
A Mutual Anonymous Peer-to-peer Protocol Design

Jinsong Han1, Yunhao Liu1, Li Xiao2, Renyi Xiao1,3, Lionel M. Ni1

1Dept. of Computer Science, Hong Kong University of Science and Technology, Hong Kong
2Dept. of Computer Science & Engineering, Michigan State University, East Lansing, MI48824, USA

3National Natural Science Foundation, Beijing, China
{jasonhan, liu, renyi, ni}@cs.ust.hk; lxiao@cse.msu.edu

ABSTRACT

Peer-to-Peer (P2P) computing has become a popular

application model because of its easy resource sharing
pattern and powerful query search scheme. However,
decentralized P2P architecture is scarcely seen to deploy
the anonymity on its peers. In this paper, we propose a
mutual anonymity protocol, called Secret-sharing-based
Mutual Anonymity Protocol (SSMP), for decentralized
P2P systems. SSMP employs Shamirs’ secret sharing
scheme to allow peers to issue queries and responders to
deliver requested files anonymously. Compared with pre-
vious designs, SSMP achieves mutual anonymity in P2P
systems with a high degree of anonymity and a low cryp-
tography processing overhead. We evaluate SSMP by
comprehensive simulations.

1. Introduction
The Internet has been developed into a globally dis-

crete information sharing system over the past few years
[10, 12, 18, 19, 25]. While the network users’ privacy
requirements have become increasing urgent, the ano-
nymity issues in some particular systems have not yet
been fully addressed. The most important protocol of the
Internet, TCP/IP, pays less attention on privacy than other
performance issues such as efficiency and scalability. The
easy track feature of TCP/IP makes private and secure
data vulnerable when being transferred in the open Inter-
net environment.

Under certain circumstances, network users may re-
quire different types of anonymity [4]. Anonymity can be
divided into three types: resistant-censorship (or publish-
ing anonymity); initiator or responder anonymity; and
mutual anonymity (giving both the initiator and responder
anonymity). Strictly defined, mutual anonymity is made
up of three parts: an anonymous initiator, an anonymous
responder and the anonymous communication between

these two units. Most previous work provides mutual
anonymity protocols for clients with the help of trusted
agents or proxy servers.

Recently, peer-to-peer (P2P) file sharing applications,
such as Napster, Gnutella and KaZaA [1-3], have made it
convenient to search and obtain desired contents from the
Internet. In P2P systems, peers join and leave the network
freely and frequently. Each peer performs as both a con-
tent provider and a consumer.

There are two major architectures for P2P systems:
centralized and decentralized. A centralized P2P system,
such as Napster, is vulnerable to denial of service attacks
[29, 44] and suffering from a single point of failure. De-
centralized P2P systems, which have the advantages of
high fault-tolerance, sufficient autonomy, and flexible
scalability, are widely deployed.

This paper focuses on decentralized and unstructured
P2P systems [10, 12, 16, 20, 26-28, 38, 41]. All partici-
pants in such a P2P system communicate only with their
neighbors. Theoretically, no peer has any knowledge of
other peers two or more hops away. Since a query mes-
sage does not include the IP address of its query peer,
current P2P systems achieve a certain degree of anonym-
ity, which is incomplete based on following two observa-
tions.

First, a peer’s identity is exposed to all its neighbors.
Some malicious peers can acquire information easily by
monitoring packet flows, distinguishing packet types,
(e.g., the Query Hits type message [5]), and analyzing the
TTL value of these queries. In this way, initiators and
responders are not anonymous to their neighbors and P2P
systems fail to provide anonymity in each peer’s local
environment.

Second, in the query and reply packet transfer path,
there are high risks that the identities of both the initiators
and responders are exposed. In an untrustworthy public
network, when the files are transferred in a plain text
model, the contents of the files also help the attackers on
the path guess the identities of the communication parties.

This work was partially supported by Hong Kong RGC DAG 04/
05.EG01, RGC Grants HKUST 6264/04E, and US National Science Foun-
dation under grant CCF-0325760.

This is the Pre-Published Version

Therefore, current P2P systems cannot provide ano-
nymity guarantees. In this paper, we propose a mutual
anonymity protocol in decentralized P2P systems, called
Secret-sharing-based Mutual Anonymity protocol
(SSMP). SSMP provides both initiator and responder
anonymity, and communication security as well. In SSMP,
we employ the idea of a secret sharing scheme to guaran-
tee anonymous query issue, and introduce the information
dispersal algorithm (IDA) [30] together with the onion
routing method [39] to achieve a complete reply-confirm
interaction between initiators and responders. The main
advantages of this protocol include a high degree of ano-
nymity and low cryptographic overheads than those in
previous mutual anonymity protocols. We evaluate SSMP
by trace-driven simulations, and compare its performance
with existing approaches.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce previous work on anonymity. In Sec-
tion 3, we discuss the SSMP design. In Section 4, we ana-
lyze the degree of anonymity and degree of security of the
proposed SSMP. We provide our implementation experi-
ence and simulation results in Section 5. We conclude the
work in Section 6.

2. Related Work
Many efforts have been made to acquire anonymity in

P2P systems. Earlier work falls into two categories:
anonymous publishing and anonymous communication.

