
Mantis: A Lightweight, Server-Anonymity Preserving, Searchable P2P

Network

Stephen C. Bono, Christopher A. Soghoian, Fabian Monrose
Information Security Institute
The Johns Hopkins University

Baltimore, Maryland, USA

{sbono|csoghoian|fabian}@jhu.edu

Technical Report TR-2004-01-B-ISI-JHU

June 17, 2004

Abstract

We introduce Mantis, a searchable, peer-to-peer
(P2P) network of anonymous nodes aimed at pro-
tecting the privacy of individuals acting as servers
in the network. In order to minimize the traffic
relayed by peers, servers transfer data directly to
clients via a separate, source-spoofed UDP stream.
This is extremely important as users of a P2P sys-
tem are content to give up bandwidth while down-
loading or uploading, but are unwilling to donate
the majority of their bandwidth in order to relay
traffic for other peers. By relaxing the requirement
of full client anonymity, Mantis enables efficient
data transfers from anonymous servers while lim-
iting the bandwidth costs incurred by other peers
participating in the network.

1 Introduction

The need for anonymous communication on the
Internet has motivated a number of anonymous
networking techniques. Since the early 80s, ap-
plications have been designed to protect Internet
users from censorship, privacy violations, and any
number of lawsuits.

For the most part, the overall goal of these sys-
tems is to ensure privacy for a sender and recipi-
ent, such that neither party can be identified as

an endpoint of the communication stream, and
that the two parties cannot be linked. Moreover,
the goal of most anonymizing systems has been to
protect the privacy interests of only the client in
a client-server relationship, where only the client
knows the identity of the server with which to com-
municate, but not vice versa. This is represen-
tative of privacy with respect to performing web
transactions [14], sending electronic mail [13, 5],
as well as publishing documents [4].

However, as Internet speeds increase, individual
users desire to and are more capable of perform-
ing the actions of a server themselves. Individuals
often act as servers when participating in file shar-
ing networks or hosting personal web pages. It is
increasingly in their interest to remain anonymous
when providing such services.

Strong privacy requirements aimed at pro-
tecting the client have challenged the ability of
anonymizing networks to meet the performance
requirements of their users. Many solutions are
high-latency, as communications between client
and server are typically weighted very heavily in
the server-to-client direction, requiring server re-
sponses to be forwarded through a number of
anonymizing hops.

To address these issues, we introduce Mantis, a
searchable, peer-to-peer (P2P) network of anony-
mous nodes aimed at protecting the privacy of in-

dividuals acting as servers in the network. Our
system takes advantage of the asymmetric nature
of client-server communication, where servers send
far more data than the clients they serve, and alle-
viates the overhead inherent in other anonymous
networks where participants must forward entire
transactions for other peers.

Mantis’s ability to provide anonymity is mod-
eled after Crowds [14], a system for anonymizing
web transactions. Two nodes, a client and server,
establish a channel through a crowd of other users
which they use to search, respond to service re-
quests, and later coordinate a full transfer ses-
sion. Anonymity is preserved by delegating the
responsibility of sending a message from one peer
to another, making the true initiator of a message
extremely difficult to determine.

Unlike Crowds, however, our network is
arranged in a tree-like structure, similar to
Gnutella [21], providing users with the ability to
search the P2P network. Each participant con-
nects to multiple peers and forwards search re-
quests received from one peer to all others. This
allows each search to reach a vast number of par-
ticipants acting as servers as they are propagated
throughout the network in a ripple-like manner.
Search replies are returned to the initiator along
the reverse path traversed by the original search
request, and a tunnel between the client and server
is established through which future transactions
between the two nodes may be performed.

In order to minimize the traffic relayed through
the P2P network, servers transfer data directly to
clients via a separate, source-spoofed UDP stream,
leaving only control data to be tunneled through
the crowd. This reduces the amount of bandwidth
exhausted by peers for relaying messages as well
as increases overall speed and throughput signifi-
cantly more than other anonymizing networks.

Finally, our system does not restrict the entry
or exit of nodes in the network. Nodes along for-
warding paths are assumed to be volatile and may
exit at any time. We show that our protocol is
reliable even as tunnels extending throughout the
network are broken.

The remainder of this paper is organized as fol-
lows: Section 2 discusses related work. Section 3

discusses the goals and terminology. Section 4 pro-
vides a detailed explanation of the methodology
and implementation of Mantis. Section 5 delivers
performance results comparing Mantis to systems
with similar goals. Section 6 is a detailed security
analysis of our scheme. Section 7 discusses di-
rections for future work. Section 8 concludes our
paper.

2 Related Work

Crowds, Mixes [3] and Onion Routing [9] each
present different methods for providing either
sender anonymity, receiver anonymity, sender-
receiver unlinkability, or a combination of the
three, when performing transactions over the In-
ternet. In each of these architectures, the sender
(or client) is required to know beforehand the iden-
tity of the receiver (the server). All these methods
strive first and foremost to protect the identity of
the client. Our scheme differs in both of these re-
gards. In Mantis, clients lack knowledge of the
server’s identity and whereabouts prior to search-
ing, and protecting the anonymity of the server is
paramount.

Crowds originally introduced a scheme to en-
able a large group, or “crowd”, of Internet users
to anonymize their actions on the web by repeat-
edly delegating the responsibility of making web
transactions to other crowd members. One crowd
member performing an action on behalf of another
cannot know with certainty whom they are assist-
ing. Each crowd member that forwards messages
in this manner, including the true initiator, can
plausibly deny being the message source, as they
too may have been given the request to fulfill for
another crowd member.

Crowds alone is incapable of meeting our design
goals, as it primarily protects the client, does not
present an environment where a client may seek
out an anonymous server, and has poor through-
put as peers must forward all data both ways
between client and server. Additionally, Crowds
restricts the creation of static paths to periodic
intervals and is faced with global path recon-
struction should a participant abruptly discon-
nect. Mantis is robust in the face of disconnect-

ing peers, does not require prior knowledge of a
server’s identity, and utilizes the exponential num-
ber of paths formed by creating a tree structure
when seeking out anonymous servers.

