreement. Each such operation requires
some conditions of the global state, represented by both local
log entries and by log entries at remote sites.

The extension of the ±O² -calculus to the ac-calculus is given
in Fig. 5(c). One of the innovations of the ac-calculus is
to organize processes into process groups; we refer to these
process groups as transactions. A transaction has the form³>´�µQ¶

where
³

is the name of a transaction and
µ

is a process.
At its simplest, a transaction

³
groups together a collection of

processes. For authentication and trust management purposes,
we also group processes by the principal · under which that
process executes at run-time, so we have a “two-dimensional”
syntax for processes. A process located at its principal has
the form ·x¸ ¹�º where · is the name of a principal and ¹ its
a transaction. It is quite possible for several principals to be
executing in the same transaction, e.g., ».·L¸ ³>´�µd¼�¶ º¦½�¾�¸ ³>´�µ¢¿�¶ º�À .
Consider for example the Java security model, where the code
from various codebases may be executing in a process.

The types for the pi-calculus and the ac-calculus are shown
in Figure 5(a). ÁkÂGÃCÄ is the type of a principal name and Å?ÂUÆ�ÄOÇ
is the type of a name that labels a transaction. È_ÉOÆ�Ä�¸ Êgº is the
type of message channels that can carry a value of type Ê .

The ac-calculus extends the ±O² -calculus with a notion of
logs. These logs are used to explicate the communication
requirements of fault tolerance protocols, in particular for
atomic commitment protocols, without committing to how
protocol messages should be delivered in global computing
environments. Each transaction

³
has a single log, of the form³>´�Ëg¶

, where
Ë

is a collection of log entries. A log entry has
the form Ì4»�Í6À , denoting a log entry asserting the property Ì
concerning the value Í . For instance, for the two-phase commit
protocol example in Fig. 4, the log predicates have the form:

ÌÏÎ Predicate ÐZÐ¨Ñ ÈdÒ�ÓQÓSÃCÔÕÔMÖ>×Ø½�ÙÛÚ>Ò�ÂGÔTÖ>×
½ ÁkÂUÖMÜaÆ�ÂJÖ>×Ý½<Ù�×�ÓQÃCÄaÃPÇGÔÕÂJÆ�ÔTÒ�Â

Then the log entry
³>´ ÙÞ×�ÓSÃCÄ"ÃPÇ>ÔÕÂJÆ�ÔMÒ�Â0» ´ ³Jß0¶ À ¶ records that

³Jß
are the participants in an execution of the two-phase commit
protocol administered by

³
. Eventually a transaction either

completes or aborts, and this is recorded by a log entry, either
È�Ò�ÓSÓQÃCÔÕÔMÖ>×H»ÕÀ or ÙÛÚ>Ò�ÂGÔMÖ>×H»ÕÀ , respectively.

The two constructs that allow interacting with logs areà�á�â ·�ã�·�ä ³ and
à�á�â ·�å�å"æ�ç�è . The logawait construct blocks until

a log entry for the transaction name and predicate symbol
is in stable storage. The logappend construct is used to add
new log entries. The operations for adding log entries are
specified by named rewrite rules. Each rewrite rule requires
some preconditions and adds a proposition to the context.
These rewrite rules are specified using judgments of the form:

» Í6ÀÞ½ Ñ Ëêé rule-nameëGëOëOëaëJì Ì4»�Í0íPÀ
where rule-name is the name of the rule,

Ë é
is a collection

of logs, starting with an entry for the transaction log being
appended. The values Í are parameters in the rule, and Ì4»�Í í À
the proposition added to storage by the rewrite rule. For

example, Fig. 6(a) lists the rewrite rules appending log entries
for the two-phase commit protocol. Fig. 6(b) gives an example
of a single administrator and two participants in the two-phase
commit protocol using these log operations.