Recently, there are two kinds of such approaches to
provide publisher anonymity protocol. One employs hash
to mark the key information of documents, such as
Freenet [11]. The other one, such as those used in Publius
[40], Freehaven [13], [34], GNUnet [23] and Gap [8] use
Shamir’s secret sharing like scheme to either split a sym-
metric key or break the file into n shares to achieve the
goal of anonymous file sharing.

Anonymous communication includes initiator and re-
sponder anonymity and anonymous data transferring. In
MorphMix [32] and Onion [17], initiator can determine
an anonymous path in advance to hide some identification
information. Instead of building a path by an initiator,
Crowds [31] and Hordes [37] let middle nodes select the
next hop on the path and deploy multicast trees by them-
selves. Freedom [7], Tarzan [16] and Tor [14] are imple-
mented based on Onion Routing to provide anonymous
services.

Some studies, such as Peer-to-Peer Personal Privacy
Protocol (P5) [36], Anonymous Peer-to-Peer File Sharing
(APFS) [33], and Shortcut-responding Protocol [43], pro-
posed to provide mutual anonymity in P2P systems. The
basic idea of P5 is to let all participants in the channel
send fixed length encrypted packets at a fixed rate as if all
participants are in a logic ring. This protocol introduces
noise packets to maintain a fixed communication rate to
confuse the traffic analyzers or attackers. Meanwhile, P5

refines the broadcast channel size and builds a hierarchy
overlaid spanning tree to keep the communication scal-
able. P5 users can join different groups based on the
tradeoff between anonymity degree and the communica-
tion bandwidth and reliability. As P5 assumes that every
initiator knows the public keys of all possible responders,
it cannot be directly employed in P2P networks.

APFS is designed for a decentralized system, like
Gnutella. Some coordinator nodes act as a superior peer
and maintain a list of all the peering nodes. Some peers in
these lists volunteer to issue queries for others. When an
initiator queries a coordinator for available servers, the
coordinator returns a list of current servers. The initiator
then contacts some servers to send the request and receive
replies from the servers. It finally sends the request and
receives the reply with the help of the tail node of the
matching responder. All communications of this frame-
work are based on the onion path to guarantee the ano-
nymity and hence no centralized authority exists in this
system.

In Shortcut-responding Protocol [43], the initiator es-
tablishes an onion-based reply block, called re-mailer,
before sending each query. Such a re-mailer is in fact an
anonymous return path. Each peer that receives the query
determines whether devote itself as a query agent peer in
a probability of pv. If a peer acts as the query agent for the
initiator, it floods this query into P2P systems. Upon re-
quests, a responder builds another onion path to anony-
mously send the file to the query agent peer. The query
agent peer delivers the file along the returning path to the
initiator. Although reducing the length of the return path,
this approach does not consider the reply-confirm proce-
dure between the initiator and the responder. By adding
this feature to the design of SSMP, we further show that
SSMP outperforms Shortcut-responding Protocol in effi-
ciency and security.

3. Design of SSMP
In this section, we first introduce the secret sharing

scheme and an information dispersal algorithm (IDA),
which are the basic algorithms used in SSMP. We then
present the details of the SSMP protocol.

3.1 Secret Sharing Scheme
The motivation of the secret sharing scheme is to avoid

a single point of failure during the key maintenance pro-
cedure. In this scheme, a secret sender (or dealer) distrib-
utes secret s to n participants. It requires no less than k
(k<n) players of n participants to recover the secret s.

One of the most popular secret sharing schemes is
Shamir’s secret sharing scheme [35]. The mathematical
basis of this scheme is as follows. Given k points on the

Table 1: Switch Table Example

Sequence Number IP of neighbors Contents of Shares

sq1 From IP2 h, KO
sq2 To IP3 h, KO
… … …
sq5 From IP7 Normal query
… … …

plane (x1,y1),…,(xk,yk), if all xi’s are distinct, there exists a
unique polynomial f of degree ≤ k-1, f(xi) = yi for all i.

The constructive method is that given these k points, f
can be recovered by using Lagrange’s interpolation for-
mula. Normally, all these hold in a field Zp, where p is a
prime.

Based on these discussions, we describe Shamir’s
scheme as follows.

To share secret s among n entities and ensure that no
less than k participants are required to recover the secret,
dealer D creates a random polynomial f(x) of degree k-1:

() 1
110 ... −
−+++= k

k xaxaaxf

This polynomial is constructed over a finite field Zp,
and the coefficient a0 is the secret s. All other coefficients
are random elements in the field; where the field is known
to all participants. Dealer D publicly chooses n random
distinct evaluation points: xi, and secretly distributes the
sharei(s) = (xi,f(xi)),i=1..n to each player Pi. We can
prove the theorem: the secret s can be reconstructed from
every k-share subset. Using Langrange formula, given k
points (xi,yi), i = 1..k, we have

)(mod)(
1 ,1

p
xx
xx

yxf
k

i

k

ijj ji

j
i∑ ∏

= ≠= −
−

=

Thus

)(mod)0(
1 ,1

p
xx

x
yfs

k

i

k

ijj ji

j
i∑ ∏

= ≠= −
−

==

The complexity of Lagrange interpolation is O(klog2k).

