Higher dimensional automata

between topology and concurrency

Krzysztof Ziemiański

University of Warsaw

GETCO 22

・ロト・西ト・西ト・西・ うくぐ

- Introduce precubical sets alias higher dimensional automata.
- Topological executions: directed path spaces.
- Combinatorial executions: track complexes.
- How these models are related?

Directed spaces

ldea

Model computer programs by topological spaces.

- points of space = states of a program,
- distinguished paths = (partial) executions.

Definition (Grandis)

A *d-space* is a pair $(X, \vec{P}(X))$, where

• X is a topological space,

•
$$\vec{P}(X) \subseteq P(X) =: map(I, X)$$
 is a family of *d-paths* $(I = [0, 1])$,

•
$$\forall_{x \in X} \ const_x \in \vec{P}(X),$$

$$\ \ \, \alpha,\beta\in\vec{P}(X),\ \alpha(1)=\beta(0)\implies\alpha\ast\beta\in\vec{P}(X).$$

• $\alpha \in \vec{P}(X), f: I \to I \text{ increasing } \implies \alpha \circ f \in \vec{P}(X).$

A map $f: X \to Y$ between d-spaces is a *d-map* if $\alpha \in \vec{P}(X) \implies f(\alpha) \in \vec{P}(Y)$

Directed spaces

ldea

Model computer programs by topological spaces.

- points of space = states of a program,
- distinguished paths = (partial) executions.

Definition (Grandis)

A *d-space* is a pair $(X, \vec{P}(X))$, where

X is a topological space,

•
$$\vec{P}(X) \subseteq P(X) =: map(I, X)$$
 is a family of *d-paths* $(I = [0, 1])$,

•
$$\forall_{x\in X} const_x \in \vec{P}(X)$$
,

$$\ \, \alpha,\beta\in\vec{P}(X),\ \alpha(1)=\beta(0)\implies\alpha\ast\beta\in\vec{P}(X).$$

• $\alpha \in \vec{P}(X), f: I \to I \text{ increasing} \implies \alpha \circ f \in \vec{P}(X).$

A map $f: X \to Y$ between d-spaces is a *d-map* if $\alpha \in \vec{P}(X) \implies f(\alpha) \in \vec{P}(Y)$.

Example

Directed interval: $\vec{I} = (I, \{\alpha : I \rightarrow I \text{ increasing}\}).$

The category **dTop** of d-spaces and d-maps is complete and cocomplete. We obtain more examples:

Example

- *Directed cube*: $\vec{I}^n = (I^n, \{\alpha : I \to I^n \text{ all coordinates increasing}\})$
- Directed circle: $\vec{S}^1 = \vec{I}/0 \sim 1 = (S^1, \{\text{counterclockwise paths}\})$

Example

Directed interval:
$$\vec{I} = (I, \{\alpha : I \rightarrow I \text{ increasing}\})$$

The category **dTop** of d-spaces and d-maps is complete and cocomplete. We obtain more examples:

Example

• Directed cube: $\vec{I}^n = (I^n, \{\alpha : I \to I^n \text{ all coordinates increasing}\})$

Precubical sets

Definition

A precubical set K consist of

- a sequence of sets $(K[n])_{n\geq 0}$ (*n-cells* or *n-cubes*),
- a collection of maps $\delta_i^{\varepsilon} : K[n] \to K[n-1], \ 1 \le i \le n, \ \varepsilon = 0, 1$ (face maps),
- $\delta_i^{\varepsilon} \circ \delta_j^{\eta} = \delta_{j-1}^{\eta} \circ \delta_i^{\varepsilon}$ for i < j (precubical identities).

A precubical map $f : K \to L$ is a sequence of compatible functions $f[n] : K[n] \to L[n]$.

Definition

The geometric realization of a precubical set K:

$$|K| = \prod_{n \ge 0} K[n] \times \vec{l}^n / \sim$$

$$(\delta_i^{\varepsilon}(c),(x_1,\ldots,x_{n-1})) \sim (c,(x_1,\ldots,x_{i-1},\varepsilon,x_i,\ldots,x_{n-1})).$$

Precubical sets

Definition

A precubical set K consist of

- a sequence of sets $(K[n])_{n\geq 0}$ (*n-cells* or *n-cubes*),
- a collection of maps $\delta_i^{\varepsilon}: K[n] \to K[n-1], \ 1 \leq i \leq n, \ \varepsilon = 0, 1$ (face maps),
- $\delta_i^{\varepsilon} \circ \delta_i^{\eta} = \delta_{i-1}^{\eta} \circ \delta_i^{\varepsilon}$ for i < j (precubical identities).

A precubical map $f : K \to L$ is a sequence of compatible functions $f[n] : K[n] \to L[n]$.

Definition

The *geometric realization* of a precubical set *K*:

$$|\mathcal{K}| = \prod_{n \ge 0} \mathcal{K}[n] \times \vec{I}^n / \sim$$

$$(\delta_i^{\varepsilon}(c),(x_1,\ldots,x_{n-1})) \sim (c,(x_1,\ldots,x_{i-1},\varepsilon,x_i,\ldots,x_{n-1})).$$

Examples of precubical sets

Example

The *standard n*-cube \square^n :

- $\blacksquare \square^n[k] = \{(a_1, \ldots, a_n) \mid a_i \in \{0, *, 1\}, \text{ exactly } k \text{ stars among } a_i \text{'s}\}.$
- δ_i^{ε} converts *i*-th star into ε .

The geometric realization of \Box^n is \vec{I}^n .

A *Euclidean complex* is a precubical subset of a standard cube.

Example

The final precubical set Z:

- Z[n] has exactly one element for every n,
- face maps are defined the only possible way.