The first protocol that we are aware of to re-
lax the need for a bi-directional path through an
anonymizing network is Hordes [12]. Hordes pro-
vides client anonymity by including the client as
a recipient of a multicast transmission from the
server to a subset of users. The intended recipient
accepts the transmission while peers not interested
in receiving the multicast ignore it. By multicas-
ting the majority of data from server to client,
nodes along the forwarding path are relieved of
using large amounts of their upstream bandwidth
for assisting in message transmission. Though
Hordes provides an improvement over Crowds,
peers in this scheme are not entirely free of band-
width donation while participating, since receiv-
ing these multicast transmissions still wastes valu-
able downstream bandwidth. Mantis, on the other
hand, uses a direct UDP connection for server-
to-client communication and affects no peer other
than the client and server themselves. Only a
small amount of control data must be sent along
the forwarding path in the direction of client-to-
server to maintain reliability of the communica-
tion. A comparison of Hordes and Crowds demon-
strates how improvements are made to link uti-
lization and network latency by eliminating the
need for a return path through the Crowd. Mantis
takes advantage of the same property and greatly
reduces the utilized bandwidth along the forward-
ing path, even more so than Hordes.

A subsequent protocol, AFPS [16], similar
in design to Hordes, uses multicast to achieve
anonymity and introduces the , as far as we know
notion of responder anonymity. The idea of hidden
servers has appeared in onion routing as well with
the advent of the second-generation onion router,
Tor [6]. However, these schemes do not meet our
design objectives. In addition to posting search
terms, each system requires all servers to advertise
information needed in order for clients to locate
them, which includes a multicast address in the
case of AFPS, and a set of onion routers when us-
ing Tor. AFPS further restricts clients and servers

by only allowing periodic join times for entering
the network. In contrast, Mantis allows servers
to handle all search queries directly, avoiding the
need to register search terms and allowing instan-
taneous admission to the network.

As multicast is not a widely supported service,
the practical uses of Hordes and AFPS are limited
in scope, and their application to P2P networks
run by individuals (including home users) is min-
imal. Mantis addresses these limitations by uti-
lizing only universally accepted protocols. Man-
tis also achieves improved efficiency over Hordes,
AFPS and Tor by not subjecting relay nodes to
unnecessary , we haven’t talked about traffic that
peers in a multicast group or onion route in-
evitably encounter.

Two systems aimed at producing a search-
able anonymous P2P network are UDPP2P [24]
and MUTE [22]. UDPP2P uses a highly ineffi-
cient process of broadcasting source-spoofed UDP
search messages and control data to all other par-
ticipating clients. MUTE requires all data being
transferred to be forwarded hop-by-hop through
the P2P network. Both of these systems are sus-
ceptible to disconnections disrupting file transfers,
bottlenecking at the hop with the least available
bandwidth, ineffective searching mechanisms, se-
curity flaws, and suffer from depth-of-search per-
formance issues which we discuss in Section 6.

3 Goals and Terminology

The charts in Figure 1 provide an illustration of
the chief differences between Crowds and Man-
tis. Crowds is structured so that a static path
may be formed, through which web transactions
are delegated between peers, providing a client’s
anonymity. Neither the server nor any peer is ca-
pable of determining the true initiator of a ser-
vice request. Mantis adapts the same concepts in
providing anonymity, where no peer can know for
certain the identity of a client or server that has
initiated a service request or reply.

The tree structure is formed by broadcasting
search requests throughout the network. Nodes
cache recently seen messages and drop duplicates
in order to prevent routing loops from forming.

S C

S

C

S

S

S

Forward-channel

Back-channel

Server

Client

JondoS

C

Crowds

Mantis

Figure 1: Crowd Paths vs. Mantis Trees

As a request propagates throughout the tree, it
reaches more and more nodes potentially acting as
anonymous servers. If the search criteria matches,
a server will respond along the reverse path tra-
versed by the original service request.

In this paper, we use the following terminol-
ogy (for the sake of consistency, some of the ter-
minology has been borrowed from section 4 of
Crowds [14]): A jondo is any node in the P2P net-
work and is capable of acting as a client, server,
or message relayer on behalf of other jondos. The
directory server that allows jondos to find other
peers is called a blender. The hop-by-hop path
on which jondos forward messages from client-to-
server is called a back-channel, and a pair of com-
municating jondos over a back-channel do so in a
session.

Mantis has been designed to meet the following
goals:

• Full server anonymity. Jondos acting as
servers in the P2P network have plausible de-
niability with respect to the services they pro-
vide (i.e. what files are served by a partici-
pant in a file-sharing network). Additionally,
any client requesting a service does not first
need to know the identity of the server.

• Partial client anonymity. Jondos searching
for a service have plausible deniability for the
requests that they initiate until the transfer

begins, at which time a client’s identity is re-
vealed to the server.

• Searchable network. Clients may search for
services provided by an unknown server. The
server is not required to register or post search
parameters to a forum prior to being located.
Servers are capable of receiving search queries
themselves and reviewing them individually.

• Minimal back-channel overhead. The amount
of work that must be performed by each jondo
acting as a relay in the back-channel is re-
duced to only handling control data. This
allows for more anonymous connections to be
maintained and for a greater allowable search
depth.

• Ease of entry/exit from the network. Mantis
allows for the easy addition of peers to the
network without requiring path reconstruc-
tions or periodic entry times. As the life-
times of jondos in the Mantis network are
assumed to be short, Mantis is capable of
handling the reconstruction of broken back-
channels upon the untimely removal of jondos
along the path.

The Blender As in Crowds, the blender acts
as a directory server for jondos in the Mantis P2P
network. It allows jondos to register so they can
locate and be located by other peers in the net-
work. When a jondo initializes, it can register
with the blender. This registration is optional,
as the P2P network is functional without an ac-
tive blender, but it is necessary for the purpose
of locating peers. Registration requires a jondo to
reveal its IP address and a listening port for new
connections.