3.2 Information dispersal algorithm (IDA)
IDA was first introduced by Rabin [30]. Similar to

Shamir’s scheme, a (m, n) IDA intends to distribute in-
formation s among n processors. Meanwhile, the recovery
of the information is available if the collection of shares is
up to m (1<m<n). The difference between IDA and
Shamir’s scheme is that the length of each distributed
fragment of IDA is not |F|, but |F|/m, where |F| is the file
size. Hence, IDA is more space efficient. IDA is often
employed together with the erasure code scheme [30]. As
the basic IDA does not provide protection from malicious

parties or security for the data, we replace it with a secret
information dispersal algorithm SIDA[22].

3.3 SSMP Protocol
Since Shamir’s secret sharing scheme provides prefect

secrecy, we use it in SSMP to distribute the DES key. We
employ SIDA to split the requested files for the purpose of
space efficiency.

The basic idea of SSMP is as follows. When a peer is
ready to issue a query, it first distributes the requested file
ID f into n pieces of secret shares using Shamir’s secret
sharing scheme. It then sends out the split secret shares to
some random neighbors. Its neighboring peers flood the
fragments with a certain probability. When any peer, Pi,
1<i<n, collects k or more shares, the plain query informa-
tion is recovered, and Pi floods the query message into the
P2P system. Once the peer is able to provide the re-
quested file, it creates two onion paths: one is for sending
the reply information back to the Pi; and the other one is
built as an anonymous path for the initiator to return the
confirmation packets. Eventually the chosen responder
peer that receives the confirmation will split the file into
m fragments using SIDA scheme and delivers the re-
quested data back to the initiator.

Before going into details of SSMP, we first introduce
some notations used in this paper. Let f denote the desired
file name or id, O denote the initiator of a query, ri denote
O’s neighboring peers, R denote the query responder, Pi
denote peers in the P2P system, and sq denote the se-
quence number to mark queries. We use A→B: M to rep-
resent A sending a message M to B .We use KX to repre-
sent the public key of peer X and K to denote the DES key.
We define {M}KX as encrypting the message M with the
public key KX (RSA) of peer X, and EK(M) as the cipher-
text of M under the symmetric key K (DES). Let DK(·)
denote the corresponding decryption transformation.

In SSMP, we modify Gnutella 0.6 [5] protocol by add-
ing a local switch table to each servent to record the
packet’s information received from or sent to the
neighbors. Thus packets can be delivered in correct direc-
tions. In addition, a timeout scheme is introduced to keep
the table size scalable. When a peer joins, it automatically
establishes a local switching table like the example shown
in Table 1.

The SSMP is conducted in the following steps.

Step 1: The initiator O randomly selects a list of

neighboring peers, r1, r2… rn. It generates a random DES
key T, which is used to encrypt f.

Distribution method:
– Select random key T and encrypt f as e = ET(f).
– Partition e into n fragments using information disper-

sal algorithm [30], e1…en.

– Reconstruct T from T1…Tk.

},,{::1 sqKhrOStep Oii→
},,{::2 / sqKhPrStep Oii

pflooding
i

v⎯⎯⎯ →⎯

Figure 1: Share flooding

– Decrypt f = DT (e).

When P1 obtains the recovered f, it floods the query in

plain text. Figure 1 illustrates step 1 and 2.

Step 3: When a peer R is able to provide the requested

file f, it builds two anonymous paths in advance based on
bidirectional onion protocol.

Forwarding path:

XYP KKKsqRPreplyPYXFP },...}},,,,...{{,{
11=

Returning path:

}}},...}},{,...{{,{ UVZ KKKfixmixRZVURP = .
– Partition T into n shares using Shamir (k, n)-method,

T1…Tn. The reply message includes an index of desired files.
The responder delivers the packet through FP to P1.When
the reply packet reaches P1, P1 first decrypts the cipher
and gets sq and file index. It then checks sq in its local
switch table. Before sending it back to peer O, P1 should
organize all received replies to a single packet and use KＯ
to encrypt it. Then P1 randomly chooses a return peer
from its switch label according to sq. In next hop, the re-
ceiver checks sq in its local switch table. If the reply
packet does not belong to it, it forwards this packet again
to the next randomly chosen peer marked with sq, until
the packet reaches peer O.

– Distribute (ei, Ti, k) to n pieces hi.

Meanwhile, O creates a sequence number sq to identify

its query. In addition, O creates a pair of RSA keys, and
we use KO to denote its public key. Peer O randomly
chooses neighboring peers ri, and sends hi, i = 1..n to
them, respectively. When sending these messages, O em-
beds KO in these packets: O ri:{hi, KO, sq}.

Step 2: When O’s neighbors receive a new query share,
they flood these shares in probability pv. If not flooding,
they simply forward query shares to one of their
neighboring peers except O.

Step 4: There could be more than one peer who can re-

cover f. At the same time, peer O may receive more than
one reply from certain peers delivered by those Pi. Peer O
picks one as a responder, R. Peer O then creates a list, L,
for all available middle Pi, where L = {P1…Pm}. In addi-
tion, suppose it selects a number k’ < m, as the SIDA
threshold for splitting the requested file and puts k’ in the
confirmation packet. Peer O sends the packet embedded
with the list L, k’ and KＯ to the first peer which is ap-
pointed by the responder R on its onion return path (RP).