A transaction
³

can only modify its own log entries (in
the log

³>´�Ëz¶
). A transaction can also check its own logs

for the absence of log entries; for example, a transaction
can check that it is not already aborted before committing.
A transaction can also check for the presence of log entries
for other transactions, though not their absence. The check
for preconditions examines the surrounding logs. Where it
is necessary for a transaction to examine the logs of other
transactions, the semantics abstracts away from how this
communication is done.

We have cited two-phase commit as an example of a fault
tolerance protocol that our approach should support. But this is
only one of many such protocols that applications may attempt
to use. Indeed it is clear that our approach is more generally
applicable to applications where nodes in a global network
need to change state in a coordinated way, with the logic of
this coordinated state change decoupled from the details of
message-passing and navigation of administrative domains.

Concurrent constraint languages [26], [27], [28], [29] re-
place message buffers with a global store of constraints, with
ask and tell operations for querying the store and adding
constraints to the store, respectively. Our model does not
replace message buffers in the asynchronous pi-calculus, and
indeed we implement remote querying of logs using message-
passing, in the lower level pac-calculus. Concurrent constraint
programs may make the store inconsistent; our operations
for modifying stable storage are designed to preserve log
consistency, and this is a proof obligation for any log append
rules added by an application.

B. Capabilities as Proofs of Local State

We have at this point isolated the remote communication
requirements of our kernel language to being able to query
the logs at remote sites. All other communication is left to the
application, so for example the application takes responsibility
for setting up communication channels and securing commu-
nication. This moves much of the details of remote com-
munication out of the language semantics and into software
libraries. Besides having the benefit of reducing the size of the
trusted computing base (TCB), this also allows applications
potentially to choose from different communication libraries
based on the network characteristics.

We are still left with the task of showing how to provide
remote log querying. Correctness of any of the protocols
that we are interested in is based on maintaining a globally
consistent state in a distributed system. The state of the system
is reflected by the state of the logs, that record permanent state
changes (as opposed to ephemeral state changes that may be
undone by failures). The challenge is to maintain the logs in
a consistent state, while potentially malicious processes are
trying to subvert this. As noted earlier, in an e-commerce
application, the trusted part of the system is the state of the

îLïsðdðdñ|òZòPóMô�õ|öM÷sø6ùMó�ú�ûsùMóMô�õ�ü¨ü¨ü ö_ýþzÿ
õ|ö�� ����� ÿ��
	�� �� 	������������������������� ïsùTòCóMô (RED AT STABORT)

õ���ö������� � � 	�� 	�!�"$# %�&�������'��� ôsðdñ�(�ñ�)Tò\ùMûUòCïsù�õ���ö (RED AT ADMIN)

õ���ö*� �+��� � � �,�$��ü ü ü.- � ôsðdñ�(�ñ�)Tò\ùMûUòCïsù�õ/��üJü ü ÷0�M÷ üsü ü � ö�-sü ü ü � 	�� 12�43 5�6�����7� ø6ùMó�ú�ûsùMóMô�õ���ö
(RED AT PREP)õ|ö�� ����� � ôsðdñ�(�ñ�)Tò\ùTûUòPïsù�õ/� ��8U÷ ü üsü ÷0�09 � ö � � �09���ø6ùMó�ú�ûsùMóMô�õ4��ö � 	�� 	�!�";: "$��<����������� � îLïsðdðdñ|òZòPóMô�õ|ö

(RED AT ADMCMT)õ|ö�� �=���Gø?ùMó�ú�ûsùMóMô�õ4�?>Jö � �@�?>2��ü üsü6->îLïsðdðdñ|òZòCóÕô�õ|ö � 	�� 1�A����<: "$�� ����������� � î"ïsð�ðdñ|òZòPóMô�õ|ö
(RED AT PARTCMT)õ|ö�� ������ø6ùMó�ú�ûsùMóMô�õ4� > ö � �@� > ��ü ü ü.- ��� ïsù òPóMô�õ|ö �B	�� 1�A���� 	�����.��������������� ïsù òCóMô�õ|ö
(RED AT PARTABT)