Question

Let K be a precubical set, $v, w \in K[0]$ its vertices. What is the (homotopy type of) the space $\vec{P}(K)_v^w$ of directed paths in |K| from v to w?

Results for Euclidean complexes

- $\blacksquare \vec{P}(\vec{I}^n)_0^1 \text{ is contractible,}$
- $\blacksquare \vec{P}(\partial \vec{I^n})_0^1 \simeq S^{n-2},$
- The length decomposition: $\vec{P}(K)_v^w = \coprod_{n\geq 0} \vec{P}(K; n)_v^w$.
- Prodsimplicial models for Euclidean complexes [Raussen 2010, 2012].
- Every finite CW-complex is homotopy equivalent to $\vec{P}(K)_0^1$ for $K \subseteq \Box^n$ [Z, 2016].

Question

Let K be a precubical set, $v, w \in K[0]$ its vertices. What is the (homotopy type of) the space $\vec{P}(K)_v^w$ of directed paths in |K| from v to w?

Results for Euclidean complexes

- $\vec{P}(\vec{I^n})_0^1$ is contractible,
- $ec{P}(\partialec{I}^n)^1_0\simeq S^{n-2}$,
- The length decomposition: $\vec{P}(K)_v^w = \coprod_{n \ge 0} \vec{P}(K; n)_v^w$.
- Prodsimplicial models for Euclidean complexes [Raussen 2010, 2012].
- Every finite CW-complex is homotopy equivalent to $\vec{P}(K)_0^1$ for $K \subseteq \Box^n$ [Z, 2016].

Presentations of d-paths

Observation

Every d-path $\alpha \in \vec{P}(K)$ has a presentation

$$\alpha = [c_1; \beta_1] \stackrel{t_1}{*} [c_2; \beta_1] \stackrel{t_2}{*} \cdots \stackrel{t_{n-1}}{*} [c_n; \beta_n]$$

where $c_k \in K[n_k]$, $\beta_k \in \vec{P}_{[t_{k-1}, t_k]}(\vec{I}^{n_k})$, $0 < t_1 < \cdots < t_{n-1} < 1$.

Tame paths

Definition

A d-path $\alpha \in \vec{P}(K)$ is *tame* if there exists a presentation

$$\alpha = [\mathbf{c}_1; \beta_1] \overset{\mathbf{t}_1}{*} \cdots \overset{\mathbf{t}_{n-1}}{*} [\mathbf{c}_n; \beta_n]$$

such that $\beta_k(t_{k-1}) = (0, ..., 0)$ and $\beta_k(t_k) = (1, ..., 1)$ for all k.

Theorem [Z 2020]

For every precubical set K, the inclusion

$$ec{P}_{tame}(K)^w_v\subseteq ec{P}(K)^w_v$$

is a homotopy equivalence.

Cube chains

Definition

A cube chain in K from v to w is a sequence of cubes (c_1, \ldots, c_n) , such that

$$\delta^{0}_{all}(c_{1}) = v, \quad \delta^{1}_{all}(c_{k}) = \delta^{0}_{all}(c_{k+1}), \quad \delta^{1}_{all}(c_{n}) = w.$$

Every tame path "lies" in a cube chain:

Cube chains on Euclidean complexes

Proposition

If K is a Euclidean complex, then:

- The set $Ch(K)_{v}^{w}$ of cube chains from v to w is a poset with respect to inclusion.
- The set of paths $\vec{P}(K; C)$ lying in cube chain C is contractible.
- $\bigcap_{j=1}^{k} \vec{P}(K; C_j)$ is contractible if there exists C' such that $C' \leq C_j$ for all j.
- Otherwise, $\bigcap_{j=1}^{k} \vec{P}(K; C_j)$ is empty.

Thus, $\{\vec{P}(K; C) \mid C \in Ch(K)_v^w\}$ is a good cover of $\vec{P}_{tame}(K)_v^w$.

Theorem [Z 2018]

If K is a Euclidean complex, then Nerve Lemma implies:

$$\vec{P}(K)_v^w \simeq \vec{P}_{tame}(K)_v^w \simeq |Ch(K)_v^w|.$$

Proposition

If K is a Euclidean complex, then:

- The set $Ch(K)_{v}^{w}$ of cube chains from v to w is a poset with respect to inclusion.
- The set of paths $\vec{P}(K; C)$ lying in cube chain C is contractible.
- $\bigcap_{j=1}^{k} \vec{P}(K; C_j)$ is contractible if there exists C' such that $C' \leq C_j$ for all j.
- Otherwise, $\bigcap_{j=1}^{k} \vec{P}(K; C_j)$ is empty.

Thus, $\{\vec{P}(K; C) \mid C \in Ch(K)_v^w\}$ is a good cover of $\vec{P}_{tame}(K)_v^w$.

Theorem [Z 2018]

If K is a Euclidean complex, then Nerve Lemma implies:

$$ec{P}(K)_{v}^{w}\simeq ec{P}_{tame}(K)_{v}^{w}\simeq |\mathit{Ch}(K)_{v}^{w}|.$$

A model for directed paths on Euclidean complexes

Proposition

The following posets are isomorphic:

- $Ch(\Box^n)^1_0$,
- The poset of ordered partitions of $\{1, \ldots, n\}$.
- The face lattice of (n-1)-dimensional permutahedron

 $\Pi^{n-1} = conv\{(\sigma(1), \ldots, \sigma(n)) \mid \sigma \in Perm(\{1, \ldots, n\})\}.$

Example

If $K \subseteq \Box^n$, then $|Ch(K)_0^1|$ is a subcomplex of the permutahedron, for example

$$|Ch(\partial \Box^3)^1_0| =$$

-

A model for directed paths on Euclidean complexes

Proposition

The following posets are isomorphic:

- $Ch(\Box^n)^1_0$,
- The poset of ordered partitions of $\{1, \ldots, n\}$.
- The face lattice of (n-1)-dimensional permutahedron

 $\Pi^{n-1} = conv\{(\sigma(1), \ldots, \sigma(n)) \mid \sigma \in Perm(\{1, \ldots, n\})\}.$

Example

If $K \subseteq \Box^n$, then $|Ch(K)_0^1|$ is a subcomplex of the permutahedron, for example

$$|Ch(\partial \Box^3)^1_0| =$$

Algorithm

If $K \subseteq \Box^n$ (or $K \subseteq [0, n_1] \times [0, n_2] \times \cdots \times [0, n_d]$), then there is an efficient algorithm for calculating $H_*(\vec{P}(K)_v^w)$ via discrete Morse theory.

Theorem (Raussen-Meshulam, Z)

Calculation of homology of $\vec{P}(K)^w_v$ for K being the k-skeleton of

 $[0, n_1] \times [0, n_2] \times \cdots \times [0, n_d].$

This is a "no (k + 1)-equal" configuration spaces of sequences of points on \mathbb{R} .

Cube chain complex: general case

Definition

The *wedge cube* is a precubical set $\Box^{\vee n} = \Box^{n_1} \underset{1 \sim 0}{\vee} \cdots \underset{1 \sim 0}{\vee} \Box^{n_k}$. For example,

$$\Box^{\vee(2,1,3,2)} = \Box^2 \vee \Box^1 \vee \Box^3 \vee \Box^1 = \bot \bigcirc \bigcirc \top$$

The *cube chain* in K is a (bipointed) precubical map $\mathbf{c} : (\Box^{\vee \mathbf{n}}, \bot, \top) \to (K, v, w)$.

Problem

If K is not a Euclidean complex, then a d-path may have different "tame" presentations using the same cube chain **c**. As a consequence, the map

$$\mathsf{c}_*: ec{P}(\Box^{ee \mathsf{n}})_\perp^ o ec{P}_{tame}(K)_v^w$$

induced by **c** is not necessarily injective.

Cube chain complex: general case

Definition

The wedge cube is a precubical set $\Box^{\vee n} = \Box^{n_1} \underset{1 \sim 0}{\vee} \cdots \underset{1 \sim 0}{\vee} \Box^{n_k}$. For example,

$$\Box^{\vee(2,1,3,2)} = \Box^2 \vee \Box^1 \vee \Box^3 \vee \Box^1 = \bot \bigcirc \bigcirc \top$$

The *cube chain* in K is a (bipointed) precubical map $\mathbf{c} : (\Box^{\vee \mathbf{n}}, \bot, \top) \to (K, v, w)$.

Problem

If K is not a Euclidean complex, then a d-path may have different "tame" presentations using the same cube chain **c**. As a consequence, the map

$$\mathbf{c}_*:ec{P}(\Box^{ee \mathbf{n}})_{ot}^ op o ec{P}_{tame}(K)_{ec v}^w$$

induced by **c** is not necessarily injective.

Cube chain category

Definition

The cube chain category $Ch(K)_{v}^{w}$ of K:

- objects = cube chains $\mathbf{c} : (\Box^{\vee \mathbf{n}}, \bot, \top) \to (K, v, w)$,
- morphisms = commutative diagrams of bipointed precubical maps

Theorem [Z 2020]

For every precubical set K there are homotopy equivalences

$$|Ch(K)_v^w| \simeq \vec{P}_{tame}(K)_v^w \simeq \vec{P}(K)_v^w.$$

Cube chain category

Definition

The cube chain category $Ch(K)_{v}^{w}$ of K:

- objects = cube chains $\mathbf{c} : (\Box^{\vee \mathbf{n}}, \bot, \top) \to (K, v, w)$,
- morphisms = commutative diagrams of bipointed precubical maps

Theorem [Z 2020]

For every precubical set K there are homotopy equivalences

$$|Ch(K)_v^w| \simeq \vec{P}_{tame}(K)_v^w \simeq \vec{P}(K)_v^w.$$

イロト イポト イヨト イヨト

Permutahedral complexes

Definition

The *cube wedge* category \mathcal{P} :

- objects: cube wedges $\Box^{\vee n} = \Box^{n_1} \vee \cdots \vee \Box^{n_k}$,
- morphisms: precubical maps preserving the initial and final vertices.

Properties

• For every bipointed precubical set K there is a forgetful functor

$$Ch(K)^w_{\mathbf{v}} \ni (\mathbf{c}: \Box^{\vee \mathbf{n}} \to K) \mapsto \Box^{\vee \mathbf{n}} \in \mathcal{P}.$$

• The cube chains on K form a presheaf on \mathcal{P} (a functor $\mathcal{P}^{op} \to \mathbf{Set}$):

$$Ch(K)(\Box^{\vee n}) = \Box \mathbf{Set}^*_*(\Box^{\vee n}, K).$$

• $\mathcal{P} \cong Ch(Z)^*_*$, where Z is the final precubical set.

(I) < (I)

Theorem [Paliga-Z, 2022]

Let Z be a final precubical set. Then

$$|\mathcal{P}| \cong \vec{P}(Z)^*_* \cong \prod_{n \ge 0} \vec{P}(Z; n)^*_* \cong \prod_{n \ge 0} Conf(n, \mathbb{R}^2).$$

As a consequence, $\vec{P}(Z; n)_*^* = K(B_n, 1)$ (B_n denotes the braid group on n strands).