{ }sqKhPr Oij
pflooding

i
v ,,:/⎯⎯⎯⎯ →⎯

For both flooding and a single-direction-forwarding
pattern, ri stores the received and forwarding information
of each query in its local switch table.

Once a peer receives a share query, it compares sq with
its locally received share query in the switch table. If the
share belongs to an existing query group, it stores this
share information to the same label subset; otherwise it
establishes a new subset with the new sq and put this
share in. During certain number of hops, different share
queries labeled same sq would be gathered in one or more
peers. Our later experimental results show that carefully
selecting the value of pv would lead to gathering satisfied
amount of the shares. Without loss of generality, we sup-
pose P1 is one of the peers that collect enough number of
shares of the query to recover f.

Step 5: R gets the request-confirm packet from the last

RP onion peer. It makes use of SIDA as follows.

Distribution method:
– Select a random symmetric key K and encrypt f with

K: e’ = EK(f+hash(f))
– Encrypt key K with key KO to get T’

 – Partition e’ into m fragments using (k’, m) informa-
tion dispersal algorithm and achieve e’1…e’m. (m = |l|). Reconstruction method:

– Given k < n shares hi= (e1, T1)... (ek, Tk) and k.
– Reconstruct e from e1… ek.

Figure 2: Query reply, confirmation and file delivery

– Partition T’ into m shares using (k’, m) Shamir’s
scheme to get T’1… T’m.

– Distribute (e’i, T’i) to participant h’i

Note that we assume the asymmetric and symmetric

algorithms are all polynomial indistinguishable. R finally
obtains m split data fragment packets h’i for m peers in L,
and marks the packet as a data type and labels it sq. The
entire information of list L is put in every packet as well.
After these steps R randomly chooses its m neighbors (if
R’s neighbors are less than m, R can send some packets to
the same neighbor), and send the above packets.

Each peer who receives a packet randomly selects a
peer d from L and forwards the packet to it. Peer d then
delivers the packet to the next peer marked sq. The next
peer would do the same thing until the data packet reaches
some members of L. This peer in L will deliver the packet
to peer O as in step 3.

Step 6: Peer O keeps checking on the number of sq-

marked data packets it receives.

Reconstruction method:
– Given k’ < m shares (e’1, T’1, k’),…, (e’k’, T’k’, k’)
– Reconstruct e’ from e’1. . . e’k’
– Reconstruct T’ from T’1,. . . T’k’
– Decrypt T’ with O’ private key to get K
– Decrypt f = DK(e’); checkout the file with hash(f)

Figure 2 illustrates query reply, confirmation and file

delivery procedure.

4. Discussions
In this section, we analyze the degree of anonymity of

SSMP, and discuss the degree of security of the whole
protocol.

4.1 Anonymity analysis
We first analyze the degree of anonymity of SSMP

from different parties.
The initiator: The probability for an initiator to ran-

domly guess the responder’s identity is 1/(n-1), where n is
the number of P2P peering nodes, normally millions in
real systems. The reply of the query is forwarded by the
agent peers. If the responder is not the agent peer, its
identity is hidden by the onion path. With the onion path,
the expected number of path reformations required for c
attackers to determine the initiator out of n participants is
O((n/c)l), where l is the length of the path between the
initiator and responder [42].

The responder: As a responder, the probability for it to
correctly guess the initiator’s identity is also 1/ (n-1). Ac-
tually all the queries it receives are coming from Pi s. It
has no details of the share flow situation when the P2P
system is in large scale.

The middle nodes: In the query-flooding path, the mid-
dle nodes can be divided into two groups: one includes
the peers who receive the shares. The other group in-
cludes the remaining peers except the initiator and re-
sponder. For the first group, its members make a random
guess on who the initiator or the responder are will have
probability of 1/ (n-1). Let pi(k) denote the probability of
existing k peers between the initiator and peer x . Note
that middle peers mean all such peers that have fewer

hops from the initiator to themselves than x does. S is a
subset of the whole P2P system in which the peers get
their shares from the initiator. The probability that x
guesses right whether the peer from whom x obtains the
share is the initiator is:

∑
−

=−

1

1

)(
1

1 S

k

i

k
kp

S
.

On file forwarding path, the random guess probability
that a certain peer is the initiator is 1/(n-2). This is be-
cause files are divided into fragments when being trans-
ferred. Even though an attacker could recover a file from
the shares, it cannot decrypt the content from the cipher
text without the key. The probability that the guess is
right will be:

()∑
−

=−

2

12
1 n

k

i

k
kp

n
,

where k is the number of peers on data packets transfer-
ring path. The probability for the attacker to guess the
correct responder is similar.

In current P2P systems with millions of nodes, all the
exposed probabilities in the above cases become very
small.

4.2 Security analysis
SSMP deploys encryption methods both in query

flooding and file transferring to achieve information secu-
rity. Malicious peers may cooperate together to imple-
ment attacks. SSMP makes their attacks difficult by the
following three steps.

1) Shamir’s scheme protects the initiators’ privacy in a
prefect security.

2) The file split pattern of SIDA provides a computa-
tional security to responders.

3) The cryptography mechanism provides the unlink-
ability security for transferring data.

Definition 1: Perfect secrecy is when, for all possible
cryptograms, the posteriori probabilities are equal to the a
priori probabilities independent of the values of these.

