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1. Voronoi Games on Graphs [2]

THE Voronoi game on graphs consists of a graph G(V,E) and k play-
ers (k < n = |V |). The graph induces a distance between vertices

d : V × V → N ∪ {∞}, which is defined as the minimal number of edges
of any connecting path, or infinite if the vertices are disconnected.
The strategy set of each player is V . A strategy profile of k players is a vector
f = (f1, . . . , fk) associating each player to a vertex.
For every vertex v ∈ V — called customer — the distance to the closest fa-
cility is denoted as d(v, f ) := minfi d(v, fi). Customers are assigned in equal
fractions to the closest facilities as follows. The strategy profile f defines the
generalized partition {F1, . . . , Fk}, where for every player 1 ≤ i ≤ k and every
vertex v ∈ V ,

Fi,v =

1/| arg minj d(v, fj)| if d(v, fi) = d(v, f ),

0 otherwise.

We call Fi the Voronoi cell of player i. Now the payoff of player i is the (frac-
tional) amount of customers assigned to it (see figure 1), that is pi :=

∑
v∈V Fi,v.

A pure Nash equilibrium is a strategy profile in which no player has an incen-
tive to unilaterally change his strategy.
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Figure 1: A strategy profile of a graph (players are dots) and the correspond-
ing payoffs.

Theorem 1 Given a graph G(V,E) and a set of k players, deciding the exis-
tence of Nash equilibrium for k players on G is NP-complete for arbitrary k,
and polynomial for constant k.

WE introduce a new inefficiency measure, called the social cost discrep-
ancy. The social cost discrepancy of the game is defined as the ratio

between the cost of the worst Nash equilibrium and the cost of the best one.
The idea is that a small social cost discrepancy guarantees that the social
costs of Nash equilibria do not differ too much, and measures a degree of
choice in the game. Moreover, in some settings it may be unfair to compare
the cost of a Nash equilibrium with the optimal cost, which may not be attained
by selfish agents.
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Figure 2: Illustration of different inefficiency measures, where PoA and PoS
stand for the price of anarchy and the price of stability, respectively. Note that,
the cost discrepancy is not the ratio between PoA and PoS.

Theorem 2 For any connected graph G(V,E) and any number of players k

the social cost discrepancy is O(
√
kn) and Ω(

√
n/k), where n = |V |.

2. Scheduling Games in the Dark [1]

IN a scheduling game, each player owns a job and chooses a machine to
execute it. While the social cost is the maximal load over all machines

(makespan), the disutility (cost) of each player is the completion time of its
own job. In the game, players may follow selfish strategies to optimize their
cost and therefore their behavior does not necessarily lead the game to an
equilibrium. Even in the case there is an equilibrium, the social cost may be
much larger than the social optimum, and this inefficiency is measured by the

price of anarchy (PoA) – the worst ratio between the makespan of an equilib-
rium and the optimum. Coordination mechanisms aim to reduce the price of
anarchy by designing scheduling policies that specify how jobs assigned to a
same machine are to be scheduled.

TYPICALLY, these policies define the schedule according to the processing
times as announced by the jobs. One could wonder if there are policies

that do not require this knowledge, even no information of jobs but still provide
a good PoA. This would make the processing times be private information and
naturally turn the policy to be truthful, i.e., no job has an incentive to report
an incorrect information. We study these so-called non-clairvoyant policies.
In particular, we study the RANDOM policy that schedules the jobs in a ran-
dom order without preemption, and the EQUI policy that schedules the jobs in
parallel using time-multiplexing, assigning each job an equal fraction of CPU
time.

CONSIDER a schedule σ in which there are k jobs with processing times
p1j ≤ p2j ≤ . . . ≤ pkj assigned to machine j, then the cost of job i sched-

uled in machine j under different policies are the following.

ci = pij +
1

2

∑
1≤i′≤k

pi′j (RANDOM)

ci = p1j + . . . + pi−1,j + (k − i + 1)pij (EQUI)

Theorem 3 Consider the scheduling game under different policies in different
machine environments. Job i is balanced if maxj pij/minj pij ≤ 2. We have
the following.
1. For the RANDOM policy on unrelated machines, it is not a potential game

for 3 or more machines, but it is a potential game for 2 machines and bal-
anced jobs. On uniform machines with balanced speeds (all jobs are bal-
anced), the RANDOM policy induces Nash equilibrium.

2. For the EQUI policy, it is an exact potential game.

Theorem 4 In term of inefficiency measured by PoA, EQUI is asymptotically
as good as the best strongly local policy – policies in which each machine
may look at processing times of jobs assigned to it and decides the schedule.

3. Online Auction with single-minded customers [3]

CONSIDER a production site, that produces some perishable good, at the
regular rate, for every time unit, one item is produced. These items have

to be delivered immediately to some customer, as they cannot be stored, as
for example electricity. Each decision is irrevocable. In this scenario, the
single-minded customers arrive online. Every customer i arrives at some re-
lease time ri ∈ N, and announces that he would pay pi e if he gets ki items
before the deadline di, otherwise he pays nothing. In optimization problem,
the goal is to maximize the welfare, which is the sum of pi over all satisfied
customers.

WE are also interested in truthful online mechanism. Roughly speaking,
a mechanism consist of two algorithms: (i) allocation algorithm that to

determine which customers receive items (ii) payment algorithm that if a cus-
tomer is satisfied, how much she has to pay. If qi be the price that a satisfied
player i has to pay then player i’s utility is pi − qi. If i is not satisfied then
her utility is 0. All customers are rational, they may misreport the values pi in
order to maximize their utility. A truthful (incentive-compatible) mechanism is
a mechanism in which players have an incentive to report their true values.

Theorem 5 For optimization problem, there exists an algorithm that gives a
tight bound Θ(k/ log k)-competitive where k = maxi ki. Moreover, there is a
truthful mechanism with the same competitive ratio based on this algorithm.

References
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perishable items. Submitted.

35th International Conference on Current Trends in Theory and Practice of Computer Science, Špindlerův Mlýn, Czech Republic, January 24-30, 2009.


