
Introduction to Elliptic Curve Cryptography

Benjamin Smith

Team GRACE

INRIA + Laboratoire d’Informatique de l’École polytechnique (LIX)

ECC School, Nijmegen, November 9 2017

Problems
We want to solve some important everyday problems
in asymmetric crypto: signatures and key exchange.

...Also, a less common problem: encryption.

Today we will look at basic constructions
associated with one hard problem:

the discrete logarithm problem in a group G.

Naturally, G will be a subgroup of an elliptic curve.

Where we’re going

1. Waffle

2. Identification

3. Signatures

4. Key exchange

5. Encryption

Concrete groups
For security against generic algorithms,

#G is a prime ∼ 2256

(more generally, 22β where β is the security level).

Candidate groups for 128-bit security:
1. Historical: G ⊂ Gm(Fp), the multiplicative group,

3072-bit p (=⇒ elements of G encode to 3072 bits)

2. Contemporary: G ⊆ E(Fp), with E/Fp an elliptic curve,
256-bit p (=⇒ elements of G encode to 256 + ε bits)

3. Experimental: G ⊆ JC(Fp), with C/Fp a genus-2 curve,
128-bit p (=⇒ elements of G encode to 256 + ε bits)

Scalar multiplication
Write G additively: eg. P + Q = R

(later, use ⊕ instead of + to distinguish from addition in Fp).

Scalar multiplication (exponentiation):

[m] : P 7−→ P + · · ·+ P︸ ︷︷ ︸
m copies of P

for any m in Z (with [−m]P = [m](−P)).

Virtually all scalar multiplications involve m ∼ #G.
They are therefore relatively intensive operations.

Keypairs

Keys come in matching (Public,Private) pairs.

Every public key poses an individual
mathematical problem;

the matching private key gives the solution.

Here, keypairs present an instances of the DLP in G:

(Public,Private) = (Q, x) where Q = [x]P

where P is some fixed generator of G.

Keypairs

(Public,Private) = (Q, x) where Q = [x]P

...with P some fixed generator of G.

1. The security of keys is algorithmic.

2. It can be much easier to attack sets of keys
than to attack individual keys.

3. Cryptanalysis can and does begin at the moment
that a given keypair is created and ”bound to”
(ie, when the public key is published),
not when the keys are actually used!

Identity

Identity means... holding a private key
—nothing more, nothing less.

Ultimately, we want authentication:
to know that we are talking to the holder of the
secret x corresponding to some public Q = [x]P .

In symmetric crypto, MACs and AEAD can
authenticate data, but not communicating parties.

The reason is simple: in symmetric crypto,
both sides hold the same secret

—and a shared identity is no identity.

Identification
How do you prove your identity?

In our setting, you assert/claim an identity
by publishing/binding/committing to a public key Q

from a keypair (Q = [x]P , x).

Prove your identity ⇐⇒ prove you know x .

To formalize this, we introduce three characters:

I Prover: wants to prove their identity

I Verifier: wants to verify the identity of Prover

I Simulator: wants to impersonate Prover

Identification

Verifier challenges; Prover returns x ;
Verifier accepts iff [s]P = Q.

Problem: Prover no longer has an identity,
because they gave away their secret x .

Using ephemeral keys
Trick: hide long-term secrets with disposable one-shot secrets.

Prover generates an ephemeral keypair (R , r), commits R ;
Prover sends R and s = x + r to Verifier.

Note: s reveals nothing about x , because r is random
Verifier accepts because [s]P = [x]P + [r]P = Q + R .

Cheating
Problem: Simulator can easily impersonate Prover.

Verifier accepts because [s]P = [r ′]P = R ′ = Q + R
Note: Simulator never knows x—nor the log of R ,

because otherwise they would know x!

Detecting cheating

How can Verifier detect this cheating,
and distinguish between Prover and Simulator?

Prover sends s = x + r = log(Q + R),
and knows both x = log(Q) and r = log(R).

Simulator sends s = log(Q + R),
but knows neither x = log(Q) nor r = log(R).

Verifier can’t ask for x .
If she asks for the ephemeral secret r = log(R) as well as s

then that would reveal x .