We note that it is not necessary for the blender
to be a specific entity; it can be any kind of fo-
rum allowing jondos to register and others to re-
trieve this information. However, revealing addi-
tional information to the blender is discouraged.
We discuss in section 6 different attacks a blender
can perform after acquiring such information.

Jondos While bootstrapping, a jondo typically
queries a blender for a list of connections. After
identifying another jondo willing to participate,
the two nodes perform an unauthenticated key ex-
change to agree upon a shared encryption key. All
further communication between these two nodes is
encrypted using this key. The jondo repeats this
procedure until it has obtained a user defined min-
imum number of connections.

Once a jondo has acquired a sufficient number
of connections, it may actively participate in the
P2P network as a client or server, and is required
to passively participate by forwarding messages on
behalf of its neighbors.

4 Communication

Search Request Relay Search Request
Relay Search Request

Response
ResponseResponse

Tunnel SYN Relay Tunnel SYN
Relay Tunnel SYN

Tunnel SYN-ACKRelay Tunnel SYN-ACKRelay Tunnel SYN-ACK

Tunnel ACK Relay Tunnel ACK
Relay Tunnel ACK

Download Request Relay Download Request
Relay Download Request

Hello (UDP)

Relay Hello ACK Relay Hello ACK
Hello ACK

Data Transfer (UDP)

Control Data
Relay Control Data

Relay Control Data

Control DataRelay Control DataRelay Control Data

ServerJondoJondoClient

(a)

(c)

(b)

Figure 2: The Mantis Protocol: (a) Searching, (b)
Establishing a Tunnel, (c) Data Transfer

Messages between jondos in the Mantis protocol
are formatted as follows:

{SRC ID, DST ID, TYPE, DATA}

where SRC ID and DST ID are random source
and destination identifiers used for individual ses-
sions, TYPE indicates the message’s purpose, and

DATA contains any information incidental to the
message. The DST ID field is used to route mes-
sages through the back-channel to their intended
recipient. DST ID values of 0 indicate broadcast
messages such as searches and are relayed to all
neighbors.

Anonymous communication in the Mantis net-
work is made possible by masking the true source
and destination addresses of jondos by using ran-
dom identifiers. A jondo receiving a message with
a previously unseen source identifier associates the
jondo that relayed this message as the next hop
along the return path. A message arriving with a
known identifier is relayed to the known next-hop
for the message’s DST ID value.

4.1 Searching

Each jondo is connected to a number of other jon-
dos, who are in turn connected to additional jon-
dos. A broadcasted service request is sent from
the originating jondo to all neighboring jondos.
Each neighbor subsequently re-broadcasts the ser-
vice request to all of its connected neighbors, and
so on. Search requests spread through the network
in a ripple-like form, similar to other power-law
networks [11] such as Gnutella. Duplicate broad-
cast messages are ignored to prevent routing loops,
and a tree structure is formed. The tree is rooted
at the initiator of the service request, and each
node below the root node is a recipient of the re-
quest. However, no node is aware its location rel-
ative to the true initiator within the tree.

To search, the client first generates a random
session identifier that will thereafter be associated
as the source address for this transmission. This
value is used by the initiator to identify responses
and allows jondos to record next-hop information
for the return path. The client then creates a mes-
sage with the chosen SRC ID, sets the DST ID
value to 0 to indicate broadcast, sets the TYPE
field to indicate a search and finally includes any
search terms as DATA.

For each neighboring jondo, the client encrypts
a copy of the entire message with the shared key
between the client and neighbor. The messages
are then sent to the respective neighbors and the

client awaits responses.

4.2 Relaying

Clients and servers intend to anonymize their ac-
tions with the help of jondos acting as relays be-
tween the two endpoints of the communication.
Jondos must maintain a table of destination iden-
tifiers mapping to next-hop jondos where messages
should be forwarded.

When a message is received by a jondo it is
first decrypted using the key shared by this jondo
and the jondo delivering the message. Depend-
ing on the value of the DST ID field, there are
a number of actions a jondo relaying a message
may perform. The jondo first checks whether this
DST ID is intended for this node, and if it is, ac-
cepts the message and continues. If the message
has an unknown DST ID value, the message is
dropped. Otherwise, the neighboring jondo is re-
trieved from a table and the message is prepared
to be relayed, unless the message’s DST ID field
indicates the broadcast value 0, in which case the
message is prepared for forwarding to all neigh-
bors.

While it is necessary for broadcast messages to
reach as many nodes as possible, doing so mind-
lessly is damaging to the network as a whole if
these messages propagate too far. Consequently,
relaying jondos are required to perform a weighted
coin toss to decide whether to continue the mes-
sage propagation. We defer discussion of the need
for a limited path length for performance to sec-
tion 4 and the security implications of a proba-
bilistic dropping mechanism to Section 6.

4.3 Responding

A server willing to meet the needs of a client first
creates a random session identifier of its own. This
is used as the SRC ID for the server in the reply
message to be returned to the client. The DST ID
field is set to the search originator’s identifier. The
SRC ID field to the the responder’s newly gener-
ated identifier. The message TYPE is set to indi-
cate a search response, and any additional infor-
mation needed such as search results are included
in DATA field. Finally, the message is encrypted

with the key shared between this node and the
next-hop jondo mapped to by the DST ID, and
the message is relayed. Jondos along the path then
relay the message back to its original source.

4.4 Tunneling

When a client wishes to communicate directly
with a server it must create a tunnel over the back-
channel to the server. The two entities, client and
server, participate in an unauthenticated key ex-
change to agree upon a shared secret key. All sub-
sequent messages are encrypted end-to-end using
this key, in addition to being encrypted hop-to-hop
between relaying jondos. Any further communi-
cation through the tunnel is done by creating a
message with the appropriate pseudo-source and
destination addresses as well as a DATA field en-
crypted using the shared key between client and
server.

