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For all integers n, we let G,, denote the polynomial

[n/2]

Ga(D = [] (T—zcos(?)),

k=1

where | x] denotes the integer part of x. We say that a curve C of genus |n/2], defined over a field k,
has real multiplication by G, if there exists a correspondence € on C such that G, is the characteristic
polynomial of the endomorphism induced by % on the regular differentials on C.

The endomorphism ring of the Jacobian J¢ of such a curve C contains a subring isomorphic to
Z[X1/(G,(X)) whose elements are invariant under the Rosati involution. In particular, if n is an odd
prime, then J¢ has real multiplication by Z[2 cos 27”] in the usual terminology (see [9], for example).

In this article we construct, for all integers n = 4, a 2-dimensional family of hyperelliptic curves of
genus |n/2| defined over C with real multiplication by G,. More precisely, for every elliptic curve E
defined over a field k of characteristic zero together with a k-rational cyclic subgroup G of order n we
define a one-parameter family of hyperelliptic curves of genus |n/2] defined over k with real multipli-
cation by G,,. If G is generated by a k-rational point, then the associated correspondence is k-rational.

In the case n = 5 we recover a known construction, due to Humbert (cf. for example [5, p. 374],
[10, p. 20], and also [2]), which we recall here: let X be a curve of genus 2 whose Jacobian has real
multiplication by Z[(1 + v/5)/2], and let w be the hyperelliptic involution of X. Let C be a plane conic,
and f: X/(w) — C an isomorphism. If P is the image on C of a Weierstrass point of X, then there
exists a numbering Pj,..., P5 of the images on C of the Weierstrass points of X not equal to P such
that there exists a conic passing through P and inscribed in the pentagon formed by Py, ..., P5 (that is,
tangent to the lines Py Py, P, Ps, ..., P5P;). Comparing this statement with the elliptic curve-theoretic
interpretation of Poncelet’s theorem, we see that the data of X is equivalent to the data of an elliptic
curve E with a point of order 5, a double covering ¢ from E to a curve of genus 0, and a point of this
curve distinct from the 4 ramification points of ¢.

We construct the family of hyperelliptic curves mentioned above in §1. More generally, for each
isogeny f: E1 — E of elliptic curves defined over a field k we define a hyperelliptic curve Cy over k(T),
where T is a free parameter; for each element R of the kernel of f there is an associated correspon-
dence 6r on Cy, such that the characteristic polynomial of the endomorphism induced by € on the
regular differentials on Cy is a product of polynomials G,.

This construction allows us, for example, to obtain a 2-parameter family, defined over Q, of hyper-
elliptic curves of genus 19 whose Jacobians are isogenous to a product of 19 elliptic curves.

We give some examples based on some isogenies with cyclic kernels in §2. For n =5,7,9, the curve
Xj (n) classifying elliptic curves equipped with a point of order n is Q-isomorphic to the projective line.



In these cases, we obtain a two-parameter family, defined over @, of curves of genus 2 (resp. 3, resp. 4)
with real multiplication by Gs (resp. G7, resp. Gg). We give these families an explicit description, and
examine also the case where n = 13: we derive a 2-parameter family, defined over Q, of hyperelliptic
curves of genus 6 whose Jacobians have real multiplication by G,;3, but where the corresponding endo-
morphisms are not in general defined over Q. We examine the curves Cy associated with isogenies f of
even degree in §2.2. The fact that X (8) (resp. X (12)) is Q-isomorphic to P! implies the existence of a
2-parameter family, defined over Q, of abelian surfaces with real multiplication by Z V2] (resp. Z V3]).

In §3, we show that the preceding constructions permit us to obtain, for all primes p = +2 mod 5, a
regular extension of Q(7) with Galois group PSL; (F ,2).

I would like to thank J.-P. Serre for the invaluable help that he kindly gave me throughout this work.