(a) Log Append Rules for 2PC

Trans C�DFE?C�G�H I7J�K6L�L�M NPO�Q�E�R@S2TVUXWZY4[�\^]_[4`ba0M�L�Y�Nc H I7J�K6L�L�M NPO+Q/UdWZY�[4\^]X[�`eK,a6[.fhgi[�Y�N=j7[�I6Lk H I.J�K'L�L�M&NPO�Q/U_W�Y4[�\^]_[4`bK�a6[�]ml'[_Y4N=j.[�I6Lonbp
Admin Trans DqE�R@S2TVG�H I7J�K6L�L�M NPO�Q�G&E.r�s0E0t�p@U_W�Y4[�\^]_[4]�O,guY�N=Y4Nc H I7J�K6L�L�M&NPO+Q/U_W�Y4[�\^]_[4]�O,gvfZgu[dY�N+j.[�I6Lk H I7J�K6L�L�M NPO+Q/UXWZY4[�\w]X[4xy[4]dl7I,a6[_Y4N=j.[�I6Lonbp
System D{ze|,}2~PE6� �������<� ���.�@���0�k��X� |.�h� Trans �'�k��X����� � ���.�@�����@�k E R@S&T G&��p k E r G&��p k E t G&�,p

(b) Example of 2PC

Fig. 6. Example of 2PC for the �@� -calculus

logs at the buyer and the vendor. The untrusted part of the
system is the e-commerce application that is seeking to access
these logs as part of its business, and is providing part of the
communication system between the banks.

Our approach is to map the remote log query operations of
the ac-calculus down into the existing communication system,
removing the implicit assumption in the ac-calculus of point-
to-point communication links between any two sites in the
network. The challenge is to do this in a way that protects the
integrity of the logs from attacks based on “spoofing” protocol
messages. We provide an API for querying and modifying
logs based on capabilities as proofs. The “proofs” in this case
are evidence of the state of the logs at remote sites. Such
proofs are signed by the principals that generate them, making
our approach amenable to the application of trust management
techniques to provide control over the ability to change logs.

The ac-calculus is a design calculus for global applications,
concentrating on the coordination aspects of such applications.
We propose the �Z��� -calculus as an implementation calculus
for this design calculus. This latter calculus replaces the
implicit querying of the state of the logs at remote sites, with
capabilities that are exchanged as evidence for such state. Such
a capability, that could be digitally signed by the principal that
generated it, is effectively an explicit proof object for a log
entry of a particular form. This is made explicit by the type
of such a capability, reflecting the log entry that it asserts to
be present at a site. The syntax of the �Z�y� -calculus is given
in Fig. 7.

A proof is a name (just as with transaction names and
channel names). The type of this name is a log entry, signed
by the principal providing the proof (not the principal that
added the log entry). Therefore the type of a proof � has the
form �*� �@ $¡
¢?£�¤@¥�¦ , signifying that this is a proof, signed by the
principal � , that the transaction � has a log entry ¡
¢?£�¤ ; and
we have the type membership:

�F§¨�*� �@ $¡
¢?£�¤@¥�¦7©

The logawait construct now only queries local storage. In
addition to unblocking when the specified log entry is present,
it also creates and returns the proof that the specified log entry
is present. Proof generation is delayed until the execution
of logawait because the proof is signed by the principal
generating the proof, rather than the principal that added the
log entry. Wherever a logappend rule requires knowledge of
the state of remote logs, the rewrite rule is modified to require
explicit proofs of the state of these remote logs, as part of
its input. The ª�«�¬��®y®°¯��b± construct has a different type rule
for each of the different rewrite rules. These type rules ensure
that appropriate proofs have been provided. Log alterations
that require the presence of particular names in remote logs,
as well as particular states, ensure their presence by way of
additional variables in ª�«�¬²�«�³´³´µ7� ’s arguments.