Our system favors client-server communication
where the server transmits the bulk of the data,
allowing the server to communicate with the client
directly over UDP. This requires the client to re-
veal its IP address to the server, which may be
done over the encrypted tunnel. The server then
communicates directly to the client anonymously
over a source-spoofed UDP stream. The back-
channel tunnel is only used to communicate con-
trol data for the reliability of this stream between
the client and server. If need be, the back-channel
can be used for any kind of communication be-
tween client and server.

4.5 Reconnecting

Mantis is designed to tolerate peers with short life
spans. Losing any jondo along the back-channel
disrupts the connection, with the result being that
the client can no longer communicate to the server.
As the number of jondos forming a back-channel
increases, the back-channel itself becomes increas-
ingly volatile. The time needed to complete bulk
data transfers from server-to-client may outlast
the existence of the back-channel. This makes it
imperative that a server be capable of reestablish-
ing a back-channel.

This can be accomplished as the server is aware
of the client’s true identity and Mantis has re-
laxed restrictions on protecting client anonymity.
The server passes a message requesting that a
new back-channel be established with the client,
including the client’s identity and listening port.
The back-channel reestablishment message is re-
layed between jondos a number of times, each time
performing a weighted coin toss, until finally one
of the relay jondos makes a direct connection with
the client. The back-channel is then reestablished
and communication can continue.

Revealing the client’s identity can be avoided
in smaller tightly knit networks. In smaller net-
works where nearly all nodes can be reached from
any given point within the P2P community, only
the pseudo-source identifier needs to be broadcast
until an alternate path is found.

We note that reconnection is only possible once
a full tunnel has been established between client
and server and the client has revealed its address
to the server. If a relay jondo leaves the network
before the tunnel is fully established, then there is
no hope for performing this reconnection.

5 Performance Analysis

Our performance criteria for an anonymizing sys-
tem is based on the amount of work performed by
nodes relaying messages on behalf of other nodes.
We conjecture that, for the most part, users of
a P2P system are willing to give up bandwidth
when downloading for themselves or uploading as
a server, but are unwilling to donate the majority
of their downstream and upstream bandwidth to
assist in transfers for other peers. The overhead
of constant message relaying makes it increasingly
difficult for peers to function as clients or servers
themselves.

Our second quantification of performance is the
measurement of overall data throughput. In a
point-to-point communication, the transmission
rate is hindered solely by the server’s upload speed
or the client’s download speed. However, in an
anonymizing network requiring relays, the highest
achievable data rate is that of the slowest relay.
This presents a particularly devastating problem

to an anonymizing network that allows the partic-
ipation of home users. Home broadband users of-
ten have asymmetric download and upload speeds,
with significantly less upload bandwidth. When
relay jondos are required to forward all data, di-
alup modem users and outbound-bandwidth re-
stricted home users continually bottleneck the sys-
tem.

5.1 Eliminating Passive Jondo Over-
head

The largest drawback to using a system such as
Crowds or MUTE is that they perform poorly
given each of our performance objectives. Each
requires jondos acting as relays to forward every
data packet between client and server. The trans-
fer speed of the communication is only as fast as
the slowest relay jondo’s upload bandwidth, and in
an environment where many P2P users are home
users with restricted outbound bandwidth, this is
unacceptable. Servers and clients experience frus-
tratingly low data rates and relay jondos are ag-
gravated by the saturating effects of assisting oth-
ers.

Crowds’s and MUTE’s design goals prohibit
the two systems from capitalizing on the prop-
erties of a client-server relationship. Typically
the server sends far more data to the client than
vice versa. This is clearly the case with web
servers or file sharing networks where an indi-
vidual node in the act of sharing is considered a
server. Within Crowds and MUTE, these bulk-
data transfers must be relayed hop-to-hop through
the P2P networks to maintain client anonymity.

By revealing the client’s identity to the server,
Mantis allows the complete extraction of bulk-
data transfers from the back-channel in the direc-
tion of server-to-client. The server is able to send
a UDP data stream (while spoofing the source ad-
dress to maintain its own anonymity) directly to
the client avoiding all relay jondos. It is only nec-
essary for a minimal amount of control data to
be transmitted through the back-channel for re-
liability purposes. By doing so, relay jondos are
almost completely relieved of donating bandwidth
to other users and transmission speed is no longer

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f p
ac

ke
ts

re
ce

iv
ed

 b
y

re
la

y
jo

nd
os

Percentage of packets lost

Mantis
MUTE

Figure 3: Packets Forwarded by Relay Jondos in
Mantis vs. MUTE

dependent upon the slowest jondo.
Figure 3 compares the amount of work a re-

lay jondo performs when transferring all commu-
nications through the back-channel (MUTE) vs.
transferring only control data through the back-
channel (Mantis), as the percentage of lost UDP
packets increases. The amount of work is mea-
sured as the total number of packets that must
be relayed. The method for reliable UDP used
for our testing is a simplistic method whereby
all packets are numbered and transferred to the
client directly. The client then asks the server for
packets that were not received. The server trans-
fers each of the remaining packets and again the
client asks the server for those packets that were
lost. This cycle continues until all packets are
received, requiring two control packets per cycle.
Our tests were performed in the network simulator
Simnet [10], with the client and server transferring
1000 packets through a single relay jondo. The re-
sults are averaged over 1000 runs for each loss rate
at 1% intervals.

Packet relaying is performed over reliable TCP
connections and therefore the number of packets
to be relayed is static regardless of packet loss.
When sending direct via UDP to the client, only
control data must be relayed through the back-
channel. As the loss-rate increases, the number
of necessary control data packets increases only

slightly. The graph in Figure 3 shows that even
after an unrealistic 90% of all UDP packets are
lost, relay jondos still have far less work when only
forwarding control data as opposed to relaying the
entire message.

It is noted that as the UDP loss rate increases,
the work that must be performed by the server
increases accordingly. The server is required to
repeatedly retransmit lost datagrams to the point
where total transfer time would be faster if using
the reliable back-channel for the entire communi-
cation. However, as the efficiency of Mantis rests
on the amount of work performed by relay jondos,
forcing entire communications through the back-
channel would violate this performance objective.