Applications

Every precubical set K has a unique (bipointed) precubical map $K \rightarrow Z$, which induces:

- a representation $\pi_1(\vec{P}(K;n)_v^w) \to B_n$,
- "characteric classes" in $H^*(\vec{P}(K; n)_v^w)$ induced by elements of $H^*(B_n)$.

What these invariants measure?

Towards concurrency (with U. Fahrenberg, C. Johansen, G. Struth)

Definition

- A *transition system* is a directed graph with edges labeled with letters of an *alphabet* Σ .
- An *automaton* is a transition system with distinguished "*start*" and "*accept*" vertices.
- Automata recognize languages: sets of words given by paths from start to accept states.
- Letters ("events") of words are totally ordered: no two events cannot be active simultaneously.

Towards concurrency (with U. Fahrenberg, C. Johansen, G. Struth)

Definition

- A *transition system* is a directed graph with edges labeled with letters of an *alphabet* Σ .
- An *automaton* is a transition system with distinguished "*start*" and "*accept*" vertices.
- Automata recognize *languages*: sets of words given by paths from start to accept states.
- Letters ("events") of words are totally ordered: no two events cannot be active simultaneously.

Definition (Pratt-van Glabbeek)

- A higher dimensional automaton is a precubical set X with
 - a labeling $\lambda : X[1] \rightarrow \Sigma$,
 - start states $X_{\perp} \subseteq X[0]$,
 - accept states $X^{\top} \subseteq X[0]$,
 - $\lambda(\delta^0_i(q)) = \lambda(\delta^1(q))$ for $q \in X[2]$, i = 1, 2.

Looking for better definitions

Definition

- A *presheaf* over a category C is a contravariant functor $F : C^{op} \to \mathbf{Set}$.
- An *element category* El(F) of a presheaf F:
 - objects = pairs (c, x) such that $c \in C$, $x \in F(x)$.
 - morphisms $(c, x) \rightarrow (c', x') = \{ \alpha \in \mathcal{C}(x, x') \mid F(\alpha)(x') = x \}.$
- The canonical projection: $EI(F) \ni (c, x) \mapsto c \in C$.

Example

Directed graphs are presheaves over

Example

Transition systems are presheaves over $\mathcal{G}_{\Sigma},$

- $Ob(\mathcal{G}_{\Sigma}) = \Sigma \cup \{\emptyset\},$
- $\mathcal{G}_{\Sigma}(\emptyset, a) = \{d_a^0, d_a^1\} \ (a \in \Sigma)$
- no other morphisms

Looking for better definitions

Definition

- A *presheaf* over a category C is a contravariant functor $F : C^{op} \to \mathbf{Set}$.
- An *element category El*(*F*) of a presheaf *F*:
 - objects = pairs (c, x) such that $c \in C$, $x \in F(x)$.
 - morphisms $(c, x) \rightarrow (c', x') = \{ \alpha \in \mathcal{C}(x, x') \mid F(\alpha)(x') = x \}.$
- The canonical projection: $EI(F) \ni (c, x) \mapsto c \in C$.

Example

Directed graphs are presheaves over

$$\mathcal{G}= \emptyset \overset{d^0}{\overset{d^1}{\longrightarrow}} 1$$

Example

Transition systems are presheaves over \mathcal{G}_{Σ} ,

- $Ob(\mathcal{G}_{\Sigma}) = \Sigma \cup \{\emptyset\},\$
- $\mathcal{G}_{\Sigma}(\emptyset, a) = \{d^0_a, d^1_a\} \ (a \in \Sigma)$
- $\mathcal{G}_{\Sigma}(a, a) = \{ id_a \}, \ \mathcal{G}_{\Sigma}(\emptyset, \emptyset) = \{ id_{\emptyset} \}$
- no other morphisms

Example

イロン イロン イヨン イヨン

æ

Lo-sets and lo-maps

Orders

We use two **strict** transitive relations: < and $-\rightarrow$.

- p < q means that "p happens before q" (precedence),
- $p \rightarrow q$ means that "p has smaller id than q" (event order).

Definition

• An *lo-set* is a triple
$$U = (U, -\rightarrow, \lambda)$$
, where

■ *U* is a finite set,

- --> is a (strict) total order on U,
- $\lambda: U \to \Sigma$ is a labeling.

An *lo-map* is an order- and label-preserving map $f: U \rightarrow V$ (it is always injective).

• Every lo-map $U \rightarrow V$ has the form $(A \subseteq V)$

$$\partial_A: U\cong V\setminus A\subseteq V.$$

Lo-sets and lo-maps

Orders

We use two **strict** transitive relations: < and $-\rightarrow$.

- p < q means that "p happens before q" (precedence),
- $p \rightarrow q$ means that "p has smaller id than q" (event order).

Definition

- An *lo-set* is a triple $U = (U, -- , \lambda)$, where
 - U is a finite set,
 - --> is a (strict) total order on U,
 - $\lambda: U \to \Sigma$ is a labeling.

• An *lo-map* is an order- and label-preserving map $f: U \rightarrow V$ (it is always injective).

• Every lo-map $U \rightarrow V$ has the form $(A \subseteq V)$

$$\partial_A: U\cong V\setminus A\subseteq V.$$

• A precube map from U to V is a triple (f, A, B), where $f: U \to V$ is an lo-map and

 $V = f(U) \dot{\cup} A \dot{\cup} B$

• Every precube map has the form $(A, B \subseteq V, A \cap B = \emptyset)$

$$d_{A,B} = (\partial_{A\cup B}, A, B) : U \to V.$$

• Composition of precube maps $d_{A,B}: U \rightarrow V$ and $d_{C,D}: V \rightarrow W$

$$d_{C,D} \circ d_{A,B} = d_{\partial_{A \cup B}(A) \cup C, \partial_{A \cup B}(B) \cup D}$$

• Notation: $d_A^0 = d_{A,\emptyset}$, $d_B^1 = d_{\emptyset,B}$.