Solution: let Verifier ask for either s or r ,
and check either [s]P = Q + R or [r]P = R .

I correct s shows I know x , if I am honest

I correct r shows I was honest, but not that I know x

Chaum–Evertse–Graaf (1988)

To cheat, Simulator must guess/anticipate e: 50% chance.
So repeat until Verifier is satisfied it’s Prover (say 128 rounds).

Schnorr ID (1991)

It’s annoying to have to run 128 rounds
of the Chaum–Evertse–Graaf ID protocol:

1. too much communication,

2. too much computation (128× 256-bit scalar
multiplications for both Prover and Verifier!)

Schnorr (1991): we “parallelise” the 128 rounds,
replacing 128 single bits with a single 128 bits.

Schnorr ID

Note: s reveals nothing about x , because r is random
Only one round. Prover does one 256-bit scalar multiplication,
Verifier does one 256-bit and one 128-bit scalar multiplication.

Signatures
A signature is a sort of non-interactive proof that
the Signer witnessed (created, saw) some data.

Authenticity, message integrity, non-repudiability:
only the Signer could have created it, and only the

Signer’s public key is needed to verify it.

We build Schnorr signatures by applying the
Fiat–Shamir transform to the Schnorr ID scheme:

1. make the ID scheme non-interactive, and

2. have the signer identify themself to the data (!)

“Non-interactive Schnorr”

“Compact non-inter Schnorr”

Generally (especially if G = F×) the hash e is smaller than R ,
so we can send it instead!

Schnorr signatures (1991)

Hash should provide 128 bits of prefix-second-preimage
resistance (traditionally no need for collision resistance, though
you might want it to protect against attacks on multiple keys).

Diffie–Hellman key exchange

Goal: Alice and Bob want to establish
a shared secret with no prior contact.

In Schnorr signatures, we mask secret scalars using
addition in G, which becomes addition of scalars.

In Diffie–Hellman key exchange,
we combine secret scalars

using composition of scalar multiplications,
which becomes multiplication of scalars.

Diffie–Hellman key exchange (≤ 1976)
Alice and Bob want to establish a shared secret

with no prior contact (eg. for subsequent symmetric crypto).

They use the fact that [a][b] = [b][a] = [ab] for all a, b ∈ Z.

Alice & Bob now use a KDF (Key Derivation Function) to
compute a shared cryptographic key from the shared secret S .

Keypairs can be long-term (“static DH”) or ephemeral.

Warning: no authentication! Trivial/universal MITM.

The Diffie–Hellman problem

Diffie–Hellman security depends
not (directly) on the DLP, but rather on the

Computational Diffie–Hellman Problem:

Given (P ,QA = [xA]P ,QB = [xB]P),
compute S = [xAxB]P .

If you can solve DLPs, then you can solve CDHPs.
The converse is not at all obvious,

but we have conditional results (Maurer–Wolf, ...)

For the G we use in practice, there is a
subexponential time equivalence with the DLP

(Muzerau–Smart–Vercauteren).

Modern Diffie–Hellman key exchange

Notice DH never directly uses the group structure on G.

All we need for DH is a set G, and big sets A, B
of randomly sampleable and efficiently computable functions

[a] : G → G, [b] : G → G such that [a][b] = [b][a]
such that the corresponding CDHP is believed hard.

Today we will see this in Curve25519, where G = E/± 1;
tomorrow you will see it in SIDH (Craig’s lecture).

Modern Diffie–Hellman

Diffie–Hellman doesn’t need a group law,
just scalar multiplication;

so we can “drop signs” and work modulo 	.

Alice computes (a,±P) 7→ ±[a]P ;
Bob computes (b,±[a]P) 7→ ±[ab]P ...

Elliptic curves: work on x-line P1 = E/〈±1〉.

Advantage: save time and space by ignoring y .

Problem: How do we compute ±[m] efficiently,
without using ⊕?

{x(P), x(Q)} determines {x(P ⊕ Q), x(P 	 Q)}.

