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1 Introduction

Let C be a genus g curve, J¢ its Jacobian, and H a Weil-isotropic rank- g subgroup of J¢[2]; the quotient
abelian variety A = J¢/ H is principally polarized, but for g = 4 is generally not a Jacobian. A fortiori, if C
is hyperelliptic and g = 3, then A is generally not the Jacobian of a hyperelliptic curve.

It does not seem well-known that, for large enough g, there exists at least one pair of hyperelliptic
curves C, C' of genus g whose Jacobians are (2,...,2)-isogenous. We note nevertheless that B. Smith has
obtained some families! with 3 (resp. 2, resp. 1) parameters of such pairs of curves of genus 6,12, 14
(resp. 3,6,7, resp. 5,10, 15).

We show here that for all g = 2, there exists a (g + 1)-parameter family of pairs of hyperelliptic curves
(C,C") whose Jacobians are connected by an isogeny with kernel isomorphic to (Z/27)8. More precisely,

Theorem. Let g be a positive integer, and let K = Q(ay, ..., ag, v) where ay, ..., ag, v are indeterminates.
There exists a 2-2 correspondence between the curves C and C' defined by

C:y?=(x-v)(wx-1DE*—ar)- (x> - ag)
and
C':y* = (x-v)(wx— (D) = by)-+ (x* - by),

whereb; = (a;v? —1)/(a; — v?) for1 < i < g, inducing a (2,...,2)-isogeny between their Jacobians.
The Jacobian of C is absolutely simple; further, when we specialize the a; and v at elements of C, the
image of the curves C in the moduli space of hyperelliptic curves of genus g over C has dimension g + 1.

Remark 1. When g is even, this allows us to obtain a (g/2+1)-dimensional family of hyperelliptic curves
whose Jacobians have endomorphism rings containing Z[v/2]: if v and a; (with 1 < i < g/2) are arbitrary,
then we take ag/2+; = (a; vE— 1)/(a; — v forl<is< gl2.

Remark 2. Inthe case g = 2, we recover the Richelot correspondence (see, for example, [1], [2], and [3]).

1This work has now appeared. See B. Smith, Families of Explicit Isogenies of Hyperelliptic Jacobians, in Arithmetic, Geometry,
Cryptography and Coding Theory 2009, Contemp. Math. 521 (2009), 121-144 (also http://hal.inria.fr/inria-00420605).
Specifically, it defines three-dimensional hyperelliptic families for g = 6,12, 14; two-dimensional families for g = 3,6,7,10,20,30;
and one-dimensional families for g = 5,10, 15. The kernels of the isogenies are not all of the form (Z/27)8. A related construction,
yielding non-hyperelliptic families in arbitrarily high genus, has also appeared: see B. Smith, Families of explicitly isogenous Jaco-
bians of variable-separated curves, LMS J. Comput. Math. 14 (2011), 179-199 (also http://hal.inria.fr/inria-00516038).



2 Proof

We maintain the notation of the theorem. We write pg(x) = qo(x) = (x — v)(vx—1) and p;(x) = x% - a;
and q;(x) = x? —b; for 1 < i < g; if we set

S(x,z) = x22% - vz(x2 + zz) +1,
where z is an indeterminate, then we have the identities

p2(W)p1(xX)q2(2) — p1(V) p2(x)q1(2) + (a1 — a2)S(x,2) =0

and
1- UZ)S(X, z2) =2po(x)qo(2) — (1/2 +1)1—-xv—2zv+ xz)z,
whence
p2(V)p1(X)q2(2) = p1 (V) p2(x)g1(2) (mod S)
and

2po(x)qo(2) = (l/2 +1)(1 —xv—zv+xz)2 (mod S).

2.1 The case where g is even

First, suppose that g is even: then for 1 < i < g, the equation above yields
P2i (V) P2i-1(X) G2 (2) = p2i-1(V) p2i(X) g2i-1(2) (mod S) for 1=i=g/2.
It follows, writing
M(x,2) = p2(V)pa (V) - - pg (V) P1(X) G2(2) p3(x) G4(2) - - pg-1(X) g4 (2),

that ¢ ¢
[Tpipi0) ][] gi(2) = M(x,2* (mod 9).
i=1 i=1

If C is the curve defined by

g g
C:yzzAHpi(x) whereA=2(vz+1)l_[Pi(v)
i=0 i=1

and C' the curve defined by
g

Cc':*=1]qi),
i=0

then we have a correspondence I on C x C’ defined by

r.| Sx2=0,
| yt=M(x,2) @+ 1)(1-xv-zv+X2).

By construction, the classes of the divisors (y/a;,0) — (—+/a;,0) are in the kernel of the homomorphism
Jc — J¢r induced by T, which therefore contains the subgroup of order 28 of J¢[2] generated by these
classes. The theorem for even g then follows from the following proposition:

Proposition. LetT' < C' x C be the transpose of T'; thenT oT acts on Pic®(C) by D — 2D.

