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Abstract

The Key-Based Decentralized Label Model (KDLM) is
a type system that combines a weak form of information
flow control, termed distributed access control in the arti-
cle, with typed cryptographic operations. The motivation
is to have a type system that ensures access control while
giving the application the responsibility to secure network
communications, and to do this safely. KDLM introduces
the notion ofdeclassification certificatesto support the de-
classification of encrypted data.

1. Introduction

The notion ofdistributed access controldefined in this
paper is a weak form of information flow control that asso-
ciates access restrictions to data

Like information flow control, it is important that dis-
tributed access control be enforced statically, at compile-
time, though for performance reasons in the case of dis-
tributed access control1. The motivation for distributed ac-
cess control is to enforceaccountability, tracking which
principals are responsible for allowing access to particular
data.

A challenge with static checking of access control is how
to reconcile type-based access control specifications with
application-based network security. In current systems that
do this static enforcement, network communications are
secured by hiding the network inside the trusted comput-
ing base (TCB), using remote method invocation (RMI) or
some similar mechanism to make the network transparent.
In general this is unsatisfactory for the following three rea-
sons: (i) The TCB is greatly enlarged by pushing the mid-
dleware into it, increasing the risk of security flaws due to
bugs in the TCB code. (ii ) In Internet programming, there

1Distributed access control is completely impractical, as explained be-
low, unless some large part of it can be done statically, with dynamic
checking left to the point where data is unmarshalled.

is some skepticism that the network can be made transpar-
ent, and many systems (e.g. some banking systems) that are
required to be secure and fault-tolerant are implemented us-
ing lower-level mechanisms than RMI because of this. (iii )
Relying on the TCB to secure all communications violates
the end-to-end principle in systems design. In many cases
it will be more appropriate to have the application ensure
network security rather than relying on the communication
system.

The contribution of this paper is to show how network
security can be moved out of the TCB into the application,
in a system where distributed access control is enforced
through the type system. All current approaches to stat-
ically checked distributed access control and information
flow control require the network to be secured in the TCB.
In short we want to:

1. Use the type system to enforce access control, includ-
ing after we have handed off data to others, in a dis-
tributed environment.

2. Allow applications to secure network communication
themselves using cryptographic techniques.

3. Ensure that the requirements of the access control
specifications are not violated by the application-based
network security (without considering covert chan-
nels).

1.1. Distributed Access Control

The traditional approach to access control is to provide
the data on a database on the network, restrict access using
access control lists (ACLs), and use authentication to ver-
ify the allowability of access requests from remote princi-
pals. An example of this is the Taos operating system [8, 7].
In recent years a trend has been to replace or supplement
ACLs with delegation certificates, which do not require all
accessing principals to be named in an ACL, but puts some
limit on the extent to which access rights can be delegated.



An example of this is the Simple Public Key Infrastructure
(SPKI) [16], as well as various systems for decentralized
trust management (PolicyMaker, Keynote, etc) [11, 10].

We refer to these approaches to access control aslocal
access control. It is local in the sense that the data being
protected resides on a server somewhere on the network,
and a reference monitor mediates access requests to that
data based on an ACL and credentials authenticating the
accessor, or based on authorization certificates delegated to
the accessor. Essentially the accessor has a secure pointer (a
capability) pointing to where the data is located on the net-
work. The accessor can retrieve the data over the network
using the secure pointer, and access control is enforced lo-
cally at the server.

We advocate an alternative approach to access control
in a distributed system,distributed access control. With
this approach, data may not reside centrally on some server.
Rather the data itself is copied through the network, trans-
mitted by applications through communication channels.
Access control is distributed because it is not enforced at
one point in the network where the data is accessed, but
may be enforced at myriad points in the network where a
copy of the data is accessed. Although there are several
possible motivations for this approach, the particular moti-
vation we exploit isaccountability.The data is stored with
certain access rights associated with it. If the data should
be leaked, there should be a means for tracking backwards
to the source of the leak. If the data is simply provided to
the accessor and then forgotten about, there is no way to
perform this forensic investigation. With distributed access
control, on the other hand, the data is copied to the acces-
sor along with a full specification of the access restrictions.
If the accessor provides the data, or some result based on
the data, to another party, then the justification for this is
recorded for subsequent diagnosis.

1.2. Assumptions about the Network Environment

With enough assumptions about the network environ-
ment, distributed access control and accountability are triv-
ial. On the other hand, such assumptions may entail require-
ments on the operating environment that are so onerous to
be for all practical purposes unimplementable. In this work
we make the following assumptions:

1. Intermittent connectivity. Communications may be
sufficiently erratic that the application itself may need
to handle the task of transferring data across adminis-
trative boundaries. Access decisions may need to be
performed at a different network location from where
the data was originally stored,e.gdata cached on a dis-
connected machine should remain protected by access
control policies.

2. Trusted hosts.We assume that there is sufficient con-
trol over the local operating environments to enforce
access restrictions. In an implementation we could for
example assume that the applications run on virtual
machines that have not been tampered with.

3. Insecure network communication.We allow arbitrary
hostile hosts to interfere with traffic between secure
hosts. We expose the insecurity of the network to the
application and require the application to deal with it.
The environment to prevent secure data from being
accidentally leaked on insecure communication chan-
nels. We do not consider covert communication chan-
nels, our motivation is purely to build an audit trail for
finding leaks due to improper declassification.

4. No PKI assumptions.There is no a single “one-size
fits all” approach to PKI. While commercial platforms
offer systems such as X509v3 and SPKI, other infras-
tructures are sure to emerge. We concentrate instead
on providing a typed framework in which applications
are responsible for safe key distribution. The opera-
tions for safe key distribution are a central part of the
contribution of this paper.

2. Informal Motivation

We consider a core language for secure distributed sys-
tems equipped with primitives for encryption and digital
signing. These primitives are needed to ensure the secrecy
of data, including keys, communicated over the network and
for ensuring integrity of messages. We provide a type sys-
tem that expresses precisely the secrecy and integrity prop-
erties that these operations are intended to ensure.

2.1. DLM: Decentralized Label Model

There is already a proposal for a type system that en-
forces secrecy and integrity in the type system [25]. We call
this approach the “Decentralized Label Model” (DLM). Our
approach shares much of its basic design with DLM: types
include labels that enforce secrecy and integrity policies.
However whereas DLM enforces all policies based on prin-
cipals, in our system we add a notion ofkey names, and
all enforcement is mediated through key names. The for-
mat of labels is different from DLM to reflect this change
of perspective. The motivation for this approach is exactly
to relate type-passed secrecy and integrity to the safe use of
cryptographic operations. We refer to our system as Key-
Based DLM or KDLM.