1 The curves Cy

Let E; and E» be two elliptic curves defined over a field k of characteristic zero, let x; (resp. x2) be a
function on E; (resp. E,) with a double pole at Og, (resp. Og,), and let f : E; — E» be an isogeny of
degree n, defined over k, with kernel G.

Let u be the function of degree n such that the following diagram commutes:

E E,
o
p! % . p!

We say that u is the “abscissa function”! of f. We let Cr denote the hyperelliptic curve over K = k(T),
where T is a free parameter, defined by the affine equation

Cf:yzz ux)-T.

If Pr is a point of E; (K) such that x,(f(Pr)) = T, then Cy is a double covering of P! ramified at the
points x; (Pt + R) for each R in G, and at the points x; (S) for each point S in G satisfying [2]S = 0. As a
result, we have the following proposition.

Proposition 1. The genus of the hyperelliptic curve Cy is equal to (n+m—1)/2, where n is the cardinality
of G, and m is the number of points of order 2 of G.

1.1 The covering associated with the composition of two isogenies

Let E1, E; and Ej3 be three elliptic curves, and for each i = 1,2,3 let x; be a function of order 2 on E; with
a double pole at Og,. If fi : E; — E» is an isogeny of degree n; and f> : E; — E3 an isogeny of degree ny,
then we let f denote the isogeny f, o fi : E; — E3, and we let u (resp. uj, resp. uy) denote the abscissa
function of f (resp. fi, resp. f>). We have u = uy o u;.
The mapping
(x,y) — (u1(x),y)
defines a degree-n; covering from the curve Cy : y? = u(x) - T to the curve C f y? = up(x) — T. This

allows us to partially reduce the study of the curves Cy to the study of the various curves Cg, where g is
an isogeny factoring f.

Example 1. Let E be an elliptic curve, and f: E — E the multiplication by 6 map on E. The genus of C¢
is 19, and there exist 19 isogenies g : F — E with cyclic kernel such that there exists an isogeny h: E — F
with go h =[6]:

* Three of degree 2: the associated curves Cg have genus 1; we denote them Ej, Ep, Es.

L “squation aux abscisses” in the original



* Four of degree 3: the associated curves Cg also have genus 1; we denote them Fy, F>, F3, Fy.

* Finally, the other twelve are of degree 6: the associated curves Cg have genus 3, and each covers a
curve corresponding to a 2-isogeny and a curve corresponding to a 3-isogeny. The Jacobian of Cg
is therefore isogenous to a product of three elliptic curves: one of type E;, one of type F;, and one
new curve, which we denote G; (fori=1,...,12).

In this way we obtain a homomorphism

Je; — [1E x]]Fix[]Gi

defined over k'(T), where k' is the extension of k obtained by adjoining the points of order 6. This
homomorphism is an isogeny; we may prove this using the correspondences on Cr defined in §1.2 and
§1.3, for example.

Theorem 1. Let E be an elliptic curve defined over a field k of characteristic zero, and x a function of
degree 2 on E with a double pole at 0. Let u be the rational function of degree 36 such that x([6]P) =
u(x(P)) for all points P of E. Then the hyperelliptic curve defined by the affine model

Y’=uX)-T

(where T is a free parameter) has genus 19, and its Jacobian is isogenous to a product of 19 elliptic curves.

1.2 Involutions of Cr associated with points of order 2 of G

Suppose that the order n of G is even. Let R in G be a point of order 2 of the curve E;. The involution of
E; given by P — P+ R commutes with the involution P — —P, so x; (P + R) is a rational function of x; (P),
and is an involution: there exist a, b, and ¢ such that

ax1(P)+b

xl(P+R)=m.

Therefore, let € : C r—Cy be the involution defined by

ax+b
(gRi(ny/)*—’ 'y *

cx—a

Ifwelet F = E1/(R), with h: E; — F the canonical morphism, then f = goh for some isogeny g: F — Ej.
The quotient C ! (‘6r) is thus isomorphic to the curve Cyg.