{x(P), x(Q)} determines {x(P 	 Q), x(P ⊕ Q)}

•P

•
⊖P

•

• Q

•
⊖Q

•

•

• P ⊕ Q

•
•P ⊖ Q
•
•

Any 3 of x(P), x(Q), x(P 	 Q), and x(P ⊕ Q)
determines the 4th, so we can define

pseudo-addition
xADD : (x(P), x(Q), x(P 	 Q)) 7−→ x(P ⊕ Q)

pseudo-doubling
xDBL : x(P) 7−→ x([2]P)

Bonus: easier to identify, isolate, and avoid special
cases for xADD than for ⊕.

Notation
In the following, we fix a Montgomery curve:

E : BY 2Z = X (X 2 + AXZ + Z 2)

with A 6= ±2 and B 6= 0 in Fp.

Given points P and Q in E(Fp), we write

P = (XP : YP : ZP) , P ⊕ Q = (X⊕ : Y⊕ : Z⊕) ,

Q = (XQ : YQ : ZQ) , P 	 Q = (X	 : Y	 : Z) .

xADD

xADD : (x(P), x(Q), x(P 	 Q)) 7−→ x(P ⊕ Q)

We use

(X⊕ : Z⊕) =
(
Z	 · [U + V]2 : X	 · [U − V]2

)
where{

U = (XP − ZP)(XQ + ZQ)

V = (XP + ZP)(XQ − ZQ)

xDBL

xDBL : x(P) 7−→ x([2]P)

We use(
X[2]P : Z[2]P

)
=
(
Q · R : S · (R + A+2

4 S)
)

where
Q = (XP + ZP)2 ,

R = (XP − ZP)2 ,

S = 4XP · ZP = Q − R .

We evaluate [m] by combining xADDs and xDBLs
using differential addition chains

(ie. every ⊕ has summands with known difference).

Classic example: the Montgomery ladder.

Algorithm 1 The Montgomery ladder in a group

1: function Ladder(m =
∑β−1

i=0 mi2
i , P)

2: (R0,R1)← (0,P)
3: for i := β − 1 down to 0 do
4: if mi = 0 then
5: (R0,R1)← ([2]R0,R0 ⊕ R1)
6: else
7: (R0,R1)← (R0 ⊕ R1, [2]R1)
8: end if
9: end for . invariant: (R0,R1) = ([bm/2ic]P, [bm/2ic+ 1]P)

10: return R0 . R0 = [m]P, R1 = [m + 1]P
11: end function

For each addition R0 ⊕ R1, the difference R0 	 R1 is fixed
(& known in advance!) =⇒ easy adaptation from E to P1.

Algorithm 2 The Montgomery ladder on the x-line P1

1: function Ladder(m =
∑β−1

i=0 mi2
i , x(P))

2: (x0, x1)← (x(0), x(P))
3: for i := β − 1 down to 0 do
4: if mi = 0 then
5: (x0, x1)← (xDBL(x0), xADD(x0, x1, x(P))
6: else
7: (x0, x1)← (xADD(x0, x1, x(P)), xDBL(x1))
8: end if
9: end for . inv.: (x0, x1) = (x([bm/2ic]P, x([bm/2ic+ 1]P))

10: return x0 . x0 = x([m]P), R1 = x([m + 1]P)
11: end function

X25519

X25519 is a Diffie–Hellman key-exchange algorithm
for TLS (and other applications),

based on Bernstein’s Curve25519 software (2006).

It is formalized in RFC7748,
Elliptic curves for security (2016).

It is an upgrade on the old ECDH in TLS,
which was based on NIST prime-order curves.

Curve25519

Bernstein (PKC 2006) defined the elliptic curve

E : Y 2Z = X (X 2 + 486662 · XZ + Z 2) over Fp

where p = 2255 − 19.
The curve has order #E(Fp) = 8r , where r is prime.

If we let B be any nonsquare in Fp, then
the quadratic twist

E ′ : B · Y 2Z = X (X 2 + 486662 · XZ + Z 2)
has order #E ′(Fp) = 4r ′, where r ′ is prime.

The X25519 function

The X25519 function maps Z≥0 × Fp into Fp, via

(m, u) 7−→ um := xm · z (p−2)m

where
(xm : ∗ : zm) = [m](u : ∗ : 1) ∈ E(Fp) ∪ E ′(Fp).