For several reasons we need to elide some of the details
in the types of a capability. Most importantly for distributed
computing, we do not expect that in an untrusted network
environment we can obtain secure channels with such precise
types. Our approach instead is to introduce packets to elide
information in the type of a proof. We inject a proof into such
a packet; some of this injection may involve actual digital
signing. We then transmit this packet essentially untyped using
the communication system. At the receiving site, we extract
the proof from the packet; an implementation of this extraction
will involve actual digital signature authentication. In effect,
we are using proofs and packets to construct secure channels
over insecure communication channels.

In summary, in the �Z��� -calculus we have several gradations
of “capability:”

1) An atomic proof of type �*� �@ $¡
¢?£�¤@¥�¦ .
2) A witness packet of type ¶´·�¸�¹»º$¸�� �°¼2¡½¦ that elides some

details of the proof type.
3) A signature packet of type ¾¿yÀ¹»º$¸�� ¡½¦ that represents

actual digital signing, by eliding the identity of the
signing principal � . A receiver must then authenticate

ÁÃÂ
Type Ä�Ä�Å Æ°Ç È@É�ÊBË?Ì�Í@Î�Ï Proof Type

Ì Â
Values Ä�Ä�Å ÐdÑ�Ò?ÓmÔPÒ Õ×Ö�ØwÌ+Ö�Ù Witness packetÚ Û ÜPÝ ÓmÔ$Ò Õ Ö*Þ½Ì Signature packetßàÂ

Processes Ä�Ä�Å á�â Ü;ã Ð ã Ñ�Òåäçæ�âPè�È@É$Ê
Ë?ä*Í@ÎçÑ Ý ß
Ú á�â Ü�ã@éyéZê�Ý*ë×ì Ì�í^ÐdÑ�Ò?î rule-name Ñ Ý ß
Ú Û Ñ ÜPÝ ÌqÑ Û ä{Ähï ÜyÝ ÓmÔPÒ�Ç Ê^ÏuÑ Ý ß

Hide principalÚ ã$ð Ò?î¨ÌñÐdÑ�Ò�î{ÌòmÑ Û ä×Ñ Ý ß
Expose principalÚ â éZê�Ý ÌqÑ Û äeó ô*ó2õöÑ Ý ß
Expose witness÷ Â

Transaction Ä�Ä<Å È@É ß Î TransactionÚ Ý°ê ÐùøñÄ Á Ñ Ý ÷
Scoped nameÚ Ë ÷ Þ Ú ÷ Ø�Í Parallel CompositionúûÂ

Network Ä�Ä�Å Æ*Ç ÷ Ï PrincipalÚ Ý°ê ÐùøñÄ Á Ñ Ý ú
Scoped nameÚ Ë ú Þ Ú ú Ø�Í Parallel CompositionÚ È@É�üýÎ Log

ü Â
Log Entry Ä�Ä�Å þ Ú Ê
Ë?Ì�ÍVÿ�� � ø Ú Ë0ü Þ�� ü Ø Í

Ê Â
Predicate Ä�Ä�Å �����

Fig. 7. Extensions to the �
	 -calculus for the ���� -calculus

the signature to re-expose the principal Æ in the type.
A witness packet can be built directly by a process. A signa-

ture packet on other hand requires access to the private signing
key of a principal. Such keys are not manipulated explicitly
by processes. If a principal name is transmitted in a message,
in the compilation of a ����� program, this principal name is
translated as the public key of the principal. The private key
for a principal Æ is only available within a process of the
form Æ*Ç È@É ß Î�Ï , and is used implicitly in the

Û Ñ ÜyÝ construct for
signing a witness packet (resulting in a signature packet). We
also have constructs for exposing the identity of the principal
in a signature packet (the

ãPð Ò�î construct), and exposing the
witness value and transaction name in a witness packet (the
â éZê�Ý construct). For the

ãPð Ò�î construct for authenticating the
signature in a packet, there is an explicit check that the public
key � being used to authenticate the packet matches the private
key � used to digitally sign the packet. This equality check in
the ����� -calculus can be translated to actual digital signature
authentication in an underlying implementation calculus.