In DLM a labelled type has the form[T]L1,L2, whereT is
a simple type,L1 is the label restricting read access to the
data (who can consume it), andL2 is the label restricting



right access to the data (who can produce it). Each label (in
the DLM) is effectively a set of access control lists (ACLs),
each one “owned” or “controlled” by a principal and allow-
ing read or write access to the principals listed in the ACL.
If the secrecy labelL1 has the form

{P1 : {P1}, . . . ,Pm : {Pm}}

then a principalP has read access to the data (can access the
data) only if

P∈
m⋂

i=1

{Pi}.

Similarly if the integrity labelL2 has the above form, then
a principalP has write access to the data (can produce the
data) only if the above membership condition is true. One
way of viewing the DLM is as a decentralized form of infor-
mation flow control, where the type system no longer relies
on the centralized definition of labels (“high,” “low,” and
so on). Decentralized labels also support a controlled form
of declassification: the owner of an ACL may extend that
ACL, so that with the cooperation of all of the owners of
the policies in the label, a principal may be added to those
allowed to read or write the protected data.

2.2. KDLM: Key-Based DLM

The central idea in KDLM is to addkey namesto the type
system. A key name has a “type” that, similarly to an ACL
in a label in DLM, identifies an owner principal and a set of
principals that have access to protected data. A key name
may be either for encryption or for signing. Each key name
has an associated public-private pair of cryptographic keys.
Herekey namesare entities in the type system, whilecryp-
tographic keysare values used for public-key cryptography.
The “type” of the key name constrains which principals can
access the private key for that key name. The private key
in turn has a secrecy label that cannot allow access to any
principals outside those listed in the key name’s ACL.

Key names are purely compile-time entities used for
static checking and are stripped along with all type infor-
mation before a program runs. The “type” of a key name
is a kind, a form of type for type-level expressions. An
encryption key nameK that is generated by the principalP
and is accessible to principalsP1 . . .Pm has the kind

K : EKeyF(P : P1 . . .Pm)

The flag F indicates whether this is avirtual or actual
key name. Virtual keys are sufficient for purely static ac-
cess checks, avoiding unnecessary public-private key gener-
ation; they are also necessary for technical reasons. Actual
key names are represented by cryptographic keys written
a. We assume that the set of primitive values is partitioned

EKey(P:P
11
...P

mm
))

KK [EncKey(K)]L,L’ [DecKey(K)]L,L’ int

aa−−aa++ 33

Type

Kinds

Types,
Key Names,
Prin Names

Values

Prin

PP

Figure 1. Values, types and kinds

into at least five sets: the set of channel names (for message
passing), the set of encryption keys, the set of decryption
keys, the set of signing keys and the set of authentication
keys. Furthermore we assume that for every encryption key
there is exactly one other key, a decryption key, that is its in-
verse with respect to cryptographic encryption/decryption.
Similarly for every signing key there is exactly one authen-
tication key that is its inverse. We denote the public and
private parts of such a key pair bya+ anda−, respectively.
Then for the encryption key nameK above, we have the
typings:

a+ : [EncKey(K)]L1,L
′
1, a− : [DecKey(K)]L2,L

′
2

The kind of the key nameK enforces the restriction that the
secrecy labelL2 of the private keya− cannot allow any prin-
cipal outside ofP1 . . .Pm to access the key. A diagram illus-
trating the relationships between values, types and kinds is
provided in Fig. 1. We add integers for comparison. We em-
phasize that key namesK and principal namesP are purely
compile-time entities, and only the actual public and private
keys,a+ anda− respectively, exist at run-time. This strat-
ification into values, types and kinds enforces this “phase
distinction.”

Purely static access control systems are too constraining



for many practical applications. Declassification is a way
to circumvent the rigidity of static type checking at the cost
of potential security breaches. KDLM considers the issue
of declassifying private keys. The constraints of key names
prevent the granting of a private key to any principal outside
those originally allowed in the key name’s ACL. In KDLM
we allow declassification by permitting the “owner” of the
key name to issue adeclassification certificate, of type

[K′ reclassifies K]L3,L
′
3.

While the private key cannot be accessed by any principal
outside the original setP1, . . . ,Pm, the owner principalP
may issue a declassification certificate that is accessible by
some other principal. We describe below how these declas-
sification certificates are then used to declassify data.

Declassification may appear to be an unnecessary com-
plication, but in fact it is the most fundamental operation in
our language, and leads to the most profound design deci-
sions in the type system. When we combine labelled types
with cryptographic operations, then we must consider the
following question2:

Should it be possible to declassify encrypted data,
making it available to principals that did not have
access to it beforehand, without having to decrypt
the data, declassify it, and then re-encrypt under
another key?

If the answer is no, then we can give our language a sim-
ple type system in which the principals mentioned in the
decryption key name always are a subset of the ones al-
lowed to encrypt the data. We take the view that this is
too restrictive. For example a log server may archive an
large number of messages encrypted under different keys
depending on the sender, with the server not even necessar-
ily a part of the applications that generated the messages. As
a result, the log server will certainly have no part in decrypt-
ing messages. Yet if a new principal joins the system and
wants to retrieve a particular message, some principal au-
thorized to access that message will have to retrieve it from
the server, decrypt it, and forward it re-encrypted under a
new key. Without key declassification, the access control
system is thus placing unreasonable constraints on the ar-
chitecture and communication patterns of such distributed
systems.

So we allow key declassification, via the mechanism of
allowing principals to issue declassification certificates of
the formK′ reclassifies K, signifying that a principal with
access to the decryption key forK′ can decrypt values en-
crypted with the encrypted key forK. This is provided, of

2Since everything that is said about secrecy and encryption can be “du-
alized” to integrity and digital signing, we only consider the former in our
discussion.

course, that the principal has access to the certificate. Fur-
thermore the decrypted data is implicitly declassified at the
point of decryption.

Now we must ensure that the combination of encryption,
key declassification, and then decryption cannot be used to
perform an undesired declassification. Consider the follow-
ing scenario:

1. There is a value of type[T]L1,L
′
1. The principalP is

not on the list of principals allowed to access this data
(according to the secrecy labelL1).

2. There is an encryption keya+ of (unlabelled) type
EncKey(K), accessible to all. The kind ofK is com-
patible with the secrecy labelL1, soa+ can be used to
encrypt the data.

3. There is a declassification certificate declassifying the
key nameK to some key nameK′. This declassifica-
tion certificate, and therefore the decryption key forK′,
are accessible to the principalP.

4. Putting this together,P can now declassify the data by
encrypting it with the encryption key forK, then de-
crypting it with the declassification certificate.

The declassification certificate allowsany data whose se-
crecy label is compatible with the encrypting key (i.e.,
where the value’s secrecy label gives access to any principal
that has access to the corresponding decrypting key) to be
declassified.

