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1 Introduction

Let C be a genus g curve, JC its Jacobian, and H a Weil-isotropic rank-g subgroup of JC [2]; the quotient
abelian variety A = JC /H is principally polarized, but for g ≥ 4 is generally not a Jacobian. A fortiori, if C
is hyperelliptic and g ≥ 3, then A is generally not the Jacobian of a hyperelliptic curve.

It does not seem well-known that, for large enough g , there exists at least one pair of hyperelliptic
curves C ,C ′ of genus g whose Jacobians are (2, . . . ,2)-isogenous. We note nevertheless that B. Smith has
obtained some families1 with 3 (resp. 2, resp. 1) parameters of such pairs of curves of genus 6,12,14
(resp. 3,6,7, resp. 5,10,15).

We show here that for all g ≥ 2, there exists a (g +1)-parameter family of pairs of hyperelliptic curves
(C ,C ′) whose Jacobians are connected by an isogeny with kernel isomorphic to (Z/2Z)g . More precisely,

Theorem. Let g be a positive integer, and let K =Q(a1, . . . , ag , v) where a1, . . . , ag , v are indeterminates.
There exists a 2-2 correspondence between the curves C and C ′ defined by

C : y2 = (x − v)(v x −1)(x2 −a1) · · · (x2 −ag )

and
C ′ : y2 = (x − v)(v x − (−1)g )(x2 −b1) · · · (x2 −bg ),

where bi = (ai v2 −1)/(ai − v2) for 1 ≤ i ≤ g , inducing a (2, . . . ,2)-isogeny between their Jacobians.
The Jacobian of C is absolutely simple; further, when we specialize the ai and v at elements of C, the

image of the curves C in the moduli space of hyperelliptic curves of genus g over C has dimension g +1.

Remark 1. When g is even, this allows us to obtain a (g /2+1)-dimensional family of hyperelliptic curves
whose Jacobians have endomorphism rings containingZ[

p
2]: if v and ai (with 1 ≤ i ≤ g /2) are arbitrary,

then we take ag /2+i = (ai v2 −1)/(ai − v2) for 1 ≤ i ≤ g /2.

Remark 2. In the case g = 2, we recover the Richelot correspondence (see, for example, [1], [2], and [3]).

1This work has now appeared. See B. Smith, Families of Explicit Isogenies of Hyperelliptic Jacobians, in Arithmetic, Geometry,
Cryptography and Coding Theory 2009, Contemp. Math. 521 (2009), 121–144 (also http://hal.inria.fr/inria-00420605).
Specifically, it defines three-dimensional hyperelliptic families for g = 6,12,14; two-dimensional families for g = 3,6,7,10,20,30;
and one-dimensional families for g = 5,10,15. The kernels of the isogenies are not all of the form (Z/2Z)g . A related construction,
yielding non-hyperelliptic families in arbitrarily high genus, has also appeared: see B. Smith, Families of explicitly isogenous Jaco-
bians of variable-separated curves, LMS J. Comput. Math. 14 (2011), 179–199 (also http://hal.inria.fr/inria-00516038).
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2 Proof

We maintain the notation of the theorem. We write p0(x) = q0(x) = (x − v)(v x −1) and pi (x) = x2 − ai

and qi (x) = x2 −bi for 1 ≤ i ≤ g ; if we set

S(x, z) = x2z2 − v2(x2 + z2)+1,

where z is an indeterminate, then we have the identities

p2(v)p1(x)q2(z)−p1(v)p2(x)q1(z)+ (a1 −a2)S(x, z) = 0

and
(1− v2)S(x, z) = 2p0(x)q0(z)− (v2 +1)(1−xv − zv +xz)2,

whence
p2(v)p1(x)q2(z) ≡ p1(v)p2(x)q1(z) (mod S)

and
2p0(x)q0(z) ≡ (v2 +1)(1−xv − zv +xz)2 (mod S).

2.1 The case where g is even

First, suppose that g is even: then for 1 ≤ i ≤ g , the equation above yields

p2i (v)p2i−1(x)q2i (z) ≡ p2i−1(v)p2i (x)q2i−1(z) (mod S) for 1 ≤ i ≤ g /2.

It follows, writing

M(x, z) = p2(v)p4(v) · · ·pg (v)p1(x)q2(z)p3(x)q4(z) · · ·pg−1(x)qg (z),

that
g∏

i=1
pi (v)pi (x)

g∏
i=1

qi (z) ≡ M(x, z)2 (mod S).

If C is the curve defined by

C : y2 = A
g∏

i=0
pi (x) where A = 2(v2 +1)

g∏
i=1

pi (v)

and C ′ the curve defined by

C ′ : t 2 =
g∏

i=0
qi (z),

then we have a correspondence Γ on C ×C ′ defined by

Γ :

{
S(x, z) = 0,
y t = M(x, z)(v2 +1)(1−xv − zv +xz).

By construction, the classes of the divisors (
p

ai ,0)− (−pai ,0) are in the kernel of the homomorphism
JC → JC ′ induced by Γ, which therefore contains the subgroup of order 2g of JC [2] generated by these
classes. The theorem for even g then follows from the following proposition:

Proposition. Let Γ′ ⊂C ′×C be the transpose of Γ; then Γ◦Γ acts on Pic0(C ) by D 7→ 2D.