Let x3 be a function on F of degree 2 with a double pole at 0r, and let u be the abscissa function of g.
The curve Cg then has an equation of the form

Cg:yZ: ulx)—"T.

Now, let S be a point of E; such that [2]S = R, and Q a point of order 2 on E; distinct from R. The curve
Crl{wo6r), where w is the hyperelliptic involution of C t has an equation of the form

Crl{wo€r): y* = (u(x) — T)(x — x3(h(8)) (x — x3(h(S+ Q))).

Let g be the genus of Cy. If g is even, then the genera of C¢ /6 and Cy/(wo6R) are equal; otherwise,
they are respectively equal to (g—1)/2 and (g +1)/2.

1.3 Correspondences on Cy associated with points of order > 2 of G

Let f: E; — E» be an isogeny of degree n (not necessarily even) with kernel G, and let u be the abscissa
function of f. For all points P of E; and for all points R of G, we have

u(x1 (P + R)) = u(x1(P)).



Moreover, the functions P — x;(P+R)+x;(P—R) and P — x; (P+ R)x; (P—R) are invariant under the in-
volution P — —P, and so are rational functions in x; defined over k(x; (R)). We denote these functions s
and p. If Z is a parameter, then

(Z-x1(P+R)(Z-x1(P—R)) = Z* = s(x1(P) Z + p(x1(P)).

For the moment, let R be a point of G of order > 2. The equation above allows us to associate with R
the symmetric 2 — 2 correspondence 6g < Cr x Cy, defined over k(x1(R))(T) by the equations

V=u@x)-T, Y>=uX)-T, X*-s(x)X+px)=0, Y=y. ¢))

Let P = (x,y) be a point on Cr; if Q is a point of E; such that x = x;(Q), then the image of the
divisor (P) under the endomorphism of Pic(Cy) associated with 6 is ((x1(Q + R), y)) + ((x1(Q — R), ).

1.4 Action of the correspondence 65 on Q! (C )
For all R in G, we let wg denote the regular differential on Cy defined by

1 dx
WR= ——77-—.
x—x1(R) y

(By convention, we set wy = 0.) We have ws = wg, if and only if R = £S. The set of forms {wg : R € G\ {0}}
is a basis of Q' (C).
To examine the action of the correspondences 6z on ol ), we will need the following lemma:

Lemma 1. The function F which maps the three points P, Q, R of E to
F(RQ,R) = (x1(P) — x1(Q = R)) (x1(P) — x1 (Q + R) (x1(Q) — x1 (R))?
is symmetric in P, Q and R.

Proof. 1tis clear that the permutation Q — R does not change the expression above. It is the same when
we permute P and Q. Indeed, Q and R being fixed, the functions f and g defined respectively by

f(P)=(x1(P) — x1(Q—R)(x1(P) - x1 (Q+ R)) (x1(Q) — x1 (R))*

and
g(P) = (x1(Q) = x1(P - R))(x1(Q) — x1 (P + R)) (x1(P) — x1 (R)?

have the same divisor (Q—R)+(Q+R)+(—Q—-R)+(—Q+R), so f and g are proportional. Letting P tend
towards 0, we deduce that f = g. O

When E; is defined over C, Lemma 1 is a consequence of the formula
pWw) -p) =o(u+v)ou-v)o *(wo ?(v),
and of the fact that the function o is odd. Indeed,

W) —pv-w) W —p+w) ) - pw)?
=cu+v+w)o(u+v—-w)o(-u+v—-w)o(-u+v+ w)0_4(u)cr_4(v)0‘4(w)
=—cgu+v+wowu+v-—wou-v+wow-u+wo *wo o *(w)

is an expression symmetric in u, v and w. By the principle of extension of algebraic identities, we may
deduce the same result for arbitrary fields k.

Recall that the endomorphism Ty of Q' (C r) associated with the correspondence 6 is Tropy, where
p1: 6r — Cy is the first projection and Tr : Ql(€r) — Ql(Cf) is the trace associated with the second
projection.