So we must focus on what is the correct notion of “com-
patibility” between a secrecy label and a key name (iden-
tifying a public-private key pair for encryption). DLM is
based onstructural equivalenceof labels and policies, that
is, labelsL andL′ are equivalent if they are similar struc-
turally, up to some obvious rearranging of terms. The anal-
ogy is with languages such as ML and Modula-3 where type
equivalence is structural. Extending this structural notion
of compability to key names would imply that a key can be
used to encrypt data, provided that the set of principals with
access to the key name’s private key is included in the set of
principals allowed access by the data’s secrecy label.

However this notion of structural compability between
key names and labels is too promiscuous. Suppose a princi-
pal has valuesv1 andv2 with structurally equivalent secrecy
labels. The principal encryptsv1 with a key with nameK,
then later declassifies it toK′. However the principal does
not want the valuev2 to be subsequently declassified via the
same route.

Declassification of keys creates a connection between
key namesK andK′, delegating decryption rights forK to
K′. In the DLM, there must then be a connection between
the encryption keya+ for K and secrecy labels for values
that can be encrypted witha+, and a connection between the



decryption keyb− for K and secrecy labels for values that
result from decrypting witha−. This latter connection is
necessary to allow the principal decrypting with the declas-
sification certificate to access the data. The first connection
is based on name inclusion (of key names). If the latter two
connections are based on (a semantic form of) structural in-
clusion, then this will allow declassification certificates to
be used to perform unintended declassification.

The alternative to structural equivalence isname equiv-
alence. Name equivalence for types means that two types
must have the same name; differently named types with the
same structure are not considered equivalent. Examples in-
clude almost all popular languages, including C and Java.
In KDLM, we avoid the above problems with unintended
declassifications by removing some of the structural equiv-
alence and inclusion between labels, but not all of it. To see
the need for some form of structural equivalence, consider
a hypothetical code fragment:

(e) ? foo() : bar()

Supposefoo andbar are procedures provided by different
principals, with secrecy labelsL f and Lb respectively for
their return types. If label inclusion is strictly name-based,
then the result of this conditional must have a secrecy label
L that includes bothL f andLb. If label inclusions are name-
based and therefore must be defined, who is responsible for
this? Clearly the principal executing the conditional can-
not, otherwise they would have the ability to declassify data
provided byfoo andbar. If we allow the executing princi-
pal to add this inclusion based on some structural contain-
ment condition, then we are back where we started, with the
DLM. The principals forfoo andbar cannot do this clas-
sification, since they know nothing ofL (in general). This
motivates keeping labels assets, and the label on the result
of the conditional will contain the labelL f ∪Lb.

We introduce name equivalence, but not name inclusion,
on policies. In fact we already have a mechanism for nam-
ing policies: key names! Recall that for example for en-
cryption keys, the kind of a key name identifies the principal
that generated the key, and also identifies the set of prin-
cipals that can access the decryption key. Our type system
will have two forms of key names, actual and virtual. The
former have associated encryption and decryption keys, the
latter do not. The latter can be used for static access check-
ing, while the latter are used when data must be encrypted
(or of course signed, for integrity) for transmission over the
network.

In general a type has the form[T]L,L
′
whereL is a set of

encryption key names andL′ a set of signing key names. If
a secrecy labelL has the form{K1, . . . ,Km} where we have
the kindings

K1 : EKeyF(P1 : P1), . . . ,Km : EKeyF(Pm : Pm),

then a process executing for principalP cannot access this
value unlessP ∈

⋂m
i=1{Pi}. This is similar to the read ac-

cess restriction under the DLM, except that our approach
adds the extra level of indirection through the key names
and their kinds.

To encrypt a value with this secrecy label, one must have
public keys for all of the key names inL, of types

[EncKey(K1)]L1,L
′
1, . . . , [EncKey(Km)]Lm,L′m.

To decrypt the resulting value, a process executing for
principalP′ must have access to declassification certificates,
declassifying the key namesKm under which the data is en-
crypted to key namesK′m, soP′ must have declassification
certificates of types

[K′1 reclassifies K1]L
′′
1,L
′′′
1 , . . . , [K′m reclassifies Km]L

′′
1,L
′′′
m .

Decrypting the value with these certificates produces a
value with secrecy label{K′1, . . . ,K′m}, and the process for
P′ has read access to this value ifP′ ∈

⋂m
i=1{P′i}, where each

K′i has kindEKeyActual(P′i : P′i).
The type system requires that every secret key be secured

by the secrecy label on its type, so that it cannot be acciden-
tally leaked to any principals outside of those specified in
the kind of its key name. Every secrecy label for a secret
key must therefore contain one or more other secrecy key
names, that must have already been defined before the secret
key’s own key name was introduced. There is the danger of
an infinite regress here: how does one define the first key?
This is part of the motivation for virtual key names: since
such key names do not have any associated public-private
key pairs, they can be introduced without the need for any
other secrecy key names to protect their private keys. The
other motivation for virtual key names is convenience and
performance: we should not have to endure the expense of
generating new public-private key pairs every time we in-
troduce new key names that will only be used for statically
checked access control.

Declassification certificates have two applications: The
first of which is of course decrypting values that were en-
crypted under the declassified key. The other application
is to declassify a value that has not been encrypted. Our
language includes a declassify operation that requires a de-
classification certificate. When a value is so declassified,
the result is annotated with the declassification certificate.
This has both practical and theoretical motivation. It sup-
ports our original motivation for distributed access control,
of building an audit trail; and it is necessary in order to en-
sure that types are preserved during computation.

3. Type System: Formal Description

We now provide a more detailed description of the type
system. The syntax of types and kinds is provided in Fig. 2.



A∈ Arity, Kind ::= Prin Principal

| EKeyF(P : P) Encryption key

| SKeyF(P : P) Signing key

| Type Type

F ∈ Key Flag ::= Actual Actual key

| Virtual Virtual key

K,P,T ∈ Key, Prin, Type ::= k, p, t Variable, name

| DecKey(K) Decryption key type

| EncKey(K) Encryption key type

| AuthKey(K) Authentication key type

| SignKey(K) Signing key type

| K1 reclassifies K2 Reclassification cert

| E{LT} Actually encrypted

| S{LT} Actually signed

| Chan(LT) Channel type

| 〈t : A〉LT Package

L ∈ Label ::= {K1, . . . ,Km}
LT ∈ Labelled type ::= [T]L1,L2

Figure 2. Syntax of Kinds and Types

The system of arities or kinds organizes the well-formed
types, principal names and key names. Besides the kind of
types (Type) and principal names (Prin), there are two kinds
for key names: encryption (secrecy) key namesEKeyF(P :
P) and signing (integrity) key namesSKeyF(P : P). This
kind identifies the creator of the key (P) and the principals
who may have access to the private part of the public-private
key pair for that key ({P}). Every key name kind also has
a flag indicating if it is a virtual key (static checking only)
or an actual key (dynamic checking may also be performed,
using cryptographic operations).