Theorem 1: SSMP holds a perfect security in shares’
distribution.

Proof: In (t, n) Shamir’s scheme (t < n), given any t
shares, the polynomial is uniquely determined. Hence, the
secret s can be computed. However, given t-1 or fewer
shares, the secret can be any element in the field. Thus
those shares do not supply any further information regard-
ing the secret [21]. If S0 is the secret, for every k < t, let
S1, …, Sk be any k shares then Pr(S0 | S1, …, Sk) = Pr(S0).
Indeed we claim that the share distribution procedure of
SSMP holds perfect secrecy. ■

Definition 2: An (m, n) threshold scheme (m < n) is
computational security if for any two secrets S’ and S’’,
for any k < m, the distributions on shares D(S’; S’1, …, S’k)

and D(S’’; S’’1, …, S’’k) introduced by the scheme are
polynomial indistinguishable.

Definition 3: E0 = {Xn} and E1 = {Yn} are polynomial
indistinguishable if for every (probability) polynomial-
time algorithm, A, and every c > 0 there exists an integer
N such that for all n ≥ N,

cnn n
YAXA 1)1)(Pr()1)(Pr(<=−= .

A distinguish algorithm is the one that successfully
guesses the correct distribution with probability ½ +l-c,
where l is the distribution index.

Theorem 2: SIDA achieves computational security.
Proof: We assume that there exist secret s1 and s2, and

an algorithm A can distinguish them from their space S1
and S2 with a high probability:

2
1)1)/(Pr()1)/(Pr()Pr(2211 >=−== SsASsAa

Then we construct another algorithm B that can breach
the polynomial indistinguishable encryption algorithm E
by distinguishing between E(s1) and E(s2) in the probabil-
ity

))(/)(())(/)((Pr)Pr(2211 SEsEBSEsEBb −= .
If neesESIDAE ′′=′=′ K1))((and mXEX <⊂ ,' , we

then get X1 and X2 from E(S1) and E(S2), and use A to
guess whether the secret corresponds to s1 or s2. B can
also output the same guess. If A guesses the correct result
with a probability over ½, then B obtains the correct result
with a significant probability,

2
1)/(Pr)Pr(>′′= SeBb

However, we employ polynomial indistinguishable en-
cryption algorithms in Section 3. Therefore, we conclude
that first assumption is nonexistent. In fact, the encryption
algorithms’ security ensures that the m-1 fragments X give
no more information than E. Further, there is absolutely
no information to reveal K without more than m-1 key
shares, as we proved in Theorem1. ■

In SSMP, we use RSA and DES as the practical secure
algorithms. Some improved RSA-based schemes can
eventually provide indistinguishability [24]. Therefore,
SSMP is able to protect file information from malicious
entities and provide unlinkability of initiator and re-
sponder.

5. Performance Evaluation
5.1 Performance Metrics

Our protocol performance metrics focus on four major
parts: query scope, response time, security overhead, and
traffic cost.

In a pure P2P system, the QoS of a search system de-
pends on the number of peers being explored (queried),

0 0.2 0.4 0.6 0.8 1
0

2000

4000

6000

8000

10000
TRACE 1 Query Scope for No.1125 peer

probability

no
de

 a
m

ou
nt

1 shares
2 shares
3 shares
4 shares
5 shares
6 shares
7 shares
8 shares
9 shares
10 shares

0 0.2 0.4 0.6 0.8 1

0

2000

4000

6000

8000

10000
TRACE 2 Query Scope for No.1189 peer

probability

no
de

 a
m

ou
nt

1 shares
2 shares
3 shares
4 shares
5 shares
6 shares
7 shares
8 shares
9 shares
10 shares

Figure 3 : A peer Query scope-Trace1 Figure 4 : A peer Query scope-Trace2

the response time, and the traffic overhead. In our proto-
col, we first present the distribution of shares gathering so
that we can choose good parameters for the flooding
probability and threshold of Shamir’s scheme.

We then present the response time of our protocol,
compared with the normal decentralized P2P query pat-
tern and the anonymity protocols proposed in [43]. In
addition, we present the security cost in our protocol and
the traffic cost increased by SSMP.

Query scope is the number of peers that queries have
reached in a search process. In SSMP, we define query
scope as the number of peers which get enough shares to
recover the secret in Shamir’s secret sharing scheme. In a
decentralized P2P system, the more peers reached means
the higher likelihood that the requested file can be ob-
tained. However it is useless to query the same content
too many times, while this situation will occur if we do
not control the number of the qualified query agents with
the threshold of Shamir’s scheme. For this reason, we
show the relationship between the threshold and the
amount of qualified query agents.

Traffic cost is one of the most important parameters on
which network administrators focus their concerns. Some
network administrators would refuse P2P applications for
heavy traffic.

Response time is the parameter which is of concern by
P2P users. We define response time of a query as the time
period from when the query is issued until when the
source peer receives a response result from the first re-
sponder.

Security overhead is defined as the cost spent in the
encryption and decryption of RSA and DES and Shamir’s
secret sharing scheme in SSMP.

5.2 Simulation Methodology
We simulate P2P topologies with DSS Clip2 trace [6].

The results are consistent with different traces and here
we show two of them: Dec 28, 2001 and May 29, 2001,
denoted as Trace 1 and Trace 2, respectively.