We set z = x1(P), z1 = x1(P—R) and zy = x1 (P + R). For all pairs of points (P, Q) on E;, we have

(z—x1(Q - R)(z—x1(Q+R)(x1(Q) — x1(R)* = (21 — x1(Q)) (22 — x1(Q)) (z — x1 (R))*.



Taking the logarithmic derivative of this expression, we obtain

dz; N dz, B dz N dz _s dz
21-01Q) z22-x1Q) z-x1(Q-R) z-x1(Q+R " z-x1(R)’

Since
1 dz 1 dz; 1 dz,
Tr(wq) = TR(—Z

-z - =
-—x@Q y za-x@Q y  z2-xa@Q y
maintaining the convention wy = 0 we have
TR((,OQ) =WQ-RTWQ+R — 2WR.

Proposition 2. With the notation above, the correspondence € acts on aQlc ) by

wQ— WQ-R tWQ+R —2WR.

1.5 The case where G is cyclic of order

Suppose for the moment that G is a cyclic group of order n, and let R be a generator of G.
For all W in G, we set vs = ws_g —ws+g. Note that v_g = —vg, so vs = 0 if and only if [2]S = 0. The
subspace Q' := (vs:S€ G) of Ol (Cp)is stabilized by Tr. More precisely,

Tr(vs) = Vs+R + Vs—R.

If n is odd, then we easily verify that Q' is equal to the whole of Ql(Cf). It is then clear that the
endomorphism Ty of Q! (C r) has characteristic polynomial

(n=1)/2 2k
G = ] (X—ZCOST).

k=1
If n is even, then the space Q' has dimension (n — 2)/2. We then set
(n=2)/2

RH2DM2Y 0 (D) o
i=1

LU:L()[%

We immediately verify that Tz (w) = —2w, and that Q' (C ) is the direct sum of Q' and the line generated
by w. The characteristic polynomial of T acting on Q' is equal to

(n=2)/2

2k
H (X—ZCOSTH),

k=1
so the characteristic polynomial of Ty acting on Q' (C r) is equal to

n/2 2k

H X—-2cos—|.

k=1 h

Proposition 3. Let f : Ey — E» be an n-isogeny with cyclic kernel G. The characteristic polynomial of the
correspondence €r acting on Q' (C ) is equal to

/2] 2k
GnX) =[] (X—Zcos—).
k=1 n
Remark. Let Z be the normalization of the fibre product of E; and Cy with respect to the coverings
x1: E; — P! and x: C; — P, If E} is defined by the equation z* = h(x), where h has degree 3, then a
system of affine equations for Z is for example given in P2 by

Z2=h(x), ¥*=ux).



For each point R in G, we may define an automorphism ¢p of Z of order equal to the order of R, setting
&(x,y,2) = (x(P+R),y,z(P+ R)), where P is the image of (x, y, z) under the projection of Z onto E.

Moreover, let v be the involution of Z given by (x, y, z) — (x, ¥, —z), and let G’ be the group of auto-
morphisms of Z generated by G and v. The curve C ris the quotient Z/(v), and

vogrov =c_p.

The correspondences 6 are none other than the images under Z — Cy of the graph correspondence
of ¢r in Z x Z. If G is cyclic of order n, then G’ is the dihedral group D, and we find again that the
characteristic polynomial of €5 acting on Q! (C ) is Gp.

This point of view has already been developed by A. Brumer [3].

2 Examples

We find in Kubert [6, p. 217] a description of the modular curves X; (n) of genus 0, classifying the pairs
(E, R) formed by an elliptic curve E together with a point R of order n, and an explicit parametrisation
of these pairs. Following the preceding section, every such pair has an associated one-parameter family
of hyperelliptic curves with real multiplication by G,,. Further, if E; is an elliptic curve defined over a
field k and G is a finite subgroup of Ej (k), then the formulee allowing us to explicitly obtain the quotient
curve E; = E;/G and an isogeny f : E; — E» with kernel G have been established by Vélu [11].