The types then consist of key types, indexed by key
names, the types of reclassification certificates, and the
types of actually (i.e., cryptographically) encrypted or
signed values,E{LT} andS{LT}. The types are rounded
out by the other (non-cryptographic) types of the base lan-
guage, in this case channel types and package types. The
latter are also known asexistential types[22]; they are prac-
tically necessary for transmitting principal and key informa-
tion when principal and key names are static second-class
entities, at the same level as types. For example to send an
encryption key to a process that requires an encryption key
created by the principalroot, no matter the underlying key

name, we send it a value of type3

〈k : EKeyF(root : (root))〉[EncKey(k)]L1,L2.

Kinds and types depend on each other, resulting in a de-
pendent kind system. The formation rules for kinds and
types must therefore be formulated in a mutually recursive
fashion, and these formation rules intertwined with the rules
for environment formation in the type system. An environ-
ment is a sequence of pairs, binding (variables or names) to
(kinds or types). We have two forms of environments:

TE∈ Type Env ::= ε | (t : A) | TE1,TE2

VE∈ Value Env ::= ε | (x : LT) | (a : LT) | VE1,VE2

The sequence concatenation operation (,) is assumed to be
associative withε (empty sequence) as its unit.

The type environmentTE is used in the definition of a
metafunction that, given a label (set of key names), com-
putes the set of principals that is defined by that label in that

3Even this trivial example suggests a need for some notion of parame-
terized types (generics) for parameterizing values by key names and prin-
cipal names, and even sets of principal names because of key name kinds.
Presumably some notion of bounded type quantification would also be use-
ful. However we do not consider this avenue any further in this paper.



e∈ Expression ::= w,x,y,z Variable

| a,b,c,n Name (Channel, Key)

| newKey〈k : A〉{e} New virtual key

| newKey〈k : A〉(a+ : LT1,a− : LT2){e} New actual key

| reclassifyCertK1,K2
() Reclassify cert (virtual key)

| reclassifyCertK1,K2
(e) Reclassify cert (actual key)

| chainK1,K2,K3(e1,e2) Chain certs

| reclassifyK1,K2
(e1,e2) Reclassify value

| encryptK(e1,e2) Encrypt

| decryptK1;K2
(e1,e2) Decrypt

| signK1;K2
(e1,e2) Sign

| authK(e1,e2) Authenticate

| new(n : LT){e} New channel

| fork{e} New process

| send(e1,e2) Message send

| receive(a) Message receive

| pack〈t:A〉LT(K,e) Package (key, data)

| unpack e1 to 〈k : A〉(x : LT){e2} Open package

R∈ Process ::= e Sequential process

| new(k : A){R} Key name

| new(a : LT){R} Channel, key

| (R1 | R2) Parallel composition

Figure 3. Syntax of Expressions and Processes

type environment:

PRINSTE({}) = {}
PRINSTE(L1∪L2) = PRINSTE(L1)∩PRINSTE(L2)

PRINSTE({k}) = {P} if ∃TE1,TE2.

TE= (TE1,k : EKeyF(P : P),TE2)
PRINSTE({k}) = {P} if ∃TE1,TE2.

TE= (TE1,k : SKeyF(P : P),TE2)

We make use of the fact that the only forms of key names in
our system are atomic names. If some extension of the sys-
tem were to consider more structured key names, then this
metafunction would have to be defined mutually recursively
(though the recursion would be well-founded) with the type
formation rules.

The formation rules for (labelled) types check, e.g., that
in an encryption keyEncKey(K), the argumentK denotes

a key name with an encryption key name kind. These rules
also check label constraints that are placed on public and
private key types by the kinds of the corresponding key
names. For example for encryption and decryption keys we
have these type formation rules:

TE` L1,L2 label TE` K : EKeyF (P : P)

P∈ PRINSTE(L2) PRINSTE(L1)⊆ {P}
TE` [DecKey(K)]L1,L2 : Type

(LCON DECKEY)

TE` L1,L2 label TE` K : EKeyF (P : P)
P∈ PRINSTE(L2)

TE` [EncKey(K)]L1,L2 : Type
(LCON ENCKEY)

The first rule checks that the decryption key has the owning
principalP in its integrity label, and that the set of principals
allowed access to the decryption key by its secrecy label is



contained in the principals allowed by the corresponding
key name’s kind. The second rule checks that the encryp-
tion key has the owning principalP in its integrity label.
Analogous (dual) rules hold for signing and authentication
keys.

The kinds of key names also place a constraint on the
labels of declassification certificates. For example for de-
classification certificates for encryption keys, we have the
following:

TE` L1,L2 label TE` K1 : EKeyF1
(P1 : P1)

TE` K2 : EKeyF2
(P2 : P2)

P2 ∈ PRINSTE(L2) {P1} ⊆ PRINSTE(L1)
TE` [K1 reclassifies K2]L1,L2 : Type

(LCON RECL DECR)
This rule requires that the integrity label for the certificate

include the principal name owning the key nameK2 that is
declassified; only this principal could have declassified the
key name. The secrecy label for the certificate must define
a set of principals that is contained in the set of principals
that are allowed to access the private decryption key forK1,
the key name to whichK2 is declassified. Because of this
latter condition, only principals that are already allowed to
decrypt values encrypted with the public key forK1 (using
the latter’s private key) will also be allowed to decrypt val-
ues encrypted with the public key forK2 (using the declas-
sification certificate). So reclassification certificates allow
keys to be shared between principals, even in unanticipated
ways, while certificates are the basis for building an audit
trail of such key sharing.

The syntax of values, expressions and processes is pro-
vided in Fig. 3, where valuesV denote a subset of the ex-
pressionse where no further evaluation is necessary. For
type preservation purposes, we also introduce a notion of
annotated values〈〈V〉〉,P,C. The motivation is that for exam-
ple an expression may have secrecy label{K} but then be
dynamically declassified to have secrecy label{K′}. With
no relationship between the two key names, we cannot ar-
gue that the result of declassification has the same type as
the original value, and therefore evaluation does not appear
to preserve types. In our language, declassification is only
possible when it is authorized by a declassification certifi-
cate. We restore the desired invariant of type preservation
under evaluation by assuming that values are annotated by
chains of such certificates. A declassification operation then
adds its certificate chain to the annotation of the value it is
declassifying. Annotations on values are not purely a fic-
tion for preserving type preservation; they are consistent
with the original motivation for distributed access control,
vizbuilding a fine-grain audit trail of accesses and declassi-
fications.