Hordes also benefits by removing bulk trans-
fers from the back channel. Client anonymity in
Hordes is achieved by adding the client to a mul-
ticast recipient group populated with other jon-
dos. This eliminates the need for a two way back-
channel just as Mantis does. However, multi-
cast decoy jondos in the network are still affected
by slews of incoming traffic that they will ulti-
mately ignore. As the size of multicast groups and
the number of server-to-client communications in-
creases, the bandwidth saturating effect on jondos
acting as decoys will intensify.

Crowds

Hordes

Mantis

Forward-channel

Back-channel

Server

Client

JondoS

S

S

C

C

C

CS

Figure 4: End Host Communication in Crowds,
Hordes, and Mantis

A comparison of Hordes to Crowds in [12] ver-

ifies that one can achieve a tremendous perfor-
mance improvement by obviating the forwarding
of most messages, and analysis shows that in do-
ing so that the round-trip latency of messages is
cut nearly in half. Still, as the number of server-
to-client transfers within the network grows, relay
(or in this case, decoy) jondos are forced to do-
nate larger and larger amounts of their incoming
bandwidth to the greater good, until they become
saturated. Figure 4 conceptualizes the communi-
cation between end-hosts in Crowds, Hordes and
Mantis, showing how a direct server-to-client com-
munication channel requires the least work to be
performed by each relay jondo.

Mantis has an additional advantage over Hordes
in that it operates over protocols that are available
to all potential participants, whereas multicast is
not deployed widely enough to allow many home
users to benefit by using Hordes.

5.2 Path Length Restrictions

When relaying a service request, each jondo per-
forms a weighted coin toss before decided whether
or not to propagate the message. If the probabil-
ity of forwarding is large enough and the network
size is adequate, service requests reach exponential
numbers of potential servers. This has the bene-
fit of insuring volumes of responses, but has the
serious drawback of saturating the network with
requests, replies and established tunnels. We refer
to nodes reached by a propagating service request
as being within the vicinity of the initiator.

For each hop a service request is expected to
propagate, the number of nodes in the initiator’s
vicinity increases by a factor of the average num-
ber of connections a jondo maintains. The number
of nodes in the vicinity of a given node can be cal-
culated as kn, where k is the average number of
connections to neighboring jondos and n is the ex-
pected path length. The expected path length n
is computed as as n =

∑∞
i=1(i× pi) = (1− p)/p2,

where p is the probability that a service request is
dropped.

A jondo must forward requests and may manage
tunnels for any node within its vicinity. It should
be clear that as the size of a jondo’s vicinity in-

creases, the amount of work it must perform in
order to assist other nodes increases accordingly.
The number of service requests, replies and tun-
nel establishments relayed by a jondo each increase
relative to the expected path length. It is there-
fore imperative to select a forwarding probability
to provide a vicinity size that does not saturate
jondos within the network.

6 Security Analysis

In this section we discuss the degrees to which
participants in the P2P community can maintain
their anonymity as originators or recipients of mes-
sages, and potential attacks aimed at revealing a
participant’s true identity. In doing so, we adapt
the metric put forth in Crowds for quantifying de-
grees of anonymity.

6.1 Degrees of Anonymity

Absolute
Privacy

Beyond
Suspicion

Provable
Innocence

Possible
Innocence

Exposed Provably
Exposed

Figure 5: The Crowds Anonymity Metric

The anonymity metric provides an “informal
continuum”, with levels ranging from absolute pri-
vacy, in which it is near impossible to determine a
participant’s identity, to provably exposed, where
the participant’s identity is revealed and their ac-
tions cannot be refuted. A jondo is beyond suspi-
cion if it is no more likely to be the originator of a
message than any other jondo in the network. A
jondo is considered to have probable innocence if
an attacker has reason to suspect the jondo over
some other participants as being the originator of
a message, but is still most likely not the origina-
tor. Finally, a jondo has possible innocence when
from the attacker’s point of view there is a non-
trivial probability that the participant is not the
message initiator.

6.2 Adversarial Model

In our system, participants must be protected
from a range of potential attackers. The adver-
sary may take the form of a malicious blender
and or colluding jondos. We describe attacks
aimed at building topologies of the P2P network,
identifying the client or server as communicating
end points, and linking communicating clients and
servers. We discuss each aspect of the system that
may be malicious, defenses against possible at-
tacks and the degree of anonymity achieved during
those attacks.

We make the following assumptions about an
adversary that may pose a threat to participants
in the Mantis network:

• An adversary may control one or more
blender services, but cannot control all
blender services.

• An adversary may control one or more jondos,
but cannot control all existing jondos in the
network.

• An adversary may view all encrypted traffic
arriving at or originating from one or more
nodes.

• An active adversary located on a back-
channel may launch a man-in-the-middle
(MITM) attack against the end-to-end en-
crypted tunnel, revealing all control data and
possibly the client’s identity.

• An adversary is capable of initiating, forg-
ing or replaying any number of broadcast
messages with the intent to expose a server
based on a statistical analysis of the replies
returned.

• Encryption is sufficiently strong such that ad-
versaries are incapable of recovering the origi-
nal plaintexts for encrypted messages without
use of the secret key.

6.2.1 Practical Attacks

We omit a number of attacks that are outside the
scope of this paper. For example, denial of service

attacks performed by blenders or malicious jondos
at the message routing level can be trivially per-
formed. However, this is true of any anonymizing
network as well as most file-sharing networks. The
same may be said for malicious servers lurking in
the P2P network. It is acceptable and required
in our system for a client to reveal its identity to
a server for proper communication, and therefore
discussion of how a malicious server may expose
a client is irrelevant. Finally, we do not discuss
the threat posed by a global eavesdropper capa-
ble of witnessing all actions performed by all par-
ticipating nodes. This adversary is for the most
part theoretical, except in relation to small net-
works, and impractical with respect to a widely
distributed P2P network. We therefore limit dis-
cussion to that of a local eavesdropper capable of
overseeing only a minimal number of peers.