In our simulation, we implement flooding search used
in a decentralized P2P network by conducting Breadth
First Search algorithm from a specific node. A search
operation is simulated by randomly choosing a peer as the
sender, and a keyword according to Zipf [9] distribution.
In each run, 1,000 search operations are simulated.

We also run the crypto software kits on a desktop PC
with PIII 800MHz CPU, 256MBytes memory, 20G hard-
disk, and 10/100M Ethernet card and observe some hard-
ware crypto servers performance. We found that the aver-
age 1024-bit RSA decryption rates are from 14 to 103.09
per second. The encryption rates are from 275 to 1941.7
per second. Normally the RSA encryption is 10~19 times
faster than the decryption process. The 768-bit and 512-
bit RSA test results also validate this. In most cases, the
1024-bit RSA can be regarded as an enough security
cryptography algorithm. In our simulation we choose the
1024-bit RSA as the crypto process in the onion path and
use 45.87 and 864 per second, which are close to the av-
erage level of our samples, as the reference value of the
1024-bit RSA performance.

Meanwhile, our statistics show that DES performance
is in the range from 2.24Mbps to 8.78Mbps, and 3DES is
from 1.89Mbps to 6.43Mbps. The hash function of MD5
performance is from 0.97Mbps to 11.64Mbps, and SHA-1
is from 3.23Mbps to 11.28Mbps. Therefore, we choose
5.41Mbps as DES speed and 7Mbps as SHA-1 speed.

In P2P networks, peers join and leave frequently. We
simulate the dynamic peer changes by assigning a lifetime

0 0.2 0.4 0.6 0.8 10

5

10

15 x 10
4 TRACE 1 Traffic Cost

Probability

A
ve

ra
ge

 T
ra

ffi
c

C
os

t
normal flooding
n = 7
n = 9
n = 11
n = 13
n = 15
n = 17
n = 19

0 0.2 0.4 0.6 0.8 1
0

5

10

15 x 104 TRACE 2 Traffic Cost

Probability

A
ve

ra
ge

 T
ra

ffi
c

C
os

t

normal flooding
n = 7
n = 9
n = 11
n = 13
n = 15
n = 17
n = 19

Figure 5: Traffic cost-Trace1 Figure 6: Traffic cost-Trace2

0 10 20 30 40 50 600

500

1000

1500

2000
TRACE 1

Time (minutes)

Av
er

ag
eR

es
po

ns
eT

im
e

(m
s)

Normal
SSMP
ShortCut

0 10 20 30 40 50 600

500

1000

1500

2000
TRACE 2

Time (minutes)

Av
er

ag
eR

es
po

ns
eT

im
e

(m
s)

Normal
SSMP
ShortCut

Figure 7: Response time-Trace 1

Figure 8: Response time-Trace 2

in seconds to every peer. The average of this value is 10
minutes. The lifetime decreases by one after each passing
second. When a peer’s lifetime reaches zero, it leaves in
the next second. After a certain number of peers leave the
network, we then randomly pick up the same number of
peers from the physical network to join the P2P overlay.

5.3 Performance Evaluation
The Query scope in our protocol is relevant to the av-

erage flooding probability and the threshold of Shamir’s
scheme. Each peer produces a different share distribution
in different average flooding probabilities. We show typi-
cal distributions of the shares from the two traces. We
choose two nodes whose IDs are 1189 in Trace 1 and
1125 in Trace 2. They have 11 neighbors in the P2P to-
pology. Figures 3 and 4 compare their shares distributions
changed by different probabilities. The results show that
the optimized threshold is very close to ⎣ ⎦dpv ×−)1(,

where pv is the average probability and d is the number of
share receiving peers selected by the initiator. SSMP al-
lows peers to flexibly choose the threshold to optimize the
balance between the number of the query agents and the
traffic cost.

The traffic cost added by SSMP is mainly caused by
share flooding. We show the average query cost of Trace
1 and Trace 2 in Figures 5 and 6, respectively. Indeed, the
more the shares are split, the higher the traffic cost is.

In Figure 5, when the split share number is 11 and
probability is 0.3, the average increased traffic cost is
23097, which is close to 24189, an average normal flood-
ing traffic cost in Trace1. If the average probability de-
fined in SSMP increases, the traffic cost grows as well. In
this design, we set the default average probability as 0.3.

Figures 7 and 8 show that the additional time caused
by SSMP is about 20-40% more than that of normal query
response time, while Shortcut-responding Protocol is 40-
60% longer. We also notice that reducing the

Table 2: Major security processes with different algorithms in SSMP

Shamir Secret sharing, IDA SIDA Scheme RSA DES

 Distribution Reconstruction Distribution Reconstruction Encryption Decryption Encryption, Decryption
1, 1 l, l 1 1 2t+1 2t+1 2, 2

threshold of Shamir’s scheme may offer a fast result-
return by having more middle agents. However, the traffic
would increase.

There are two main reasons for Shortcut-responding
Protocol to take more time than that of SSMP. First,
Shortcut-responding Protocol uses the probability for-
warding method in the very beginning of the query
spreading procedure. Although finally a query will flood
after it reaches a certain peer that devotes itself as the
reply node, the former path on which the queries have
transferred is not the shortest path between the initiator
and the reply node. Second, the delay time may be re-
duced in SSMP if the agent peers are placed exactly in the
shortest path between initiator and responder. SSMP also
obtains more than one agent peer, so the distribution
probability of agent peers being on the shortest path be-
tween the initiator and responder is higher than that of
Shortcut-responding Protocol.