The type system for expressions in general uses judge-

ments of the form

TE;VE` e∈P [T]L1,L2

to check that the expression (code)e is well-formed with
annotated type[T]L1,L2, under the assumption that it will be
evaluated (executed) under the authority of the principalP,
in the corresponding type and value environmentsTE and
VE, respectively. We modularize the type rules for expres-
sions with three judgement forms:TE;VE`I e∈P [T]L1,L2,
TE;VE`O e∈P [T]L1,L2 andTE;VE` e∈P [T]L1,L2. The first
of these denotes a type judgement where we have checked
that the principalP is allowed to access the result of the ex-
pressione, according to the secrecy labelL1. Typically such
a judgement will be used for the premises for an expression
type rule. The second judgement form is used as a conclu-
sion for an expression type rule, denoting that the integrity
condition on the conclusion has not yet been checked, i.e.,
that the principalP is allowed to compute the result of the
expressione, according to the integrity labelL2. So the gen-
eral form of a type derivation is

.

.

.

TE;VE` e∈P [T]L1,L2

TE;VE`I e∈P [T]L1,L2 . . .

.

.

.

TE;VE` e∈P [T]L1,L2

TE;VE`I e∈P [T]L1,L2

TE;VE`O e∈P [T]L1,L2

TE;VE` e∈P [T]L1,L2

In some cases the input and output checking may be cir-
cumvented, for example for variables, or for example where
we sign a value with a private key and do not expect the
access restrictions on the key to propagate to the resulting
ciphertext (since we are ignoring covert channels and only
considering access control, as far as we are concerned the
key cannot be recovered from the ciphertext).

There are two key generation operations, one for virtual
keys and one for actual keys. The type rule for virtual key
generation is as follows:

A = EKeyVirtual(P : P) TE` A kind

(TE,k : A);VE` e∈P [T]L,L
′

k /∈ tv([T]L1,L2)

TE;VE`O newKey〈k : A〉{e} ∈P [T]L,L
′

(VAL NEWKEY V IRT)

This rule introduces a new encryption key namek,
owned by the principalP that will evaluate this expression.
This key name is local to the blocke, but can escape this
block if it is bundled up in a package. When used in a
secrecy label, such a key name restricts accesses to some
subset of the principals{P}. The key is only useful for this
form of static access checking.



TE` tenv Well-formed type environment

TE` VE venv Well-formed value environment

TE` A kind Well-formed kind

TE` LT : A Well-formed type

TE` L label Well-formed label

TE;VE`I e∈P [T]L1,L2 Type judgement (inputs checked)

TE;VE`O e∈P [T]L1,L2 Type judgement (outputs to be checked)

TE;VE` e∈P [T]L1,L2 Type judgement (outputs checked)

Figure 4. Judgements for Type System

The type rule for actual key generation is as follows:

A = EKeyActual(P : P) TE` A kind

LT1 = [EncKey(k)]L1,L′1 (TE,k : A) ` LT1 : Type

LT2 = [DecKey(k)]L2,L′2 (TE,k : A) ` LT2 : Type

(TE,k : A);(VE,a+ : LT1,a
− : LT2) ` e∈P [T]L,L

′

k /∈ tv([T]L1,L2)

TE;VE`O newKey〈k : A〉(a+ : LT1,a
− : LT2){e} ∈P [T]L,L

′

(VAL NEWKEY ACT)

Actual key generation introduces not only a new key
name, but also a public-private key pair for that key name.
This key pair is denoted by the pair of dual names(a+,a−).
The encryption keya+ has an encryption key type indexed
by the new key name, and the compatibility restrictions be-
tween the kindA of this key name and the labels of the key
type are enforced before the key and its type are added to
the value environment. Similarly for the decryption keya−.

There are two forms of declassification for keys: declas-
sifying a virtual key and declassifying an actual key. For the
former we have the type rule:

TE` K1 : EKeyF (P1 : P1) TE` K2 : EKeyVirtual(P2 : P2)

TE` [K1 reclassifies K2]L,L
′
: Type

TE` VE venv TE` P : Prin

TE;VE`O reclassifyCertK1,K2
() ∈P [K1 reclassifies K2]L,L

′

(VAL RECL V IRT)

There is a little subtlety here. Suppose the principalP
producing the certificate is not the same as the principalP2

that owns the key being declassified? In that case we will
haveP included as one of the possible principals that cre-
ated the certificate (after we check the integrity condition on
the conclusion). Since this means that the certificate may
have come from a principal other than the owner of the key
being declassified, the declassification certificate will be ef-
fectively useless. So an attacker can always “spoof” a de-
classification certificate, but they must subvert the integrity
checking to have this certificate taken seriously.

KK
aa
  

KK
bb

KK
cc

KK
cc
 : EKey

Actual
(P:P)

cc−− : [DeKey(K
cc
)]{Kb},{...}

KK
bb
 : EKey

Actual
(P:P)

bb−− : [DeKey(K
bb
)]{Ka},{...}

KK
aa
 : EKey

Virtual
(P:P)

Figure 5. Key hierarchies and declassification

When declassifying an actual key nameK2, we must
provide the associated decryption key. This is so that the
principal receiving the declassification certificate can sub-
sequently use it to declassify data encrypted under the en-
cryption key forK2. In this case we must also check that
the decryption key could only have come from the principal
that created the key name (P2).

TE` K1 : EKeyF (P1 : P1) TE` K2 : EKeyActual(P2 : P2)

TE` [K1 reclassifies K2]L,L
′
: Type

TE;VE`I e∈P [DecKey(K2)]L,L
′

PRINSTE(L′) = {P2}
TE;VE`O reclassifyCertK1,K2

(e) ∈P [K1 reclassifies K2]L,L
′

(VAL RECL ACT)

Now there is a subtlety with the type rule for declassify-
ing actual keys. The certificate that results from declassifi-
cation has the same secrecy labelL as the original decryp-
tion key, therefore the declassification certificate can only
be accessed by the same set of principals{P2} that already



have access to the private key. Therefore this declassifica-
tion certificate must itself be declassified.

We illustrate this point with an example, shown in Fig. 5.
A principal P has created three key names,Ka, Kb andKc.
The private key forKc is protected byKb, while the private
key for Kb is protected byKa. The hierarchy stops here
becauseKa is a virtual key. Now the principalP wants to
declassifyKc to the keyK′c of another principalP′. So P
generates declassification certificates of types:

e1 ∈ [K′c reclassifies Kc]{Kb},{...}

e2 ∈ [K′b reclassifies Kb]{Ka},{...}

e3 ∈ [K′a reclassifies Ka]{K
′
a},{...}

The last certificate is allowed by the rule for declassify-
ing virtual key names, above, that places no restrictions on
the secrecy label for the certificate. Assuming thatK′a, K′b
andK′c are keys ofP′ analogous to the keysKa, Kb andKc of
P, thenP′ can use the last certificate to declassify the second
certificate, and then use the second certificate to declassify
the first certificate.

An obvious operation for declassification certificates
is certificate chaining. This is provided by the
chainK1,K2,K3(e1,e2) construct. In all of this, there is no
problem with declassifying virtual key names to actual key
names or vice versa. The only place where these certifi-
cates have computational import is in decryption, to which
we turn below.