Fig. 4(b) continues the example from Fig. 4(a), replacing
the remote log querying in the log-changing operations with
extra arguments that represent “evidence” for log entries at
remote sites. Predicate types, the types of such proofs, are
parameterized by the names of signing principals. Suppose���������

is the name for a trusted principal for the administrator
in the two-phase commit protocol. Then a participant will
accept a proof of type �! �"���
#�#%$�� ì ��������� í , i.e., a proof that
the administrator has decided to commit the transaction:
&�'"(�)�) ��* (� ì � íqÉ �,+!$ & $��
-!$/.�021 Î

3�354 (+�#6� & ��7 (�!#
8 �9": (� (9 $�+%; 4 � ' �<1
��* (� ì �� �����
#"#%$"� ì �!������� í í & * (�=1
�! �"���
#�#%$�� ì ��������� í 7!>,? & * (�A@B+%$ & $��
-%$C.�0D1��>E.F7%>=@G#�+ (�) ?�? (���2���!H�+ (�) 0 ' �I@B��# 4 (+�# � ��#J.F7%>60K1

If a ‘secure channel” (i.e., one with the explicit signed type
above) cannot be obtained, then we use type-based crypto-
graphic operations to build a secure channel. Such operations
use upcasting and downcasting at the source language level
to represent digital signing and authentication, respectively, at
the implementation level [36]:
3�354 (+�#6� & ��7 (�!#
8 �9": (� (9 $�+%; 4 � ' �<1
��* (� ì �� �����
#"#%$"� í & * (�=1
�! �"���
#�#%$��L�) 9 ? & * (�M@G+%$ & $���-%$C.�021
�! �"���
#�#%$�� ì ��������� í 7!>,?E. �! �"���
#�#%$�� ì ��������� í 0N�) 9 1��>E.F7%>=@G#�+ (�) ?�? (���2���!H�+ (�) 0 ' �I@B��# 4 (+�# � ��#J.F7%>60K1

We have simplified the description of the type system here.
In particular we need to stratify the type system so that
proof generation is a “trusted” network operation. Processes
only have access to this proof-generation operation through
the logawait operation, so in a well-typed program proofs
cannot be forged. Processes accepting packets from untrusted
processes must use trust management techniques, based on the
signature of the proof, to determine if the underlying proof
should be accepted.

We now show how the example in Fig. 6(b) can be modified
to use explicit proofs to replace the implicit querying of
remote logs. For reasons of space, we restrict the example

Admin OP2QSRUTWVBX VZY�[]_^
await ` for a�bScAc=dfegeghGi�jfk
l in
sign jnm�dfepo6qSe]r
sut6t6v wxwfy{z VZY�[U\ k<`�l is |A}�~
�S��o�q�e X a�bSc=cAdpegeZhGi�� in
send | on out

YU[U_� �
(a) Creating and Sending a Proof

Part �2O�C� QB�!X V � ^ receive | from in � in
auth | with Trout is � in open � is `��nkW�u| in
logappend �{`���|�� with AtPartCompl in stop

� �
(b) Receiving and Using a Proof

Fig. 8. 2PC with Proofs

to the case where one of the participants commits after
receiving notification from the administrator. The example
is given in Fig. 8. The administrator side of this protocol
requires querying the local logs to generate a proof that
the administrator has decided to commit the transaction as
a whole. Once the proof is obtained, it is bundled in a witness
packet and then a signature packet and the result output on
a channel out �N��� . The communication system, which may
involve upper layer protocols for navigating firewalls and
network address translators, for example, eventually delivers
the message output on out �N��� to the input channel in � for
the � th participant. The latter checks the digital signature
to make sure the packet was indeed sent by Trout, extracts
the transaction identifier �]�N��� and proof � from the witness
packet, then uses the latter to justify appending a log entry
recording the decision of this participant to commit.