We prove without difficulty, using the defining equations for I, that the image of a point P = (X, Y)
of C under I oT is the divisor 2P + P; + w(P;), where P; is a point of C with x(P;) = —X and w is the
hyperelliptic involution of C; the action on degree-0 divisor classes is therefore multiplication by 2.



2.2 The case where g is odd

To prove the theorem for odd g it is enough to specialize ag — 0 in the construction above. The curves
C and C’ are then of genus g — 1; an easy calculation gives the defining equation for C’ in the theorem.

2.3 Dimension in the moduli space

1) The case g = 2. The generic hyperelliptic curve of genus 2 is in the form of C above: indeed, if
Py,..., Pg are six generic points on the projective line, then there exists a unique involution u such
that u(P;) = P» and u(P3) = Py; there then exists a unique involution w, commuting with u, such that
w(Ps) = Pg. Choosing coordinates such that # maps x — —x, the involution w has the form x — #/x,
which we can bring into the form x — 1/x by a homothety.

2) The case g = 3. Two hyperelliptic curves are isomorphic if and only if there exists a homography
mapping the Weierstrass points of one onto those of the other. It therefore suffices to prove that if
v, X1,...,Xg are generic points of P!, and if h : x — (ax + b)/(cx + d) is a homography such that the
set A= {h(v),h(1/v),h(x1),..., h(xg), h(—x1),..., h(—Xg)} is in the form {w,1/w, y1,..., Yo —V1,..., —Vg}»
then h is of the form x — +x or x — +1/x.

Let B=h"1 ({y1,—y1,¥2,—¥2,¥3,—y3}); then B is (globally) fixed by the involution h~luh, where u is
the involution x — —x. However, if a;,..., ag are six distinct field elements, then there exists an involu-
tion permuting ay;_; and ay; for 1 < i < 3 if and only if

Aegasds + dgds g + dgapad) + dsaxa) + ayasds + dxasas
=dagdsa) + agasay + agdsas + asaqsdz + axaas + azayds.

It follows that each element of B is algebraically dependent on the others; hence, if b is an element of B
in the form +x; then {x;, —x;} ¢ B, and if b is equal to v or 1/v then {v,1/v} < B. Up to a permutation of
{1,..., g}, the set B must have the form B; = {x, —x1, X2, — X2, v, 1/ v} or By = {x1, —X1, X2, — X2, X3, —X3}.

As shown above, six generic points of P! can be written (in a suitable coordinate system) in the form
{x1,—x1, X2, —X2, 1, 1/v}; hence, generically there is no involution fixing Bj, so B is of the form B, and
h(iv,1/v}) = {w,1/w}. But the generic genus 2 curve with automorphism group Z/27)? is in the form
¥? = (2% = x3)(x® — x3)(x* - x3), its automorphism group formed by the four elements (x, y) — (£x, £ ).
Generically, the only involution fixing B, is x — —x; it follows that ht uh(x;) = u(x;) for 1 <i <3; hence
h™'uh = u, and h is a homography commuting with u, and therefore of the form x — ax or x — a/x.
Since h maps {v,1/v} onto {w, 1/ w} we have a? = 1, and the result follows.

2.4 Simplicity of J¢

For g =2, the curve C is the generic curve of genus 2, so its Jacobian is absolutely simple.
For g = 3 we specialize the indeterminates, taking for example v =2, a; =1, ay = 3, az = 4; the
characteristic polynomial of Frobenius for the reduction modulo 13 is

y®+2y° +3y* + 44y +39y% + 228y + 2197.

Itsroots are —(1+2i cos 57”) (1+2icos 37”) (1+2icos %) and its conjugates, with i = VAST they generate the
field Q(i,2cos 27”), whose roots of unity are those of the field L = Q(7). If the Jacobian were not absolutely
simple then there would exist an integer 7 such that y” is in L, and then y" would be equal (up to a root
of unity) to (3 +2i)"; therefore, up to a root of unity, y would be an element of L.

For g = 4, we work recursively on g: Specializing xg — 0, we find the curve of genus g — 1 associated
with v, x1,..., Xg—1; soif Jc is not simple then it must be isogenous to D x E, where D is absolutely simple
of dimension g —1.

If we specialize v at v/—=1, the curve C admits an automorphism (x,y) — (=x,y), and is a double
covering of the two curves defined by y2 =(x+1)(x— xf) e (x— xé) and y2 =x(x+1D(x- xf) e (x— xé),
which have genus g/2 if g is even and genus (g — 1)/2 and (g + 1)/2 otherwise; so J¢ is isogenous to the
product of their Jacobians, which are generically absolutely simple. This contradicts the fact that J¢ is
isogenous to D x E; it follows that, when g = 4, the Jacobian J¢ is absolutely simple.
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