6.3 Client and Server Anonymity

It is a design goal of our system to partially protect
client anonymity. However, as a necessary conse-
quence of receiving a source-spoofed UDP trans-
mission, the client must reveal its identity to the
server. As a result, man-in-the-middle (MITM)
attacks launched during tunnel establishment en-
able an attacker to witness all traffic sent between
the client and the server along the back-channel,
including the client’s address. In the event of a
MITM attack, the client is exposed. The server,
however, cannot be identified by eavesdropping
on the back-channel alone. The address of the
server is never revealed to the client and therefore
preserves absolute privacy in this regard. Jondos
along the back-channel can still attempt to iden-
tify the server using more sophisticated attacks.

Mantis provides the same probable innocence for
servers and clients in the network, as clients re-
ceive in Crowds, with respect to guessing the ini-
tiator of a message. Without more sophisticated
attacks and analysis techniques, the probability of
guessing whether or not a jondo sending a mes-
sage is the true initiator, is the probability that a
malicious node appearing on the path is directly
following of the originator. Mantis requires the
probability of forwarding a service request to be

greater than 1/2 in order to maintain probable in-
nocence.

6.4 Topology Building

It is in the interest of an adversary, when attempt-
ing to expose clients and servers, to first acquire
a topology of the overlay P2P network. Even par-
tial mappings can reveal routes used by two com-
municating parties. As path lengths are limited,
the proximity of jondos can potentially implicate
them in a communication. An accurate network
topology can identify nodes that couldn’t possibly
be acting as server or client in a given commu-
nication. Obtaining an accurate overlay mapping
and demonstrating that a large partition of the
network is not involved in the communication de-
creases the anonymity of the true client and server,
as they are now placed in a group of decreased
size. Should the topology created be sufficiently
extensive, it can be used to lower the degree of
anonymity held by a server from beyond suspicion,
where the server is no more likely than any other
node to be a message initiator, to probable or pos-
sible innocence as the subset of possible nodes de-
creases, and in the most extreme cases may expose
the server completely.

6.4.1 Topology Mapping By The Blender

The blender is in an ideal position for such a
topology building attack. The information gath-
ered by the blender about the number of con-
nections, member list requests or any other data
about jondos can potentially be used in mapping
the network. It is therefore necessary to keep the
blender from obtaining all but the minimal infor-
mation needed to serve its purpose. It may ap-
pear beneficial to allow a blender to keep track
of seemingly insignificant information, such as a
jondo’s connection count, for the purpose of fair-
ness when returning connection lists. However,
even given this minimal amount of information,
the blender can infer new connections and discon-
nections based upon the simultaneous updating of
connection count values for two individual jondos.

The blender is not only a threat due to the data
it receives, but also due to the information it dis-

tributes. A malicious blender can selectively re-
turn connection lists containing only connection
information for colluding peers or known invalid
destinations. A trivial example of this attack is
for a blender to return a connection list with only
a single valid peer, or a valid address accompa-
nied by many invalid connections. The blender
can then infer that a connection has been made
between the requestor and the single valid host.

There are a number of defenses available to pre-
vent a blender from making accurate inferences
and constructing a topology. First, jondos re-
questing a connection list should request many
more connections than they actually need. In ad-
dition, they should only connect to a randomly
chosen subset of the returned list. As the num-
ber of unused results increases, the probability of
a blender inferring a jondo’s newly formed connec-
tions decreases.

Second, list requests can be delegated to other
jondos, anonymizing the list request process. This
prevents a blender from inferring connections
based on knowledge of the jondo that requested
the list. By anonymizing the list request process
and only attempting connections with a portion
returned list, the blender is prevented from infer-
ring either party in the newly formed connections.

Finally, utilizing multiple blenders when locat-
ing peers is essential to prevent many kinds of at-
tack. It is obvious that as the number of queried
blenders increases, the less information a single
blender or group of colluding blenders is capable
of gathering. As the number of queried blenders
increases, a single blender will only be able to in-
fer an extremely small percentage of the network
topology with low accuracy if any at all.

6.4.2 Topology Mapping By Jondos

An additional topology building threat arises from
jondos within the P2P network. When messages
are broadcast, they are sent to each neighbor-
ing jondo, who could potentially infer the overlay
topology based upon the order in which broad-
cast messages arrive. Messages arriving later will
most likely arrive from jondos further away from
the initiator. Jondos (or groups of colluding jon-

dos) attempting to map the network can connect
to a very large number of peers in hope of increas-
ing the probability of receiving duplicate broad-
cast messages.

This attack is unrealistic as the time needed to
collect the necessary data for making the topo-
logical inferences can typically outlast the short
lifespan of many nodes within the network. Fur-
thermore, connections with nearly all nodes in the
network are necessary for accurate inferences. In
huge networks this becomes infeasible, as anything
less than a direct connection to each node greatly
decreases the probability of an accurate inference.

6.5 Colluding Jondos

As in the Sybil attack [7], where a single adver-
sary is capable of impersonating many nodes at
once, an adversary in Mantis can physically con-
trol many jondos simultaneously. The goal of the
attack is to overwhelm a jondo’s connection list
with connections to colluding jondos. By doing so,
the jondo is surrounded and any message originat-
ing from or arriving at the target jondo must pass
through one of the colluding jondos. The target
jondo is therefore provably exposed, as messages
originating from the target jondo can be seen as
not first being delivered by a colluder.

The combination of a malicious blender with
colluding jondos can be very powerful. A blender
can return to the target jondo only connection
data for malicious nodes and notify only malicious
jondos when the target is available to receive con-
nections. Once the target jondo’s connection list
is full, the colluding jondos are as capable of iden-
tifying the target jondo as a message originator
with probability of at least the ratio of good con-
nections to malicious. The more malicious con-
nections occupied by the target jondo’s connection
list, the more successful the attack.