Definition of HDA — precube categories

Example (composition of precube maps)

Precubical sets

Definition

- The *precube category* □ has lo-sets as objects and precube maps as morphisms.
- We do not distinguish the precube category and its skeleton (or the quotient by isomorphisms).
- Morphisms $d_A^0 := d_{A,\emptyset} : U \cong V \setminus A \subseteq V$ are *forth-morphisms*.
- Morphisms $d_B^1 := d_{\emptyset,B} : U \cong V \setminus B \subseteq V$ are *back-morphisms*.

Definition

A *precubical set* X is a presheaf over \Box , ie, a functor $X : \Box^{op} \to \mathbf{Set}$. Namely:

- For every $U = (a_1 \dashrightarrow \cdots \dashrightarrow a_n) \in \Box$ there is a set X[U].
- For $A, B \subseteq U \in \Box$, $A \cap B = \emptyset$, there is a map

$$\delta_{A,B} = X[d_{A,B}] : X[U] \to X[U \setminus (A \cup B)].$$

$$\delta_{A,B} \circ \delta_{C,D} = \delta_{A \cup C,B \cup D} : X[U] \to X[U \setminus (A \dot{\cup} B \dot{\cup} C \dot{\cup} D)].$$

Face maps

Let

- X be a precubical set $(X \in \Box \mathbf{Set})$,
- $\bullet U = (u_1 \dashrightarrow u_2 \dashrightarrow \dots \dashrightarrow u_n) \in \Box,$
- $x \in X[U]$.

Geometry

- x is a cube with "directions" u_1, \ldots, u_n .
- $\delta_{u_k}^1(x)$ is the upper face of x in direction u_k .
- $\delta_{u_k}^0(x)$ is the lower face of x in direction u_k .
- $\delta_{A,B}(x)$ is an iterated face of x: lower in directions $a \in A$ and upper in directions $b \in B$.

Concurrency

- x is a state with active events u_1, \ldots, u_n .
- $\delta_{u_k}^1(x)$ is the state after terminating u_k .
- $\delta_{u_k}^0(x)$ is the state before starting u_k .
- δ_{A,B}(x) is the state obtained from x after terminating events a ∈ A and "unstarting" events b ∈ B.

Higher dimensional automata

Definition

- The *cell category* Cell(X) of a precubical set X is its category of elements.
- ev : Cell(X) $\rightarrow \Box$ is the canonical projection.

Definition

A higher dimensional automaton (HDA) is a precubical set X with

- the set $X_{\perp} \subseteq \mathbf{Cell}(X)$ of *start cells*,
- the set $X^{\top} \subseteq \mathbf{Cell}(X)$ of *accept cells*.

A HDA is *simple* if it has one start and one accept cell. Precubical sets are regarded as HDA with no start/accept cells.

Definition

The *standard U-cube* \Box^U (for $U \in \Box$) is the presheaf represented by U: $\Box^U[V] = \Box(V, U)$, with $(\Box^U)_{\perp} = \{d_U^0 \in \Box(\emptyset, U)\}, (\Box^U)^{\top} = \{d_U^1 \in \Box(\emptyset, U)\}.$

イロト イロト イヨト イヨト

Higher dimensional automata

Definition

- The *cell category* Cell(X) of a precubical set X is its category of elements.
- ev : Cell(X) $\rightarrow \Box$ is the canonical projection.

Definition

A higher dimensional automaton (HDA) is a precubical set X with

- the set $X_{\perp} \subseteq \mathbf{Cell}(X)$ of *start cells*,
- the set $X^{\top} \subseteq$ **Cell**(X) of *accept cells*.

A HDA is *simple* if it has one start and one accept cell. Precubical sets are regarded as HDA with no start/accept cells.

Definition

The *standard U-cube* \Box^U (for $U \in \Box$) is the presheaf represented by U: $\Box^U[V] = \Box(V, U)$, with $(\Box^U)_{\perp} = \{d_U^0 \in \Box(\emptyset, U)\}, (\Box^U)^{\top} = \{d_U^1 \in \Box(\emptyset, U)\}.$

- The *cell category* **Cell**(*X*) of a precubical set *X* is its category of elements.
- ev : Cell(X) $\rightarrow \Box$ is the canonical projection.

Definition

A higher dimensional automaton (HDA) is a precubical set X with

- the set $X_{\perp} \subseteq \mathbf{Cell}(X)$ of *start cells*,
- the set $X^{\top} \subseteq$ **Cell**(X) of *accept cells*.

A HDA is *simple* if it has one start and one accept cell. Precubical sets are regarded as HDA with no start/accept cells.

Definition

The standard U-cube \Box^U (for $U \in \Box$) is the presheaf represented by U: $\Box^U[V] = \Box(V, U)$, with $(\Box^U)_{\perp} = \{d_U^0 \in \Box(\emptyset, U)\}, \ (\Box^U)^{\top} = \{d_U^1 \in \Box(\emptyset, U)\}.$

Paths on HDA

Definition

A *path* in a HDA X is a sequence

$$\alpha = (x_0, \varphi_1, x_1, \varphi_2, \ldots, \varphi_n, x_n)$$

such that $x_k \in \mathbf{Cell}(X)$ and either

- $\varphi_k = \delta_A^0$ and $\delta_0^A(x_k) = x_{k-1}$ for $A \subseteq ev(x_k)$ (*up-step*, notation: $x_{k-1} \nearrow^A x_k$) or
- $\varphi_k = \delta_B^1$ and $\delta_1^B(x_{k-1}) = x_k$ for $B \subseteq ev(x_{k-1})$ (*down-step*, notation: $x_{k-1} \searrow_B x_k$).