The security overhead includes two parts, the process-
ing overhead of the cryptography and the additional space
requirement by the cryptography algorithms. Main secu-
rity process includes share distribution and reconstruction
procedure, RSA encryption and decryption, and DES en-
cryption and decryption. If the average number of agent
peers is l and the average length of Onion path is t, we
show the number of security related operations among
relevant peers in a complete search procedure in Table 2.
We can see that the numbers of security related operations
are very low.

6. Conclusion
In this paper, we propose a mutual anonymity protocol,

called Secret-sharing-based Mutual Anonymity Protocol
(SSMP), in decentralized P2P systems. SSMP employs
Shamirs’ secret sharing scheme to let peers issue queries
and let responders deliver requested files anonymously.
Compared with existing designs, SSMP achieves mutual
anonymity in P2P systems with a higher degree of ano-
nymity and a lower cryptographic processing overhead.
We evaluate SSMP by comprehensive trace-driven simu-
lations.

Future work on SSMP will lead in two directions. One
is to improve the query flooding model of decentralized
P2P systems by using other secret sharing schemes to
acquire efficiency and introducing advanced protocols
such as Tor [15] to improve security. The other one is to
deploy the SSMP prototype combined with the construc-
tion of Freenet system to achieve the publisher anonymity

in P2P systems. Note that the publisher anonymity in de-
centralized P2P systems can also be improved by employ-
ing SSMP protocol.

7. References
[1] KaZaA, http://www.kazaa.com
[2] Gnutella, http://gnutella.wego.com/
[3] Napster, http://www.napster.com
[4] Anonymity, http://freehaven.net/anonbib/topic.html
[5] Gnutella Protocol Development, http://rfc-

gnutella.sourceforge.net/index.html
[6] The Gnutella Protocol Specification v4.0,

http ://www.clip2.com/GnutellaProtocol04.pdf
[7] A. Back, I. Goldberg, and A. Shostack, "Freedom Systems

2.1 Security Issues and Analysis," Zero Knowledge Sys-
tems, Inc. White Paper, 2001.

[8] K. Bennett and C. Grothoff, "GAP - Practical anonymous
networking," in Proceedings of Privacy Enhancing Tech-
nologies workshop, 2003.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
"Web Caching and Zipf-like Distributions: Evidence and
Implications," in Proceedings of IEEE INFOCOM, 1999.

[10] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker, "Making Gnutella-like P2P Systems Scal-
able," in Proceedings of ACM SIGCOMM, 2003.

[11] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong,
"Freenet: A Distributed Anonymous Information Storage
and Retrieval System," in Proceedings of Workshop on
Design Issues in Anonymity and Unobservability, Berke-
ley, CA, USA, 2000.

[12] E. Cohen and S. Shenker, "Replication Strategies in Un-
structured Peer-to-peer Networks," in Proceedings of
ACM SIGCOMM, 2002.

[13] R. Dingledine, M. J. Freedman, and D. Molnar, "The Free
Haven Project: Distributed Anonymous Storage Service,"
in Proceedings of Workshop on Design Issues in Anonym-
ity and Unobservability, 2000.

[14] R. Dingledine, N. Mathewson, and P. Syverson, "Tor: The
Second-Generation Onion Router," in Proceedings of the
13th USENIX Security Symposium, 2004.

[15] R. Dingledine, N. Mathewson, and P. Syverson, "Tor: The
Second-Generation Onion Router," in Proceedings of the
13th USENIX Security Symposium, 2004.

[16] M. Freedman and R. Morris, "Tarzan: A Peer-to-Peer
Anonymizing Network Layer," in Proceedings of the 9th
ACM Conference on Computer and Communications Se-
curity (CCS), 2002.

[17] D. Goldschlag, M. Reed, and P. Syverson, "Onion rout-
ing," Communications of the ACM, 1999.

[18] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H.
M. Levy, and J. Zahorjan, "Measurement, Modeling, and
Analysis of a Peer-to-Peer File-Sharing Workload," in

http://www.kazaa.com/
http://gnutella.wego.com/
http://www.napster.com/
http://freehaven.net/anonbib/topic.html
http://rfc-gnutella.sourceforge.net/index.html
http://rfc-gnutella.sourceforge.net/index.html
http://www.clip2.com/GnutellaProtocol04.pdf

Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), 2003.

[19] W. Jia, D. Xuan, W. Tu, L. Lin, and W. Zhao, "Distrib-
uted Admission Control for Anycast Flows," IEEE Trans-
actions on Parallel and Distributed Systems (TPDS), 2004.

[20] S. Jiang, L. Guo, and X. Zhang, "LightFlood: An Efficient
Flooding Scheme for File Search in Unstructured Peer-to-
Peer Systems," in Proceedings of International Conference
on Parallel Processing (ICPP), 2003.

[21] H. Krawczyk, "Distributed Fingerprints and Secure Infor-
mation Dispersal," in Proceedings of the 12th annual
ACM symposium on Principles of distributed computing,
1993.