There are two applications of declassification certifi-
cates, as noted. The first application is in declassifying data,
analogous to declassification in the DLM model:

TE;VE`I e1 ∈P [K′ reclassifies K]L1,L′1

TE;VE`I e2 ∈P [T]L2]{K},L′2

TE` K : EKeyF (P0 : P) PRINSTE(L′1) = {P0}
TE` [T]L2]{K′},L′2 : Type

TE;VE`O reclassifyK′,K(e1,e2) ∈P [T]L2]{K′},L′2

(VAL RECLASSIFY)

In this rule the operation] denotes disjoint union. So de-
classification replaces the key nameK in the secrecy label
with the key nameK′. The access restrictions on the de-
classification certificate do not propagate to the declassified
value, since there is no construct in our language for extract-
ing certificates from annotated values. We assume that all
code within a single process is typed according to the type
system described here, and that all communication over the
network is encrypted in order avoid leaks due to low-level
attackers that do not respect the type system and can inter-
cept messages. We return to this point in the conclusions in
Sect. 6.

The second application of declassification certificates is
in declassifying data that has already been encrypted. In fact

we fold this operation into the decryption operation itself.
Rather than taking a sequence of decryption keys, corre-
sponding to the keys under which the data is encrypted, this
operation takes a sequence of declassification certificates. If
a key name is not being declassified as part of decryption,
then the corresponding certificate can simply declassify the
key name to itself. The rules for encryption and decryption
are as follows:

TE;VE`I e∈P [EncKey(K)]L,L
′

TE` K : EKeyActual(P : P′) PRINSTE(L′) = {P}
TE;VE`I e0 ∈P [T]L0,L′0 L0 = {K} TE` L′′0 label

TE;VE`O encryptK(e,e0) ∈P [E{T}]L
′′
0,L
′
0

(VAL ENCRYPT)

TE;VE`I e∈P [K′ reclassifies K]L,L
′

TE` K : EKeyActual(P : P′) PRINSTE(L′) = {P}
TE;VE`I e0 ∈P [E{T}]L0,L′0 L′′0 = {K′}

TE;VE`O decryptK′;K(e,e0) ∈P [T]L0∪L′′0,L
′
0

(VAL DECRYPTCERT)

The encryption rule checks that the encryption keys that
are provided do in fact come from the principals that own
the corresponding key names. These encryption keys must
of course match the key names in the secrecy label for the
data being encrypted. The secrecy label on the result is ar-
bitrary (it might be empty). In a real sense encryption is a
way of circumventing the type system, but in a “safe” fash-
ion since the resulting value cannot be reintroduced without
a dynamic check. This check is by the decryption opera-
tion. It again checks that the declassification certificates do
indeed come from the principals that own the key names for
the decryption keys being declassified by the certificates.
The decryption operation asserts that the encrypted value
was encrypted with the keys{K}, but this can only be as-
certained by a run-time check. If we implement encryption
and decryption as iterated single-key operations, then we
must assume some canonical ordering of the keys, so a se-
quence of keys is always applied in that canonical order to
encrypt data under several keys. Additional assumptions
may be necessary. The result of decryption has a secrecy
label that includes the keysK′ plus also any restrictions that
propagate from the expression that produces the encrypted
data.

There are analogous but essentially dual rules for in-
tegrity key names. We omit the obvious details in order
to conserve space.

4. Operational Semantics

In this section we consider an operational semantics
for our language. This semantics (perhaps surprisingly)
does run-time access checking. We verify that types are



V ∈ Value ::= a,b,c,n Name (Channel, Key)

| reclassifyCertK1,K2
() Reclassify cert (virtual key)

| reclassifyCertK1,K2
(v) Reclassify cert (actual key)

| encryptK(v1,v2) Encrypted data

| signK1;K2
(v1,v2) Signed data

| pack〈t:A〉LT(K,v) Package (key, data)

v∈ Annotated Value ::= 〈〈V〉〉L,L
′

P,C

C∈ Certificate chain ::= ((P1,v1), . . . ,(Pm,vm))

e∈ Expression ::= 〈e〉 Add annotation

| v Annotated value

| P[e] Configuration

Figure 6. Additional Syntax for Semantics

preserved under evaluation. We use this result to verify
progress: a process’ evaluation can only block on a fail-
ure to decrypt, or a failure to authenticate a signature (or,
when we consider message-passing operations, on a block-
ing receive). This verifies that the run-time access checking
is unnecessary: the type system successfully prevents any
access violations.

To describe and reason about the semantics, we extend
the syntax of expressions as described in Fig. 6. The class
of valuesV describes the result of evaluation, where no fur-
ther evaluation steps are necessary. The language contains
as values names (channels and keys), certificates, encrypted
and signed data, and packages. We then annotate these val-
ues with a principal and a certificate chain. The principal
and certificate chain annotations are used to ensure type
preservation during evaluation. The value may have been
computed by a principal different from the current princi-
pal, with data that are not accessible to the current principal.
The certificate chain is extended every time the value is de-
classified, to justify giving it the declassified type it has even
though the original value does not. The certificate is a se-
quence of (principal,declassification certificate) pairs, that
is extended incrementally every time the annotated value is
declassified.

The syntax of expressions is now extended with such an-
notated valuesv, and annotating expressions〈e〉, and also
configurations of the formP[e]. The latter denotes an ex-
pression (thread)e that is executing for the principalP. We
allow such configurations to be nested; this happens when
code executing for one principal does a method or proce-
dure call to code supplied by another principal. The type
rules for annotated values are provided in Fig. 7. Some of
the computation rules are provided in Fig. 8.

We make one other extension over the language for-
mulated in the previous section, and relax the require-

TE;VE`V ∈P′ [T]L,L
′

TE;VE` 〈〈V〉〉L,L
′

P′,() ∈
P [T]L,L

′ (VAL ANNVAL BASE)

TE;VE` reclassifyK,K′(v,〈〈V〉〉
L0,L′0
P1,C

) ∈P2 [T]L,L
′

TE;VE` 〈〈V〉〉L0,L′0
P1,(C,(P2,v)) ∈

P [T]L,L
′

(VAL ANNVAL STEP)

Figure 7. Type Rules for Annotated Values

ments on the decryption operation: in an operation of the
form decryptK1;K2

(e1,e2), the sequence of expressionse1

can contain both declassification certificates and decryption
keys. This is used by the operational semantics to decom-
pose declassification certificates into decryption keys. The
(VAL DECRYPT) type rule can be straightforwardly gener-
alized, and we avoided doing this in the previous section
only to avoid making the rule any more complicated.

The semantics is provided as a labelled transition system
(LTS) in Fig. 8, using the following reduction relations:

R
TE;VE−−−→ R′ ”Internal” computation

e
TE;VE;P−−−−−→ e′ Computation under a principal

There are other labelled transitions for message-passing
and process forking, but we omit them from this extended
abstract, since they do not contribute markedly to the re-
sults. The rules for the two reduction relations above are
provided in Fig. 8.