Definition

Equivalence of paths $\alpha, \beta \in P(X)$ ($\alpha \sim \beta$) is the equivalence relation spanned by

$$(x \nearrow^{A} y \nearrow^{C} z) \sim (x \nearrow^{A \cup C} z)$$

$$(x \searrow^B y \searrow^D z) \sim (x \searrow^{B \cup D} z)$$

 $\bullet \ \alpha \sim \beta \implies \gamma * \alpha * \delta \sim \gamma * \beta * \delta.$

Definition

Subsumption of paths $\alpha, \beta \in P(X)$ ($\alpha \sqsubseteq \beta$) is the transitive relation spanned by

$$(y \searrow^B w \nearrow^A z) \sqsubseteq (y \nearrow^A x \searrow^B z)$$
$$\alpha \sqsubset \beta \implies \gamma * \alpha * \delta \sqsubseteq \gamma * \beta * \delta.$$

Paths on HDA

Definition

A *path* in a HDA X is a sequence

$$\alpha = (x_0, \varphi_1, x_1, \varphi_2, \dots, \varphi_n, x_n)$$

such that $x_k \in \mathbf{Cell}(X)$ and either

- $\varphi_k = \delta_A^0$ and $\delta_0^A(x_k) = x_{k-1}$ for $A \subseteq ev(x_k)$ (*up-step*, notation: $x_{k-1} \nearrow^A x_k$) or
- $\varphi_k = \delta_B^1$ and $\delta_1^B(x_{k-1}) = x_k$ for $B \subseteq ev(x_{k-1})$ (*down-step*, notation: $x_{k-1} \searrow_B x_k$).

Definition

Equivalence of paths $\alpha, \beta \in P(X)$ ($\alpha \sim \beta$) is the equivalence relation spanned by

$$(x \nearrow^{A} y \nearrow^{C} z) \sim (x \nearrow^{A \cup C} z)$$
$$(x \searrow^{B} y \searrow^{D} z) \sim (x \searrow^{B \cup D} z)$$
$$\alpha \sim \beta \implies \gamma * \alpha * \delta \sim \gamma * \beta * \delta$$

Definition

Subsumption of paths $\alpha, \beta \in P(X)$ ($\alpha \sqsubseteq \beta$) is the transitive relation spanned by

$$(y \searrow^B w \nearrow^A z) \sqsubseteq (y \nearrow^A x \searrow^B z)$$

$$\bullet \ \alpha \sqsubseteq \beta \implies \gamma \ast \alpha \ast \delta \sqsubseteq \gamma \ast \beta \ast \delta.$$

Paths: example

$$\alpha = (x_0 \nearrow^{ac} x_1 \searrow_a x_2 \nearrow^{b} x_3 \searrow_c x_4)$$

$$\beta = (x_0 \nearrow^a y \nearrow^c x_1 \searrow_a x_2 \nearrow^b x_3 \searrow_c x_4) \sim \alpha$$

$$\gamma = (x_0 \nearrow^{ac} x_1 \searrow_a x_2 \searrow^{c} z \nearrow_{b} x_4) \sqsubseteq \alpha$$

Paths: example

$$\alpha = (x_0 \nearrow^{ac} x_1 \searrow_a x_2 \nearrow^{b} x_3 \searrow_c x_4)$$

$$\beta = (x_0 \nearrow^a y \nearrow^c x_1 \searrow_a x_2 \nearrow^b x_3 \searrow_c x_4) \sim \alpha$$

$$\gamma = (x_0 \nearrow^{ac} x_1 \searrow_a x_2 \searrow^{c} z \nearrow_{b} x_4) \sqsubseteq \alpha$$

Paths: example

$$\alpha = (x_0 \nearrow^{ac} x_1 \searrow_a x_2 \nearrow^{b} x_3 \searrow_c x_4)$$

$$\beta = (x_0 \nearrow^a y \nearrow^c x_1 \searrow_a x_2 \nearrow^b x_3 \searrow_c x_4) \sim \alpha$$

$$\gamma = (x_0 \nearrow^{ac} x_1 \searrow_a x_2 \searrow^c z \nearrow_b x_4) \sqsubseteq \alpha$$

Directed category is a category C with wide subcategories $C_0 \subseteq C \supseteq C_1$. Morphisms of C_0 are *forth-morphisms*, morphisms of C_1 , *back-morphisms*. A functor is *directed* if it preserves forth- and back-morphism.

Examples

• Category \Box : d_A^0 are forth-morphisms, d_B^1 are back-morphisms.

The category of cells Cell(X) is directed: a morphism (x, U) → (y, V) is a forth/back-morphism if φ ∈ □(U, V) is such.
 Further, ev : Cell(X) → □ is a directed functor.

■ *Linear categories* (→ are forth-morphisms, ← are back-morphisms)

 $\bot = 0 \longrightarrow 1 \longleftarrow 2 \longleftarrow 3 \longrightarrow 4 \longleftarrow 5 \longrightarrow 6 \longrightarrow 7 \longleftarrow \cdots \longrightarrow n = \top$

Directed category is a category C with wide subcategories $C_0 \subseteq C \supseteq C_1$. Morphisms of C_0 are *forth-morphisms*, morphisms of C_1 , *back-morphisms*. A functor is *directed* if it preserves forth- and back-morphism.