2.1 Examples with 7 odd
Thecase n=5

The modular curve X;(5) is Q-isomorphic to P!. If E; is defined by y? + (1 - U)xy — Uy = x° — Ux?,
then the point R = (0,0) of E; has order 5. The formule giving the isogeny f and the quotient curve
E, = E;/ker f appear in [7] (for example). We find then the family of hyperelliptic curves

CU,T): Y2 =-2%+U0z-2+UZ*- 7230 -2))-TZ*(Z-1)°.

Thecase n="7

In the case of X; (7), the analogous calculations give a family of curves C; (U, T) with real multiplication
by G7, defined by

C;(U,T):Y?=UWU-1)Z"-2U0WU?-1)Z%+ (1 -7U +5U?%-3U3 +2U* + U°) Z°
—UBU*-9U3 +12U0%2-13U-1)Z*+U(U° + U* +4UB -8U%-7U -1) 28
—U?@BU?-2U2%2-8U-3)Z22+UB(U?-3U-3)Z+U*-TZ%3(Z-U)%(Z-1)?,

where U is the parameter of X; (7) adopted in [7].

The case n=9

We find in [6, p.217] a parametrisation of elliptic curves equipped with a point of order 9: the point (0, 0)
has order 9 on the elliptic curve defined by

V- (P -U-Dxy-U(U-DWU?-U+D)y=x"-U>(U-1)(U?-U +2)x%,

where U is the parameter of X;(9).
Vélu’s formulee give an equation for the associated family of hyperelliptic curves Co (U, T) of genus 4:

Y2=U*U-DW2-U+1)32°-203(U-1D)WU?-U+12WU+U+1)Z8
+UWU?-U+D)WU°+UB-7U7 +23U% -39U° +50U* —44U3 + 23U% - 10U + 1) Z”
—(6U0 —22U° +67U8 —154U7 +279U° — 369U° + 353U* — 243U° + 107U? - 32U + 1) Z8
+ (UM =201 +25U° —91U8 +209U7 —312U° +232U° - 237U* + 101U3 - 32U% -5U - 1) Z°
—(6U° - 19U8 +51U7 - 83U° +97U° —83U* +29U° - 17U%? - 11U +5) Z*
+(UB+US+5U°-12U0*+2U% - 14U%-8U -10) 2% - BU° - 5U* +4U3 - 11U% - 2U + 10) 22
+(U-3U%-5)Z+1-T(Z(Z-D)(U*-U+1)Z-1)(UZ- 1))2.



We have Gg(X) = (X + 1)(X® —3X + 1), so the Jacobian of each curve in the family Cq(U, T) contains
a 3-dimensional abelian variety with real multiplication by Z[2 cos %”].

The case n =13

The curve Xy (13) classifying elliptic curves equipped with a cyclic subgroup of order 13 is Q-isomorphic
to P!. Each point of P!(Q) = X, (13)(Q) that is not a cusp is associated with an elliptic curve E; having
a Q-rational cyclic subgroup G of order 13, and hence an isogeny f : E; — E» = E;/G defined over Q.
If the abscissa function of f is p(x)/ qz(x) and T is a parameter, then we deduce as before that the
hyperelliptic curve of genus 6 defined by z? = p(x) — Tg?(x) has real multiplication by Gi3. If a point R
in G is defined over an extension k of @, then the correspondence 65 and its induced endomorphism
on the Jacobian are defined over k. But X;(13) has no rational points over @ that are not cusps, so the
correspondence 6y is never defined over Q.

2.2 Examples with n even

Let f : E; — E» be an isogeny of degree n with cyclic kernel, and let R be a generator of ker f. Let
R, = [n/2]R, set E3 = E1/(Ry), and let g : E3 — E, be the isogeny of degree n/2 derived from f asin §1.2.
We have seen that if s = € is constructed as in §1.2, then the curve C¢/s is none other than Cg. More
precisely, let x3 be a function of degree 2 on E3 with a double pole at 0, and u the abscissa function of g.
The curve Cg has a defining equation

Cg:y2= u(x)—T.