Since the ac-calculus provides the abstraction of logs, a
default translation from the ac-calculus to the pac-calculus
can use a middleware of message communication channels,
name servers, and capabilities as proofs, to implement the
remote querying available in the ac-calculus. If we wish to
reason in the ac-calculus about security attacks on applications
built using this infrastructure, we can explore the techniques
developed by Abadi et al [30], [31] for having the compiler
insert firewall code into ac-calculus programs in the process
of translating them to the pac-calculus. We refer to this as the
“trusted compiler” approach to securing network communica-
tion; it is basically moving some of the firewall code out of
the OS protocol stack and into the compiler. We identify three
problems with pursuing the trusted compiler approach:

1) First, because of the full abstraction requirement for
compilation, there is still a fair gap between the theory of
the trusted compiler approach and a practical realization.
For example the compiler must be able to insert code that
prevents denial-of-service attacks, a very strong require-
ment when there are no restrictions on the (physical or
virtual) network topology or the intermediate hosts that
may be enabling communication.

2) Second, the trusted compiler approach, as its name
suggests, makes the compiler that produces the firewall
code part of the TCB. This enlarges the TCB with
a fairly sophisticated compiler. In contrast, compiling
languages such as the ac-calculus and the pac-calculus,
without inserting firewall code, is fairly straightforward
and the compilers correspondingly simpler.

3) Third, the trusted compiler approach assumes a point-

to-point communication infrastructure that can establish
communication between any points in the network. In
contrast, global (Internet) computing suggests a pro-
gramming environment where, because of administrative
boundaries and physical characteristics, this assumption
may be strained or broken.

Some default translation from the ac-calculus to the pac-
calculus would undoubtedly be useful in a programming
environment. However we advocate a different approach in
general, based on our consideration of the characteristics
of Internet computing environments. We advocate treating a
program in the ac-calculus as a specification of a distributed
application. The full implementation of such a program must
provide a mechanism for communicating “evidence” across
the network. Such an implementation can be provided using
a combination of off-the-shelf libraries. The important point
is that the communication system is taken out of the TCB.
Using explicit proofs, the TCB ensures that only valid state
changes happen, but it is left to the application to ensure that
these proofs are delivered between sites. The correctness of
implementations in the pac-calculus, for designs in the ac-
calculus, is provided by an abstraction mapping from programs
in the former to programs in the former.

Our approach to supporting fault tolerance protocols in
global computing is based on a notion of digitally signed
“proofs,” transmitted between network sites, of local state
changes. This is related to the notion of capabilities that
has been implemented in some distributed systems [32], [33],
[34], [35]. In our context, we use the type system to express
the global properties that capabilities assert, and use typing
to reason about the correctness of programs that use these
capabilities. Such typed capabilities can be transmitted safely
over insecure networks by adapting the compilation scheme for
cryptographic types [36]. This approach of typed capabilities
and digital signatures has the benefit that none of the primitive
operations of the protocol require any remote communication;
they are all strictly local operations, that examine and modify
the local logs. Communication is left to the application (or
some session layer below the application), and no trust is
placed on any party outside the protocol implementation.

IV. CONCLUSIONS

We have provided motivation and a broad overview for an
architecture that we are developing to support fault tolerant
applications running in some form of secure fashion over the
Internet. In other work we have reported on a specific instanti-

ation of the ac-calculus [37], indicated by 1 in Fig. 3. This
shows how various mechanisms for tracking dependencies,
implementing atomic commitment and anticommitment (for
optimistic computation) can be formulated as log types and
rules for appending to logs. We have also described a type-
based approach to cryptographic operations [36], indicated by

2 in Fig. 3, where cryptographic guarantees are expressed in
the type system. The types can be used to express the security
guarantees that the environment can provide, e.g., the security
guarantees that a lower-layer service can provide to upper lay-
ers. This allows these guarantees to be checked statically, with
resort to expensive dynamic checking only necessary when
the environment is insufficiently secure. The cryptographic
operations of encryption/signing and decryption/authentication
are then represented in this typed API as upcasting (widening)
and checked downcasting (narrowing) of types. We hope to
have the opportunity to report on the pac-calculus and its
relation to the ac-calculus, indicated by 3 in Fig. 3, in a
subsequent paper. An implementation is also planned.