Examples

- Category \square : d_A^0 are forth-morphisms, d_B^1 are back-morphisms.
- The category of cells Cell(X) is directed: a morphism (x, U) → (y, V) is a forth/back-morphism if φ ∈ □(U, V) is such.
 Further, ev : Cell(X) → □ is a directed functor.
- *Linear categories* (→ are forth-morphisms, ← are back-morphisms)

 $\bot = 0 \longrightarrow 1 \longleftarrow 2 \longleftarrow 3 \longrightarrow 4 \longleftarrow 5 \longrightarrow 6 \longrightarrow 7 \longleftarrow \cdots \longrightarrow n = \top$

A *path* on HDA X is a directed functor $\alpha : \mathcal{L} \to \mathbf{Cell}(X)$ from a linear category \mathcal{L} .

Definition

The *label* of a path $\alpha : \mathcal{L} \to \mathbf{Cell}(X)$ is a simple HDA

$$\lambda(\alpha) = \operatorname{colim}\left(\mathcal{L} \xrightarrow{\alpha} \operatorname{Cell}(X) \xrightarrow{\operatorname{ev}} \Box \xrightarrow{\operatorname{Yoneda}} \Box \operatorname{Set}\right) \in \Box \operatorname{Set}$$

with $\lambda(\alpha)_{\perp} = \alpha(\perp), \ \lambda(\alpha)^{\top} = \alpha(\top).$

Remark

Not every simple HDA may be a label of a path.

イロト イポト イヨト イヨト

A *path* on HDA X is a directed functor $\alpha : \mathcal{L} \to \mathbf{Cell}(X)$ from a linear category \mathcal{L} .

Definition

The *label* of a path $\alpha : \mathcal{L} \to \mathbf{Cell}(X)$ is a simple HDA

$$\lambda(\alpha) = \operatorname{colim}\left(\mathcal{L} \xrightarrow{\alpha} \operatorname{\mathbf{Cell}}(X) \xrightarrow{\operatorname{ev}} \Box \xrightarrow{\operatorname{Yoneda}} \Box \operatorname{\mathbf{Set}}\right) \in \Box \operatorname{\mathbf{Set}}$$

with $\lambda(\alpha)_{\perp} = \alpha(\perp)$, $\lambda(\alpha)^{\top} = \alpha(\top)$.

Remark

Not every simple HDA may be a label of a path.

イロト イボト イヨト イヨト

э.

A *path* on HDA X is a directed functor $\alpha : \mathcal{L} \to \mathbf{Cell}(X)$ from a linear category \mathcal{L} .

Definition

The *label* of a path $\alpha : \mathcal{L} \to \mathbf{Cell}(X)$ is a simple HDA

$$\lambda(\alpha) = \operatorname{colim}\left(\mathcal{L} \xrightarrow{\alpha} \operatorname{Cell}(X) \xrightarrow{\operatorname{ev}} \Box \xrightarrow{\operatorname{Yoneda}} \Box\operatorname{Set}\right) \in \Box\operatorname{Set}$$

with $\lambda(\alpha)_{\perp} = \alpha(\perp)$, $\lambda(\alpha)^{\top} = \alpha(\top)$.

Remark

Not every simple HDA may be a label of a path.

A *track object* is a simple HDA having the form

$$\mathcal{T} = colim\left(\mathcal{L} \stackrel{\omega}{\longrightarrow} \Box \stackrel{ ext{Yoneda}}{\longrightarrow} \Box ext{Set}
ight),$$

$$T_{\perp} = \omega(\perp_{\mathcal{L}}), \qquad T^{\top} = \omega(\top_{\mathcal{L}})$$

- A *track* in HDA X is a precubical map $\alpha : T \to X$ from a track object T.
- The *label* of a track α is T itself.

Proposition

There is a natural label-preserving bijection between

- Tracks on X.
- Equivalence classes of paths on X.

Subsumption of paths corresponds to inclusion of tracks.

A *track object* is a simple HDA having the form

$$\mathcal{T} = \textit{colim}\left(\mathcal{L} \stackrel{\omega}{\longrightarrow} \Box \stackrel{ ext{Yoneda}}{\longrightarrow} \Box ext{Set}
ight),$$

$$\mathcal{T}_{\perp} = \omega(\perp_{\mathcal{L}}), \qquad \mathcal{T}^{ op} = \omega(op_{\mathcal{L}})$$

- A *track* in HDA X is a precubical map $\alpha : T \to X$ from a track object T.
- The *label* of a track α is T itself.

Proposition

There is a natural label-preserving bijection between

- Tracks on X.
- Equivalence classes of paths on X.

Subsumption of paths corresponds to inclusion of tracks.

The 2-category of tracks objects TrO:

- Objects are lo-sets $(Ob(\mathbf{TrO}) = Ob(\Box))$
- Morphisms from U to V are (isomorphisms classes of) tracks objects T such that $ev(T_{\perp}) = U$ and $ev(T^{\top}) = V$.
- Composition of $\mathcal{T} \in \mathbf{TrO}(U, V)$ and $\mathcal{T}' \in \mathcal{T}(V, W)$ is

$$T * T' = colim \left(T \xleftarrow{\top} \Box^V \stackrel{\perp}{\longrightarrow} T'
ight).$$

- 2-morphisms $T \Rightarrow T'$ are HDA-maps (subsumptions).
- 2-composition is the composition of HDA-maps.

The *track complex* Tr(X) of a precubical set X is a 2-category:

- Objects are cells of X (Ob(Tr(X)) = Ob(Cell(X)))
- Morphisms from x to y are tracks $\alpha : T \to X$ from x to y (ie, $\alpha(T_{\perp}) = x$, $\alpha(T^{\top}) = y$).
- Composition of $\alpha: T \to X$ and $\beta: T' \to X$ is the concatenation

$$\alpha * \beta : T * T' \to X.$$

- 2-morphisms $T \Rightarrow T'$ are HDA-maps (subsumptions).
- 2-composition is the composition of HDA-maps.