Note: generally zm 6= 0, in which case
(um : ∗ : 1) = [m](u : ∗ : 1) in E(Fp) or E ′(Fp).

Exercise: for any given u, inverting (m, u) 7→ um
amounts to solving a discrete logarithm

in either E(Fp) or E ′(Fp).

Diffie–Hellman with X25519

The global public “base point” is u1 = 9 ∈ Fp.
The point (u1 : ∗ : 1) has order r in E(Fp)

(remember: r is a 252-bit prime).

The “scalars” are integers in
S = {2254 + 8i : 0 ≤ i < 2251}.
Alice samples a secret a ∈ S ,

computes A := ua = X25519(a, u1), publishes A.

Bob samples a secret b ∈ S ,
computes B := ub = X25519(b, u1), publishes B .

Alice and Bob compute the shared secret uab
as X25519(a,B) and X25519(b,A), respectively.

Side-channel concerns

We must anticipate basic side-channel attacks
(especially timing attacks and power analysis).

Diffie–Hellman implementations must be “uniform” and
“constant-time” with respect to the secret scalars:

I No branching on bits of secrets
eg. No if(m == 0): ... with mi secret

I No memory accesses indexed by (bits of) secrets
(eg. No x = T[m] where m is secret)

What we want is to have
exactly the same sequence of computer instructions

for every possible secret input.

We’re using the Montgomery ladder, which is almost uniform:

Algorithm 3 The Montgomery ladder for X25519

1: function Ladder(m =
∑β−1

i=0 mi2
i , x)

2: u← (x , 1)
3: (x0, x1)← ((1, 0),u)
4: for i := β − 1 down to 0 do
5: if mi = 0 then
6: (x0, x1)← (xDBL(x0), xADD(x0, x1,u))
7: else
8: (x0, x1)← (xADD(x0, x1,u), xDBL(x1))
9: end if

10: end for
11: return x0
12: end function

We need to ensure that xDBL and xADD are uniform,
and we need to remove the if statement.

Conditional swap

We can get rid of the if statement
using a classic constant-time conditional swap.

Algorithm 4 Conditional swap

1: function SWAP(b,(x0, x1))
2: v ← b and (x0 xor x1)
3: return (x0 xor v , x1 xor v)
4: end function

Algorithm 5 Conditional swap

1: function SWAP(b,(x0, x1))
2: return ((1− b)x0 + bx1 , bx0 + (1− b)x1)
3: end function

Public-key encryption

Classic textbook problem, rarely appears in practice.

Alice wants to encrypt a message M for Bob.
Bob has a long-term keypair (QB , xB).

Simple approach (ElGamal):

Alice views QB as Bob’s half of a DH key exchange.
She can complete the Diffie–Hellman on her side,

use the shared secret to encrypt M ,
and send her half of the DH with M .

To decrypt, Bob completes the DH on his side,
and uses the shared secret to decrypt.

Classic ElGamal encryption (1984)

Notice that this includes a half-static, half-ephemeral DH.
Alice’s keypair must be ephemeral: never repeat r !
Otherwise, given ciphertexts (R ,C1) and (R ,C2),

you can compute M1 −M2 = C1 − C2.

Classic ElGamal is homomorphic

Problem: ElGamal is homomorphic!

Eg. (R1 + R2,C1 + C2) is a legitimate encryption of M1 + M2.

This violates semantic security.

Towards modern ElGamal encryption

We have a deeper categorical/typing/casting problem:
Real messages are blobs of bits, not elements of G.

Real ciphertexts should be random-looking bitstrings
(or strange codomain elts), not elements of G.

Don’t do algebra in public

Discrete logarithms, groups, and algebraic structures
are components of cryptographic algorithms,

not the data these algorithms operate on.

If at any time your mathematics unconsciously
bleeds through into your keys or data,
then you are doing something wrong.

What you really want to do: DHIES

More details: Abdalla–Bellare–Rogaway (≤ 2001)

Deliberate weirdness
If you’re a research cryptographer, or

if you want to do something exotic like e-voting,
then you might want something homomorphic!

Problem I: encoding messages into G.
Easy for F×p , trickier for E(Fp).

Problem II: even once you have defined an encoding
of some messages into G, you are stuck with an

intrinsically limited message space.