The (RED PRIN ANN) operation sets things up by anno-
tating a value with the principal responsible for its creation,
and an empty certificate chain. This is the point where a
value is allocated, and this is where we see the first access



TE;VE`V ∈P [T]L,L
′

〈V〉 TE;VE;P−−−−−→ 〈〈V〉〉L,L
′

P,()

(RED PRIN ANN)

TE;VE`I v1 ∈P [T1]L1,L′1 TE;VE`I v2 ∈P [T2]L3,L′3

reclassifyK1,K2
(v1,v2) TE;VE;P−−−−−→ CEXTEND(v2,((P,v1)))

(RED PRIN RECL)

v1 = 〈〈chainK1,K0,K2(v2,v3)〉〉L1,L′1
P1,C1

TE;VE`I v1 ∈P [T]L0,L′0 v′2 = CEXTEND(v2,C1) v′3 = CEXTEND(v3,C1)

decryptK1,K1;K2,K2
((v1,v1),v) TE;VE;P−−−−−→ reclassifyK1,K0

(v′2,decryptK1,K0;K2,K2
((v1,v

′
3),v))

(RED PRIN DECCH)

v1 = 〈〈reclassifyCertK1,K2
(v0)〉〉L1,L′1

P′,C TE;VE`I v1 ∈P [T]L2,L′2 v′0 = CEXTEND(v0,C)

decryptK1,K1;K2,K2
((v1,v1),v) TE;VE;P−−−−−→ reclassifyK1,K2

(v1,decryptK1,K2;K2,K2
((v1,v

′
0),v))

(RED PRIN DECCRT)

v = 〈〈a−〉〉L1,L′1
P1,C1

v′ = 〈〈encryptK(〈〈a+〉〉L2,L′2
P2,C2

,v′′)〉〉L,L
′

P′,C TE;VE`I v∈P [T]L
′′
1,L
′′′
1 TE;VE`I v′ ∈P [T′]L

′′,L′′′

decryptK;K(v,v′) TE;VE;P−−−−−→ CEXTEND(v′′,C)
(RED PRIN DECACT)

Figure 8. Selected Computation Rules

check: the reduction rule makes sure that the principal of
the executing process is included in the integrity label of
the value’s type. Because of some tricky scoping issues
with certificate chains, we finesse this check by using the
type rules in the previous section, specifically for conclu-
sions of the formTE;VE` e∈P [T]L,L

′
where all “output” or

integrity constraints (from the labelL′) have been checked.
The next rule, (RED PRIN RECL), performs declassifica-

tion. To ensure type preservation with declassification, we
add the certificate authorizing declassification to the certifi-
cate chain associated with the value being declassified. The
following metafunction computes the extension of the cer-
tificate chain in an annotated value:

CEXTEND(〈〈V〉〉L,L
′

P,C1
,C2) = 〈〈V〉〉L,L

′

P,(C2,C1)

The (RED PRIN RECL) also checks the secrecy con-
straints, that the reclassification operation has authorization
to access both of its arguments. Again we use the type sys-
tem for perform this access check, this time with conclu-
sions of the formTE;VE`I e∈P [T]L,L

′
where all secrecy

constraints (from the labelL) have been checked.
The next three rules handle decryption, where the first

input is a sequence of declassification certificates and de-
cryption keys. The (RED PRIN DECCH) rule decomposes
a declassification certificate chain in one of the arguments,
moving the “left” certificate out of decryption by declassify-
ing the result of decryption, and leaving the “right” certifi-
cate as an argument to decryption. This transition uses the
type system to check that the executing principal has access
to the declassification certificate that it is decomposing.

The (RED PRIN DECCRT) rule deals with the case where

one of the declassification certificates in the arguments to
decryption is declassifying a decryption key, i.e., it is a de-
classification certificate for an actual key name. In this case
the transition replaces the declassification certificate, as an
argument to decryption, with its underlying decryption key,
and again inserts a declassification operation on the result
of decryption (using the original declassification certificate
that has been replaced as an argument to decryption).

Because of the typing of decryption, it cannot be the case
that one of the arguments to decryption is a declassification
certificate for a virtual key name. Therefore this handles all
possible declassification certificate types.

The final step, rule (RED PRIN DECACT), performs the
actual decryption, now that all declassification certificates
have been “peeled off” from the decryption operation and
moved outside as declassification operations on the result
of decrypting.

The reason that each of the intermediate stages in de-
cryption is well-typed, is because of annotated valuesv that
“remember” the original owning principal that generated a
certificate or key. Such data structures are typed with re-
spect to the owning principal rather than the currently exe-
cuting princpal. Annotated values are a purely formal no-
tion for typing run-time values.

We have omitted the type rules for processes, but they
are completely standard and straightforward.

Theorem 1 (Type Preservation)The following proposi-
tions verify that types are preserved by computation:

1. Suppose TE;VE ` R1 proc and R1
TE;VE−−−→ R2, then

TE;VE` R2 proc.



2. Suppose TE;VE` e∈P [T]L,L
′
and e

TE;VE;P−−−−−→ e′, then
TE;VE` e′ ∈P [T]L,L

′
.

Define anevaluation contextC[ . ] in the normal fashion.
Define aprocess contextby:

P[ . ] ::= C[ . ] | (P[ . ] | R) | (R | P[ . ])
| new(k : A){P[ . ]} | new(a : LT){P[ . ]}

This is used to identify places in a process where there
should be a redex, and if not then computation is blocked.
The proof of the following uses the fact that the dynamic
access checks are performed as type checks, and also of
course using the previous theorem. Since we have not had
space to present the semantics of message-passing, we only
consider the subset of the language with the cryptographic
operations.

Theorem 2 (Progress)The following propositions verify
that computation can only “get stuck” because of a mis-
match between private and public keys in a decryption or
authentication operation:

1. Suppose TE;VE` Rproc and R= P[e] where e is nei-
ther a value nor a redex. Then e is of one of the two
following forms:

decryptK;K(v1,〈〈encryptK(v2,v)〉〉L,L
′

P′,C)

authK(v1,〈〈signK;K(v2,v)〉〉L,L
′

P′,C)

wherev1 = 〈〈a−〉〉L1,L′1
P1,C1

and v2 = 〈〈b+〉〉L2,L′2
P2,C2

and a− 6=
b+, i.e., an application of decryption or an application
of authentication, where the private keys do not match
the public keys.

2. Suppose TE;VE` e∈P [T]L,L
′

and e= P[e′] where e′

is neither a value nor a redex. Then e′ is of one of the
two forms described in the first part of the theorem.