To defend against this type of attack, a jondo
should accept connections from a variety of
blenders, so that when attacked by colluding jon-
dos the ratio of good connections to malicious
is as large as possible. By utilizing multiple
blenders, and only accepting a portion of remote
connections, a jondo can reduce this threat signif-

icantly and ultimately obtain a stronger level of
anonymity

6.6 Eavesdropping

An eavesdropper is an adversary with the ability
to oversee all traffic to or from one or more peers in
the P2P community. Realistically, unless all peers
exist within the same network and the eavesdrop-
per is sufficiently powerful, the eavesdropper will
only be capable of intercepting a small fraction
of communications. Even so, merely witnessing a
jondo’s communications can reveal much informa-
tion about its actions.

All connected jondos encrypt messages passed
between them, so a local eavesdropper cannot de-
termine the contents of a transmission by eaves-
dropping alone. However, Mantis’s use of UDP
for bulk data transfers between server and client
will identify a given jondo as either the recipi-
ent (client) or initiator (server) of a UDP stream.
Though the client or server has been exposed for
operating as such, the contents of the communi-
cation remain undeterminable. An eavesdropper
can also infer when a jondo is the originator of an
encrypted message if the message is sent without
first receiving a transmission from a neighboring
jondo.

There are a number of methods for injecting ir-
relevant data into the network aimed at thwarting
these kinds of analysis and once again obtaining
probable innocence. For example, cover traffic can
be sent periodically between neighboring jondos,
making it unrealistic for an eavesdropper to deter-
mine whether messages have been initiated by the
jondo or not. With respect to being the initiator
or recipient of a UDP stream, Jondos can agree
to forward entire bulk data transfers on behalf of
another jondo, or alternatively, fake doing so.

It should be noted that as the number of precau-
tionary hops increases, the closer Mantis’s perfor-
mance converges toward known protocols of lesser
efficiency such as Crowds or MUTE. The eaves-
dropper is only capable of exposing a client or
server as being such an entity, and is not capable
of revealing the contents of data being served. Un-
less knowledge of a node being a client or server is

of importance, independent of content, the eaves-
dropping adversary does not pose any threat to
our network.

6.7 Degradation of Anonymity

A number of results have shown that anonymity
in multi-hop relay networks tends to degrade over
time if nodes maintain long-term communication
sessions. As observed in Crowds and fully quan-
tified as a weakness in [19, 20]. At each path re-
construction, some malicious nodes may occupy
positions on the newly-formed path. For each
path created, the colluding adversaries identify the
node closest to the beginning of the path. After a
number of path reformations, the true path initia-
tor will appear more than any other node as the
closest to the path origin.

A similar attack may be launched against Man-
tis networks, aimed at identifying a server re-
sponding to a service request. Path reformation
in Mantis is much more frequent than Crowds, as
nodes are considered to have moderately short-
lived connections. Furthermore, any node discon-
necting from the network can alter the path by
which a service request propagates. Even the fact
that paths formed by service requests are non-
deterministic adds to the quality of a degradation
attack. After repeated searching and reconnect-
ing to new nodes, the node responding to a service
request most frequently can be considered either
the responding server or the closest node within
the tree to the initiator.

This attack is easily thwarted by caching service
replies at each node. Once a service request has
been made, all future service requests matching
the same criteria specified will be responded to
immediately by the closest node, not necessarily
the actual responder.

In another attack aimed at degrading server
anonymity in Mantis, a malicious jondo attempts
to determine its distance from a particular node.
Service requests are propagated only after a
weighted coin toss. In a large network, where a
path traversed by a service request is most likely
the same each time, a malicious jondo can initi-
ate the search repeatedly and record the number

of responses. If the probability of rebroadcast-
ing a service request is p and the malicious node
has received k responses out of K requests, the
node can solve the equation k/K = pn−1 for n,
where n is the number of hops away the responder
is located. Fortunately, this attack is also pre-
vented by caching search results at each node for-
warding a reply. After the initial attack service
request, responses received will be from the near-
est node only. Furthermore, if the path is non-
deterministic, as in a smaller tightly knit network,
results will be different for each search regardless
of caching.

6.8 Timing Analysis

An attacker may attempt to identify the server
as the initiator of a message by analyzing round
trip time (RTT) delays between relaying messages
and receiving responses. When a request war-
ranting a response is made, it is relayed hop-by-
hop and responses are sent back along the reverse
path, therefore RTT is larger for more distant
servers. Hence, servers are exposed by immedi-
ately responding to a message. A savvy attacker
could determine the number of hops between itself
and the server, which is increasingly dangerous if
the next-hop is the initiator of a response.

To counter these timing attacks and maintain
probable innocence, a server must delay responses
for some random interval. It should be noted, that
the server must continue to use the same delay for
all messages sent as more sophisticated attacks can
identity the initiator after multiple queries if the
delay fluctuates between responses.

6.9 UDP Source Spoofing

A variety of schemes have been proposed for
tracing source-spoofed packets back to their
source [15, 18, 1, 17]. However, these methods
for trace back aimed at identifying a server are
beyond the scope of this paper.

It is the prevalence of DoS attacks that pushes
Internet Service Providers (ISPs) toward imple-
menting stricter egress [17] filtering rules against
home users and portions of their networks. These
egress filters could eliminate Mantis’s ability

to send source-spoofed UDP streams originat-
ing from anonymous servers. However, as most
ISPs have not yet implemented widespread, strict
egress filtering this does not appear to be a prob-
lem.

Less strict filtering rules are still acceptable by
Mantis. Servers can determine their level of egress
filtering present and spoof within the allowed ad-
dress space. After creating a tunnel between client
and server, the server attempts to spoof each octet
of their address. If the connection is not success-
ful, the server can then reveal a portion of its ad-
dress, the first octet, and attempt the connection
again. This process can continue stepping back-
wards and narrowing the allowed address space,
until the level of egress filtering is determined.

It is known that wide scale egress filtering could
effectively eliminate most DoS attacks based on
source address spoofing, though this is unlikely to
occur in the near future.