ACKNOWLEDGEMENTS

Thanks for Dan Duchamp and Rebecca Wright for helpful
conversations. Thanks to the anonymous reviewers for their
excellent feedback.

REFERENCES

[1] L. Cardelli, “Abstractions for mobile computation,” in Secure Internet
Programming: Security Issues for Distributed and Mobile Objects, ser.
Lecture Notes in Computer Science, J. Vitek and C. Jensen, Eds.
Springer-Verlag, 1999, vol. 1603.

[2] B. Lampson, “Computer system research: Past and future,” in Sym-
posium on Operating Systems Principles, Charleston, South Carolina,
1999, invited talk.

[3] A. Black, “Distributed objects: The next ten years,” in Foundations of
Object Oriented Languages, Portland, Oregon, 2002, invited talk.

[4] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, “A note on distributed
computing,” in Mobile Object Systems, ser. Lecture Notes in Computer
Science, J. Vitek and C. Tschudin, Eds. Springer-Verlag, 1997, pp.
49–64.

[5] B. Merrill, “Distributed objects: .NET versus Java,” panel Discussion at
OOPSLA 2002.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” Journal of the ACM,
vol. 32, no. 2, pp. 374–382, 1985.

[7] V. Hadzilacos, “On the relationship between the atomic commitment
and consensus problems,” in Fault-Tolerant Distributed Computing, ser.
Lecture Notes in Computer Science, B. Simons and A. Z. Spector, Eds.
Springer-Verlag, 1990, vol. 448, pp. 201–208.

[8] D. D. Clark and M. J. Blumenthal, “Rethinking the design of the
Internet: The end to end arguments vs the brave new world,” in Proc.
28th Telecommunications Policy Research Conference, September 2000.

[9] B. Carpenter and S. Brim, “Middleboxes: Taxonomy and issues,” In-
ternet Engineering Task Force (IETF), Tech. Rep. RFC 3234, February
2002.

[10] K. Moore, “On the use of HTTP as a substrate,” Internet Engineering
Task Force (IETF), Tech. Rep. RFC 3205, February 2002.

[11] D. Senie, “Network address translator (nat)-friendly application design
guidelines,” Internet Engineering Task Force (IETF), Tech. Rep. RFC
3235, January 2002.

[12] D. J. Duchamp, “The Discrete Internet and what to do about it,” in New
York Metropolitan Area Networking Workshop, September 2002.

[13] B. Lampson, “Atomic transactions,” in Distributed Systems–Architecture
and Implementation, ser. Lecture Notes in Computer Science, B. Lamp-
son, M. Paul, and H. Siegert, Eds. Springer-Verlag, 1981, vol. 205, pp.
246–285.

[14] B. Liskov, “Distributed programming in Argus,” Communications of the
ACM, vol. 31, no. 3, pp. 300–312, March 1988.

[15] D. Detlefs, M. Herlihy, and J. Wing, “Inheritance of synchronization
and recovery properties in avalon/c++,” IEEE Computer, pp. 57–69,
December 1988.

[16] N. Haines, D. Kindred, J. G. Morrisett, and S. M. Nettles, “Composing
first-class transactions,” ACM Transactions on Programming Languages
and Systems, vol. 16, no. 6, pp. 1719–1736, November 1994.

[17] J. Siegel, D. Frantz, H. Mirsky, R. Hudli, P. deJong, A. Thomas,
W. Coles, S. Baker, and M. Balick, CORBA Fundamentals and Pro-
gramming. John Wiley and Sons, 1996.