In particular this justifies not performing the run-time ac-
cess checks (formulated in our semantics as type checks),
since these checks are guaranteed to always succeed.

5. Related Work

The motivation for this work has been the need for proper
programming abstractions for applications that must man-
age the task of securing their own communication. Much
of the work on wide-area languages has focused on secu-
rity, for example, providing abstractions of secure channels
[5, 4], controlling key distribution [13, 12], reasoning about
security protocols [6, 1], tracking untrustworthy hosts in the
system [20, 30], etc.

Abadi [1] considers a type system for ensuring that se-
crecy is preserved in security protocols. For securing com-
munication over untrusted networks, he includes a “univer-
sal” typeUn inhabited by encrypted values. His type system
prevents “secrets” from being leaked to untrusted parties,
but allows encrypted values to be divulged. In an analo-
gous way, encrypted and signed values in our type system
provide a way to temporarily subvert the access controls
in the type system, with the secrecy and integrity proper-
ties enforced by labels reasserted when the ciphertext is de-
crypted/authenticated.

Gordon and Jeffrey [17, 18] have developed a type-based
approach to verifying authentication protocols. Their de-
pendent type system maintains a connection between mes-
sages and nonces. Nonce types and an effect type system
use correspondence assertions to ensure the freshness of
communications.

Abadi and Blanchet [2, 9] have worked on analyzing se-
curity protocols, they show how it is possible to guarantee
secrecy properties and then generalizing this to guarantee
integrity. Their system uses a type of “secret,” and a type
system that ensures that secret items are never put on chan-
nels that are shared with untrusted parties. They can trans-
late types in their system into logic programs that can then
be used to check protocols for correctness. The emphasis of
this work is somewhat different, since Bruno and Blancet
work in a more “black and white” environment where there
are trusted parties and untrusted parties. In contrast our in-
terest is in a more refined type system where we allow cer-
tain parties to access certain data. For reasons of space and
exposition, we have for avoided the issue of prevented data
from leaking on untrusted channels. It may be interesting to
investigate this in future work.

All of these works are focused on verifying secrecy and
integrity properties of security protocols. As such the type
systems that they use are far more sophisticated than the
average programmer will use, while at the same time they
give very strong guarantees of secrecy and integrity. The
focus of our work is not protocol verification, but building
accountable systems: engineering a system where accesses
can be logged, but doing it in such a way that the perfor-
mance of the system is not killed by the demands of cre-
dentials checking. So, for example, we make no attempt to
cope with replay attacks.

Sumii and Pierce [34] describe the cryptographic lambda
calculus, an extension of the typed lambda calculus with
symmetric cryptographic operations along the lines of the
spi-calculus. They then use reasoning techniques for the
polymorphic lambda calculus (in particular, relational para-
metricity) to verify properties of programs implemented us-
ing cryptographic techniques.

A number of other systems also combine elements of ac-
cess control and information flow. Stoughton [33] presents



a simple but elegant system that uses access control to as-
sign the same piece of data different information flowtags
for different groups of principles. This is done using a deno-
tational semantics that makes dynamic checks. The SLam
calculus of Heintze and Riecke [19] extents the lambda-
calculus with types that record both the security levels that
may have direct access to a piece of data and the levels that
might have indirect access. Dynamic, access control checks
in the semantics ensure that these types are never violated.
The type system imposes enough information flow restric-
tions to enable a proof of noninterference. In more recent
work Abadi and Fournet have developed a system for C#

that performs access control by dynamically monitoring the
flow of a program [3]. As each routine executes it imposes
any access restrictions that are associated with that routine
on the following code. If a routine attempts to perform a
restricted action the execution is stopped with a security ex-
ception.

Other work on security in programming languages has
focused on ensuring safety properties of untrusted code
[27, 26, 23] and preventing unwanted security flows in pro-
grams [14, 24, 35, 29]. Laud has developed a complexity-
theoretical approach to information flow [21], that con-
centrates on data leaks that can be discovered in polyno-
mial time. Sabelfeld and Myers [31] provide an excellent
overview of work in language-based information-flow se-
curity. Our security concerns have largely been with access
control, but there is a clear and obvious relationship to the
decentralized label model of JIF [25]. This relationship ex-
ists because we initially based our type system on decen-
tralized labels, as explained in Sect. 2.

Pottier and Conchon [29] have developed an interest-
ing approach to encoding information flows in the lambda-
calculus, allowing non-interference to be checked in an op-
erational manner, and Pottier [28] has extended this to the
pi-calculus. Because of the operational nature of their work,
it appears plausible that it could be useful in proving some
form of non-interference for our language. But in the pres-
ence of declassification, it is a well-known problem to de-
fine what safety guarantees are provided by information
flow control [31, 36]. In any case, this has not been the
focus of our concern, as indicated by Sect. 1.

6. Conclusions

This paper has combined two ideas:

1. First, the notion of type-based cryptographic opera-
tions [15], with the intention that some of the secrecy
and integrity properties of those operations can be
checked statically. This can sometimes avoid the ex-
pense of cryptographic operations at run-time. At the
very least, it provides a way for specifying the security

guarantees of a channel provided from lower layers in
the protocol stack to upper layers.

2. Second, the notion of decentralized labels, that com-
bine access control and some form of information flow
control [24, 25]. We are strictly interested in access
control and so emphasize this aspect of decentralized
labels.

The payoff from this combination is that we can now see
a way to move network security out of the TCB and into the
application, with the type system making sure that the ap-
plication does not violate the label constraints (modulo de-
classification). For example a distributed implementation of
JIF [37] puts all network security in the TCB and makes the
network transparent to the program. It appears implausible
that this will scale over the network, or in mission-critical
or fault-tolerant systems.

There are obviously many issues to explore further. Our
focus due to space has been on parties interacting and pre-
venting data from “flowing” (directly) to undesirable par-
ties. What about untyped attackers on the network? For now
we assume that all network communication is encrypted and
signed, but there should be ways to interact safely with un-
trusted parties, declassifying data from the world and read-
ing data from the world. We have some ideas on how to
proceed with this.

Cryptographic types [15] were based on the idea that
there would be subnets (or just OS buffers) where it would
be safe to assume that data was secure without being en-
crypted and signed. That work did not consider how to de-
lineate where on the network it would be secure to send data
intended for certain parties, and where it would be neces-
sary to build trusted channels from untrusted channels. The
current work still does not address this issue. We expect
to address it in the near future, but back in the context of
cryptographic types where the language and the problems
are simpler.

It would be good to develop more notions of correctness
for our work. For example it appears plausible that some
form of robust non-interference could be demonstrated for
this language [36], based on simulation relations. However
the language that we work with is rich and we do not expect
such a result to be easy.

Another direction to consider is accountability: formal-
izing it, perhaps based on causality types [32], and verifying
that our certificate chains for annotated values are in some
sense a good measure of accounability. These are all areas
for future work.
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