7 Future Work

Currently, Mantis has only been tested using a
simplistic UDP reliability scheme, but many more
efficient schemes for providing reliable UDP for
bulk data transfers can be applied transparently
for communication between clients and servers.
Forward Error Correction and the use of Tornado
Codes [2] as well as TCP friendly [23] protocols for
implementing congestion control over UDP would
reduce the overhead experienced from lost UDP
packets and increase throughput over the back-
channel significantly.

It may be possible to use Mantis as a network
for seeking out anonymous web servers resistant
to DoS attacks. The server does not need to reply
with its true identity and can communicate with
the client via anonymous UDP. It may be possible
for clients to obtain a membership with an anony-
mous server and then search the network for some
value agreed upon in advance. If the server wishes
to revoke a membership, it can simply ignore these
requests.

Another future improvement to Mantis could
be to study the effects of using multiple back-
channels for increasing throughput. It may be

possible to utilize a number of these channels and
therefore provide for the client’s anonymity as well
as the server’s. If content being served within the
network is distributed, it may be possible using
hashes of this data, to receive bulk data transfers
from more than one server simultaneously.

8 Summary

At the cost of revealing the client’s identity, we
have shown how a P2P network operating much
like today’s file-sharing networks can be main-
tained and provide for anonymous servers. Clients
can search for content provided by servers, es-
tablish an encrypted communication tunnel with
them, and finally perform a large data transfer, all
while maintaining the server’s anonymity. Bulk
communication from server-to-client is sent via a
source-spoofed UDP stream relieving relay nodes
of needlessly forwarding large amounts of data on
behalf of other users.

Acknowledgements

Thanks to Matt Green, Sam Small, Clay Shields,
Andrei Serjantov, Annie Chen, James Riordin,
Tadek Pietraszek and Malene Wang for their com-
ments and suggestions and very helpful reviews.

References

[1] H. Burch and W. Cheswick. Tracing Anonymous
Packets to Their Approximate Source. USENIX
Proceedings of 2000.

[2] J. Byers, M. Luby, M: Mitzenmacher and A. Rege.
A Digital Fountain Approach to Reliable Distribu-
tion of Bulk Data. Proceedings of ACM Sigcomm
’98, Vancouver, Canada, September 1998.

[3] D. Chaum. Untraceable electronic mail, return ad-
dresses and digital pseudonyms. Communications
of the ACM volume 24. February, 1981.

[4] Ian Clarke, Oskar Sandberg, Brandon Wiley, and
Theodore W. Hong. Freenet: A Distributed Anony-
mous Information Storage and Retrieval System.
In the Proceedings of Designing Privacy Enhanc-
ing Technologies: Workshop on Design Issues in

Anonymity and Unobservability, July 2000, pages
46-66.

[5] George Danezis, Roger Dingledine, and Nick Math-
ewson. Mixminion: Design of a Type III Anony-
mous Remailer Protocol. In the Proceedings of the
2003 IEEE Symposium on Security and Privacy,
May 2003.

[6] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The Second-Generation Onion
Router. In the Proceedings of the 13th USENIX
Security Symposium, forthcoming.

[7] John R. Douceur. The Sybil Attack. In Proc. of
the IPTPS02 Workshop, Cambridge, MA (USA),
March 2002.

[8] P. Ferguson and D. Senie. Network Ingress Filter-
ing: Defeating Denial of Service Attacks which Em-
ploy IP Source Address Spoofing. RFC 2827.

[9] D. Goldschlag, M. Reed and P. Syverson. Onion
Routing. Communications of the ACM volume 42,
issue 2. Feburary, 1999.

[10] S. Kamara, D. Davis, R. Caudy, F. Monrose. SIM-
NET: An Extensible Platform for Simulating Net-
work Attacks and Defenses. Submitted to ACSAC,
2004

[11] Lada A. Adamic, Rajan M. Lukose, Amit R.
Puniyani and Bernardo A. Huberman. Search in
Power-Law Networks. Phys. Rev. E, 64 46135
(2001).

[12] Brian Neil Levine, Clay Shields: Hordes: a
Multicast-Based Protocol for Anonymity. Journal
of Computer Security 10(3): 213-240 (2002)

[13] Ulf Mller, Lance Cottrell, Peter Palfrader, and
Len Sassaman. Mixmaster Protocol Version 2
Draft, July 2003.

[14] M. Reiter and A. Rubin. Crowds: Anonymity for
Web Transactions. ACM Transactions on Informa-
tion System Security 1. April, 1998.

[15] S. Savage, D. Wetherall, A. Karlin and T. Ander-
son. Practical Network Support for IP Traceback.
SIGCOMM. 2000.

[16] Vincent Scarlata, Brian Neil Levine, and Clay
Shields. Responder Anonymity and Anonymous
Peer-to-Peer File Sharing. in Proc. IEEE Intl.
Conference on Network Protocols (ICNP) 2001.
November 2001.

[17] A. Snoeren, C. Partridge, et al. Hash-Based IP
Traceback. Proceedings of ACM SIGCOMM 2001.

[18] D. Song and A. Perrig. Advanced and Authenti-
cated Marking Schemes for IP Traceback. INFO-
COM 2001.

[19] Matt Wright, Micah Adler, Brian Neil Levine, and
Clay Shields. Defending Anonymous Communica-
tion Against Passive Logging Attacks. IEEE Sym-
posium on Security and Privacy, Oakland, CA.
May 2003.

[20] Matt Wright, Micah Adler, Brian Neil Levine, and
Clay Shields. An Analysis of the Degradation of
Anonymous Protocols. In Proc. ISOC Network and
Distributed System Security Symposium (NDSS
2002), February 2002.

[21] The Gnutella Protocol Specification v0.41 Docu-
ment Revision 1.2.

[22] The Mute File Sharing System. Web page at
http://mute-net.sourceforge.net/

[23] The TCP-Friendly Website. Pittsburg Supercom-
puting Center. Web page at http://www.psc.edu/
networking/tcp_friendly.html

[24] The UDPP2P Project. Web page at http://
sourceforge.net/projects/udpP2P/