Similarly, the curve C' = Cy/(w o s), where w is the hyperelliptic involution of Cy, is defined by
C':y? = w(x) - T)(x—a)(x—-b),

where a and b are the abscisse of the appropriate points of order 2 of E3 (cf. §1.2).

The case n =8

In this case Cy has genus 4, and Cg and C’ have genus 2. The characteristic polynomial of 6% is the
polynomial X (X +2)(X? —2). The isogeny g factors into a product of two isogenies of degree 2, so the
Jacobian of Cy is isogenous to a product of 2 elliptic curves, while the Jacobian of C’ has real multipli-
cation by Z[V2].

The curve X;(8) is Q-isomorphic to P!. It follows that there exists a two-parameter family, defined
over Q, of abelian surfaces with real multiplication by Z[v/2).

To make this explicit, a family C4(U, T) in two parameters U and T of curves of genus 2 whose
Jacobians have real multiplication by Z[v/2] is given by

CiU,T):Y?=(U?+1)*X+U+1) (U-D*(U+1DX+1)

1207 10\2(772 _ (U?+1)?% | WU+D U?(WU?-1)?
(U U-DWU+DX-T+ "5+ 57 + mernixeu+1)-

Remark. Inthe same way, we find another result of Humbert [5, p. 379]: let X be a curve of genus 2, v its
hyperelliptic involution, C a nondegenerate conic, and ¢ : X/v — C an isomorphism. Let Py,..., Pg be
the images under ¢ of the Weierstrass points of X. The Jacobian of X has real multiplication by Z[/2]
if and only if there exists a conic passing through P; and P, and inscribed in one of the quadrilaterals
formed by Ps, P4, P5, and Pg. Through the elliptic curve-theoretic interpretation of Poncelet’s theorem,
such a configuration is equivalent to the data of an elliptic curve together with a point R of order 4 and
a point of order 2 distinct from 2R, and therefore to giving a curve of the same type as C'.

The case n =12

Let f : E; — E, be an isogeny of degree 12 with cyclic kernel, and let R be a generator of ker f. The
curve Cy has genus 6, and the characteristic polynomial of € acting on the regular differentials on C¢



is equal to X (X +2)(X —1)(X + 1)(X? - 3). If ¢ is the endomorphism of Jc; induced by €, then the
abelian variety A ri=¢p+2) (([)2 -1DUc f) has real multiplication by Z[V3l.

The curve X (12) is Q-isomorphic to P!. It follows that there exists a two-parameter family, defined
over Q, of abelian surfaces with real multiplication by Z[v/3].

Here again we may make the two-parameter family explicit, by using Kubert’s parametrization of
X1(12) together with Vélu’s formulae. We satisfy ourselves here with an example, since we find the gen-
eral formula a little tedious to write:

Let E be the elliptic curve labelled 90G in the tables of [1, p. 92], for which a defining equation is

E:y2+xy+x:x3—x2—122x+1721.

Its Mordell-Weil group is cyclic of order 12, generated by the point (-9,49). Using Vélu’s formulee, we
find that the equation of the corresponding hyperelliptic curve C3(T) is

C3(T): Y? = (X +2) (432X12 - 2988 X! + 118326 X% — 308497 X" — 448605X3 — 779631 X" +2899412X°
+5715072X° + 2532888 X* —304560X° + 134784 X2 + 279936 X + 93312)
~T(X(X+2)(X-6)B3X+2)2X +3)(X-1))?,

where T is a parameter.
We let A3(T) denote the abelian subvariety of Jc,(r) with real multiplication by Z[v/3].