We prove without difficulty, using the defining equations for Γ, that the image of a point P = (X ,Y )
of C under Γ′ ◦Γ is the divisor 2P +P1 +w(P1), where P1 is a point of C with x(P1) = −X and w is the
hyperelliptic involution of C ; the action on degree-0 divisor classes is therefore multiplication by 2.
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2.2 The case where g is odd

To prove the theorem for odd g it is enough to specialize ag → 0 in the construction above. The curves
C and C ′ are then of genus g −1; an easy calculation gives the defining equation for C ′ in the theorem.

2.3 Dimension in the moduli space

1) The case g = 2. The generic hyperelliptic curve of genus 2 is in the form of C above: indeed, if
P1, . . . ,P6 are six generic points on the projective line, then there exists a unique involution u such
that u(P1) = P2 and u(P3) = P4; there then exists a unique involution w , commuting with u, such that
w(P5) = P6. Choosing coordinates such that u maps x 7→ −x, the involution w has the form x 7→ t/x,
which we can bring into the form x 7→ 1/x by a homothety.

2) The case g ≥ 3. Two hyperelliptic curves are isomorphic if and only if there exists a homography
mapping the Weierstrass points of one onto those of the other. It therefore suffices to prove that if
v, x1, . . . , xg are generic points of P1, and if h : x 7→ (ax + b)/(cx + d) is a homography such that the
set A = {h(v),h(1/v),h(x1), . . . ,h(xg ),h(−x1), . . . ,h(−xg )} is in the form

{
w,1/w, y1, . . . , yg ,−y1, . . . ,−yg

}
,

then h is of the form x 7→ ±x or x 7→ ±1/x.
Let B = h−1({y1,−y1, y2,−y2, y3,−y3}); then B is (globally) fixed by the involution h−1uh, where u is

the involution x 7→ −x. However, if a1, . . . , a6 are six distinct field elements, then there exists an involu-
tion permuting a2i−1 and a2i for 1 ≤ i ≤ 3 if and only if

a6a5a3 +a6a5a4 +a6a2a1 +a5a2a1 +a1a4a3 +a2a4a3

= a6a5a1 +a6a5a2 +a6a4a3 +a5a4a3 +a2a1a3 +a2a1a4.

It follows that each element of B is algebraically dependent on the others; hence, if b is an element of B
in the form ±xi then {xi ,−xi } ⊂ B , and if b is equal to v or 1/v then {v,1/v} ⊂ B . Up to a permutation of
{1, . . . , g }, the set B must have the form B1 = {x1,−x1, x2,−x2, v,1/v} or B2 = {x1,−x1, x2,−x2, x3,−x3}.

As shown above, six generic points of P1 can be written (in a suitable coordinate system) in the form
{x1,−x1, x2,−x2, v,1/v}; hence, generically there is no involution fixing B1, so B is of the form B2 and
h({v,1/v}) = {w,1/w}. But the generic genus 2 curve with automorphism group Z/2Z)2 is in the form
y2 = (x2 − x2

1)(x2 − x2
2)(x3 − x2

3), its automorphism group formed by the four elements (x, y) 7→ (±x,±y).
Generically, the only involution fixing B2 is x 7→ −x; it follows that h−1uh(xi ) = u(xi ) for 1 ≤ i ≤ 3; hence
h−1uh = u, and h is a homography commuting with u, and therefore of the form x 7→ ax or x 7→ a/x.
Since h maps {v,1/v} onto {w,1/w} we have a2 = 1, and the result follows.

2.4 Simplicity of JC

For g = 2, the curve C is the generic curve of genus 2, so its Jacobian is absolutely simple.
For g = 3 we specialize the indeterminates, taking for example v = 2, a1 = 1, a2 = 3, a3 = 4; the

characteristic polynomial of Frobenius for the reduction modulo 13 is

y6 +2y5 +3y4 +44y3 +39y2 +228y +2197.

Its roots are −(1+2i cos 5π
7 )(1+2i cos 3π

7 )(1+2i cos π7 ) and its conjugates, with i =p−1; they generate the

fieldQ(i ,2cos 2π
7 ), whose roots of unity are those of the field L =Q(i ). If the Jacobian were not absolutely

simple then there would exist an integer n such that yn is in L, and then yn would be equal (up to a root
of unity) to (3±2i )n ; therefore, up to a root of unity, y would be an element of L.

For g ≥ 4, we work recursively on g : Specializing xg → 0, we find the curve of genus g −1 associated
with v, x1, . . . , xg−1; so if JC is not simple then it must be isogenous to D×E , where D is absolutely simple
of dimension g −1.

If we specialize v at
p−1, the curve C admits an automorphism (x, y) 7→ (−x, y), and is a double

covering of the two curves defined by y2 = (x +1)(x − x2
1) · · · (x − x2

g ) and y2 = x(x +1)(x − x2
1) · · · (x − x2

g ),
which have genus g /2 if g is even and genus (g −1)/2 and (g +1)/2 otherwise; so JC is isogenous to the
product of their Jacobians, which are generically absolutely simple. This contradicts the fact that JC is
isogenous to D ×E ; it follows that, when g ≥ 4, the Jacobian JC is absolutely simple.
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