[22] H. Krawczyk, "Secret sharing made short," in Proceedings
of the 13th annual of International cryptology conference
on Advances in cryptology, 1994.

[23] D. Kugler, "An Analysis of GNUnet and the Implications
for Anonymous, Censorship-Resistant Networks," in Pro-
ceedings of Privacy Enhancing Technologies workshop,
2003.

[24] K. Kurosawa and T. Takagi, "Some RSA-Based Encryp-
tion Schemes with Tight Security Reduction," ASIA-
CRYPT, 2003.

[25] Y. Liu, X. Liu, L. Xiao, L. M. Ni, and X. Zhang, "Loca-
tion-Aware Topology Matching in Unstructured P2P Sys-
tems," in Proceedings of IEEE INFOCOM, 2004.

[26] Y. Liu, L. Xiao, and L. M. Ni, "Building a Scalable Bipar-
tite P2P Overlay Network," in Proceedings of the 18th In-
ternational Parallel and Distributed Processing Sympo-
sium (IPDPS), 2004.

[27] Y. Liu, Z. Zhuang, L. Xiao, and L. M. Ni, "A Distributed
Approach to Solving Overlay Mismatch Problem," in Pro-
ceedings of the 24th International Conference on Distrib-
uted Computing Systems (ICDCS), 2004.

[28] Y. Liu, L. Xiao, X. Liu, L. M. Ni, and X. Zhang, "Loca-
tion Awareness in Unstructured Peer-to-Peer Systems,"
IEEE Transactions on Parallel and Distributed Systems
(TPDS), 2005.

[29] W. G. Morein, A. Stavrou, D. L. Cook, A. D. Keromytis,
V. Misra, and D. Rubenstein, "Using Graphic Turing Tests
to Counter Automated DDoS Attacks Against Web Serv-
ers," in Proceedings of ACM International Conference on
Computer and Communications Security (CCS), 2003.

[30] M. O. Rabin, "Efficient dispersal of information for secu-
rity, load balancing, and fault tolerance," ACM JACM,
1989.

[31] M. K. Reiter and A. D. Rubin, "Crowds: Anonymity for
Web Transactions," ACM Transactions on Information
and System Security, 1998.

[32] Rennhard and B. Plattner, "Introducing MorphMix: peer-
to-peer based anonymous Internet usage with collusion de-
tection," in Proceedings of ACM workshop on Privacy in
the Electronic Society, 2002.

[33] V. Scarlata, B. N. Levine, and C. Shields, "Responder
Anonymity and Anonymous Peer-to-Peer File Sharing," in
Proceedings of the 9th International Conference of Net-
work Protocol (ICNP), 2001.

[34] A. Serjantov, "Anonymizing Censorship Resistant Sys-
tems," in Proceedings of the First International Workshop
on Peer-to-peer Systems, 2002.

[35] A. Shamir, "How to share a secret," Communications of
the ACM, 1979.

[36] R. Sherwood, B. Bhattacharjee, and A. Srinivasan, "P5: A
Protocol for Scalable Anonymous Communication," in
Proceedings of IEEE Symposium on Security and Privacy,
2002.

[37] C. Shields and B. N. Levine, "A Protocol for Anonymous
Communication over the Internet," in Proceedings of the
7th ACM Conference on Computer and Communication
Security (ACM CCS), 2000.

[38] K. Sripanidkulchai, B. Maggs, and H. Zhang, "Efficient
Content Location Using Interest-Based Locality in Peer-
to-Peer Systems," in Proceedings of IEEE INFOCOM,
2003.

[39] P. F. Syverson, D. M. Goldschlag, and M. G. Reed,
"Anonymous Connections and Onion Routing," in Pro-
ceedings of IEEE Symposium on Security and Privacy,
1997.

[40] M. Waldman, A. D. Rubin, and L. F. Cranor, "Publius: A
Robust, Tamper-evident, Censorship-resistant Web Pub-
lishing System," in Proceedings of the 9th USENIX Secu-
rity Symposium, 2000.

[41] C. Wang, L. Xiao, Y. Liu, and P. Zheng, "Distributed
Caching and Adaptive Search in Multilayer P2P Net-
works," in Proceedings of the 24th International Confer-
ence on Distributed Computing Systems (ICDCS), 2004.

[42] M. Wright, M. Adler, B. N. Levine, and C. Shields, "An
analysis of the degradation of anonymous protocols.," in
Proceedings of the 9th annual of Symposium of Network
and Distributed System Security, 2002.

[43] L. Xiao, Z. Xu, and X. Zhang, "Low-cost and Reliable
Mutual Anonymity Protocols in Peer-to-Peer Networks,"
IEEE Transactions on Parallel and Distributed Systems,
2003.

[44] A. Yaar, A. Perrig, and D. Song, "Pi: A Path Identification
Mechanism to Defend against DDoS Attacks," in Proceed-
ings of IEEE Symposium on Security and Privacy, 2003.

	Introduction
	Related Work
	Design of SSMP
	Secret Sharing Scheme
	Information dispersal algorithm (IDA)
	SSMP Protocol
	Anonymity analysis
	Security analysis

	Performance Evaluation
	Performance Metrics
	Simulation Methodology
	Performance Evaluation

	Conclusion
	References