Remark. Let f: E; — E; be an isogeny of degree 12 with cyclic kernel. The curves Cg and C’ constructed
by the method given at the start of this section are of genus 3. Here the isogeny g has degree 6, so the
Jacobian of Cyg is isogenous to the product of two elliptic curves. The Jacobian of C' is isogenous to
the product of an elliptic curve and an abelian surface with real multiplication by Z[v/3]. Conversely,
all abelian surfaces that have real multiplication by Z[v/3] may be obtained by the construction above,
starting from an elliptic curve with a point R of order 6 and a point of order 2 distinct from 3R.

3 Application: constructing regular extensions of Q(7) with Galois
group PSL;(F 2)

Let Abe an abelian surface defined over Q(7T'), non-constant (i.e. with non-constant moduli), and whose
ring of Q(T)-endomorphisms contains a subring isomorphic to the ring of integers of a quadratic real
field M. Let A[p] denote the p-torsion subgroup of A, and G the Galois group of the extension L/Q(T),
where L = Q(T)(A[p]). If pisinertin M, then A[p] is a 2-dimensional F p2-vector space, and G is isomor-
phic to a subgroup of the the subgroup GL/, (F2) of GL2 (F 2) formed by the matrices whose determinant
is in F},. We easily see that the image of GL’Z([sz) in PGL, (F ,2) is equal to PSLy (F 2).

It follows, if G = GL’Z([F pz), that the subfield M of L fixed by the scalar matrices of G is a non-constant
(and hence regular) extension of Q(7). However, for this to be true it is enough that for one specialisa-
tion ¢ in Q of T the p-torsion points of the specialisation corresponding to A generate an extension of Q
with Galois group GL) (F ).

Some of the families of hyperelliptic curves with real multiplication described in the preceding sec-
tions allow us to construct such extensions. Consider, for example, the family C5(U, T) above. We have
shown in [8] that for all odd p = +2 mod 5, the Galois group of the p-torsion points of the Jacobian of
Cs5(—17/4,1) is equal to GL’Z([F pz), whence the following theorem:

Theorem 2. For all primes p = +2 mod 5, there exists a regular extension of Q(T) with Galois group
PSLy (F ,2).

Remark (1). W. Feit [4] has already given a proof of this theorem, except that it remained to prove that
a certain curve of genus 0 has a rational point; J.-P. Serre has recently proven this. Feit’s method is
different to the one presented here.

Remark (2). By an analogous method, we can prove that, for all sufficiently large primes p # £1 mod 24,
there exists a regular etension of Q(T) with Galois group PSL, (F ,2). By a theorem of Ribet [9, p. 801, The-
orem 5.5.2], it suffices to give one curve in each of the two families C4(U, T) and C3(T) of the previous



section that does not have everywhere potentially good reduction. For example, take the curve C4(2,12)
from the family C4(U, T) above, defined by

Ci(2,12): Y2 =12X° +20X* + 75X° +215X% + 177X +45.

The discriminant of its hyperelliptic polynomial is 2'2-34.12013, and its reduction mod 1201 is the curve
defined by
Y2 =12(X - 1125)(X —239)*(X — 799)%.

Thus the curve C4(2,12) does not have potentially good reduction at 1201, and we may apply Ribet’s
theorem (cited above): for all p sufficiently large, p = £3 mod 8, the Galois group of the extension of Q
obtained by adjoining the p-torsion points of the Jacobian of C4(2,12) is equal to GL, (F p2)-

We proceed in the same way with C3(T): for all rational numbers ¢, and all primes ! > 5 strictly
dividing the denominator of ¢, the reduction of the curve Cs3(¢) is stable at [ and also completely toric.
Take, for example, C3(1/7). Applying Ribet’s theorem, we see that for all sufficiently large p = +5 mod 12
the Galois group of the extension of Q obtained by adjoining the p-torsion points of the abelian variety
As(1/7) is equal to GLa(F 2).

In fact, it is probable that, for all p = +3 mod 8 (resp. p = +5 mod 12), the Galois group of the points
of order p of J¢,(2,12) (resp. of A3(1/7)) is equal to GL, (F 2). To show this would require a detailed study
of the curves C4(2,12) and C3(1/7), analogous to those of [8, Section 2].
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