Proposition

The forgetful functor $Tr(X) \rightarrow TrO$ is a "presheaf" on TrO.

The *track complex* Tr(X) of a precubical set X is a 2-category:

- Objects are cells of X (Ob(Tr(X)) = Ob(Cell(X)))
- Morphisms from x to y are tracks $\alpha : T \to X$ from x to y (ie, $\alpha(T_{\perp}) = x$, $\alpha(T^{\top}) = y$).
- Composition of $\alpha: T \to X$ and $\beta: T' \to X$ is the concatenation

$$\alpha * \beta : T * T' \to X.$$

- 2-morphisms $T \Rightarrow T'$ are HDA-maps (subsumptions).
- 2-composition is the composition of HDA-maps.

Proposition

The forgetful functor $\mathbf{Tr}(X) \to \mathbf{TrO}$ is a "presheaf" on \mathbf{TrO} .

Understanding track objects: ipomsets

Definition

An *ipomset* is a tuple $(P, \lambda, <, -- , S, T)$, where

- P is a finite set,
- $\lambda: P \to \Sigma$ is a *labelling*,
- \bullet < is a partial order on *P* (*precedence order*),
- --- is a partial order on P (event order),
- $S \subseteq P$ is a subset of <-minimal elements of P (*source interface*),
- $T \subseteq P$ is a subset of <-maximal elements of P (*target interface*).

Elements $p, q \in P$ are *parallel* $(p \parallel q)$ if $p \neq q$, $p \not< q$ and $q \not< p$. We require that

• If $p \parallel q$, then $p \dashrightarrow q$ or $q \dashrightarrow p$.

An ipomset is *interval* if (P, <) is an interval order.

colors = labels

 \longrightarrow precedence

- $--- \rightarrow event order$
- S source interface
- T target interface

Serial composition of ipomsets

Definition

A serial composition of ipomsets P, Q such that $T_P \simeq S_Q$ is

 $P * Q = (P \dot{\cup} Q) / T_P \sim S_Q$

• $r <_{P * Q} s$ if $r <_P s$ or $r <_Q s$ or $r \in P \setminus T_P, s \in Q \setminus S_Q$,

• $- \rightarrow_{P*Q}$ is the transitive closure of $<_P \cup <_Q$,

• $S_{P*Q} = S_P, T_{P*Q} = T_Q.$

Subsumption of ipomsets

Definition

A subsumption of ipomsets $(P \sqsubseteq Q)$ is a bijective map $f : P \rightarrow Q$ that

- preserves labels $(\lambda(f(p)) = \lambda(p))$,
- reflects precedence $(f(p) < f(p') \implies p < p')$,
- preserves essential event order $(p \parallel p' \land p \dashrightarrow p' \implies f(p) \dashrightarrow f(p')),$
- preserves interfaces $(f(S_P) = S_Q, f(T_P) = T_Q)$.

Ipomset category

Definition

The 2-category of ipomsets iPoms:

- Objects are lo-sets (*Ob*(**iPoms**) = *Ob*(□))
- Morphisms from U to V are (isomorphisms classes of) ipomsets P such that $S_P \cong U$ and $T_P \cong V$.
- Composition of $P \in \mathbf{iPoms}(U, V)$ and $Q \in \mathbf{iPoms}(V, W)$ is

 $P * Q \in \mathbf{iPoms}(U, W).$

- 2-morphisms $P \Rightarrow Q$ are subsumptions $f : P \sqsubseteq Q$.
- 2-composition is the composition of subsumptions.

Let **iiPoms** \subseteq **iPoms** be the full subcategory of interval ipomsets.

Theorem

There is a natural 2-equivalence **iiPoms** $\ni P \mapsto \Box^P \in \mathbf{TrO}$.

Ipomset category

Definition

The 2-category of ipomsets iPoms:

- Objects are lo-sets (*Ob*(**iPoms**) = *Ob*(□))
- Morphisms from U to V are (isomorphisms classes of) ipomsets P such that $S_P \cong U$ and $T_P \cong V$.
- Composition of $P \in \mathbf{iPoms}(U, V)$ and $Q \in \mathbf{iPoms}(V, W)$ is

 $P * Q \in \mathbf{iPoms}(U, W).$

- 2-morphisms $P \Rightarrow Q$ are subsumptions $f : P \sqsubseteq Q$.
- 2-composition is the composition of subsumptions.

Let **iiPoms** \subseteq **iPoms** be the full subcategory of interval ipomsets.

Theorem

There is a natural 2-equivalence **iiPoms** $\ni P \mapsto \Box^P \in \mathbf{TrO}$.

- The track complex Tr(X) admits a functor $ev : Tr(X) \rightarrow iiPoms$ that makes it a "presheaf" over *iiPoms*.
- The cube chain category \mathcal{P} is a full subcategory of **iiPoms** consisting of serial compositions of discrete ipomsets:

• "Taming" theorem for track complexes: every track complex is determined uniquely by its values on $\mathcal{P} \subseteq iiPoms$ (it is a "sheaf").

Let X be a HDA.

- A track $\alpha : T \to X$ is *accepting* if $\alpha(T_{\perp}) \in X_{\perp}$ and $\alpha(T^{\top}) \in X^{\top}$.
- The *language* of X is $Lang(X) = \{P \in iiPoms \mid HDA(\Box^P, X) \neq \emptyset\}.$

Definition

A language $L \subseteq iiPoms$ is *regular* if L = Lang(X) for a finite HDA X.

Kleene theorem for HDA

The family of regular languages is the concurrent Kleene algebra generated from singleton languages by unions, serial compositions, parallel compositions and Kleene plus.