[18] D. Chappell, “COM+: The next generation,” Byte Magazine, December
1997.

[19] K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and A. Wollrath, The
Jini Specification. Addison-Wesley, 1999.

[20] G. Hamilton, “JavaBeans API Specification v1.01,” Sun Microsystems,
Tech. Rep., 1997.

[21] D. Kristol and L. Montulli, “HTTP state management mechanism,” In-
ternet Engineering Task Force (IETF), Tech. Rep. RFC 2965, November
2000.

[22] S. Spero, “Session control protocol (scp),” World Wide Web Consortium
(W3C), Tech. Rep., 2002, http://www.w3.org/Protocols/HTTP-NG/http-
ng-scp.html.

[23] R. Milner, “The polyadic � -calculus: A tutorial,” in Logic and Algebra
of Specification, ser. Computer and Systems Sciences, F. L. Bauer,
W. Brauer, and H. Schwichtenberg, Eds. Springer-Verlag, 1993, vol. 94,
pp. 203–246.

[24] K. Honda and M. Tokoro, “An object calculus for asynchronous com-
munication,” in European Conference on Object-Oriented Programming,
ser. Lecture Notes in Computer Science. Springer-Verlag, 1991, pp.
133–147.

[25] R. M. Amadio, L. Castellani, and D. Sangiorgi, “On bisimulations for
the asynchronous pi-calculus,” Theoretical Computer Science, vol. 195,
no. 2, pp. 291–324, 1998.

[26] V. Saraswat and M. Rinard, “Concurrent constraint programming,”
in Proceedings of ACM Symposium on Principles of Programming
Languages, 1990.

[27] V. Saraswat, M. Rinard, and P. Panangaden, “Semantic foundations of
concurrent constraint programming,” in Proceedings of ACM Symposium
on Principles of Programming Languages, 1991.

[28] F. Bueno, M. V. Hermenegildo, U. Montanari, and F. Rossi, “Partial
order and contextual net semantics for atomic and locally atomic cc
programs,” Science of Computer Programming, vol. 30, pp. 51–82, 1998.

[29] F. de Boer, M. Gabbrielli, E. Marchiori, and C. Palamidessi, “Proving
concurrent constraint programs correct,” ACM Transactions on Program-
ming Languages and Systems, vol. 19, pp. 685–725, 1998.

[30] M. Abadi, C. Fournet, and G. Gonthier, “Secure communications pro-
cessing for distributed languages,” in IEEE Symposium on Security and
Privacy, 1999.

[31] ——, “Authentication primitives and their compilation,” in Proceedings
of ACM Symposium on Principles of Programming Languages, 2000.

[32] J. B. Dennis and E. C. van Horn, “Programming semantics for multi-
programmed computations,” Communications of the ACM, vol. 9, pp.
143–155, March 1966.

[33] R. S. Fabry, “Capability-based addressing,” Communications of the
ACM, vol. 17, pp. 403–412, July 1974.

[34] W. A. Wulf, E. S. Cohen, W. M. Corwin, A. K. Jones, R. Levin,
C. Pierson, and F. J. Pollack, “HYDRA: The kernel of a multiprocessor
operating system,” Communications of the ACM, vol. 17, pp. 337–345,
June 1974.

[35] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp,
S. J. Mullender, J. Jansen, and G. van Rossum, “Experiences with the
Amoeba distributed operating system,” Communications of the ACM,
vol. 33, pp. 46–63, December 1990.

[36] D. Duggan, “Cryptographic types,” in Computer Security Foundations
Workshop. Nova Scotia, Canada: IEEE Press, 2002.

[37] ——, “Abstractions for fault-tolerant global computing,” in Foundations
of Wide-Area Network Computing (FWAN), ser. Electronic Notes in
Theoretical Computer Science (ENTCS), vol. 66, no. 3, 2002, extended
abstract.

