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Goals

Introduce precubical sets alias higher dimensional automata.

Topological executions: directed path spaces.

Combinatorial executions: track complexes.

How these models are related?
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Directed spaces

Idea

Model computer programs by topological spaces.

points of space = states of a program,

distinguished paths = (partial) executions.

Definition (Grandis)

A d-space is a pair (X , P⃗(X )), where

X is a topological space,

P⃗(X ) ⊆ P(X ) =: map(I ,X ) is a family of d-paths (I = [0, 1]),

∀x∈X constx ∈ P⃗(X ),

α, β ∈ P⃗(X ), α(1) = β(0) =⇒ α ∗ β ∈ P⃗(X ).

α ∈ P⃗(X ), f : I → I increasing =⇒ α ◦ f ∈ P⃗(X ).

A map f : X → Y between d-spaces is a d-map if α ∈ P⃗(X ) =⇒ f (α) ∈ P⃗(Y ).
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Directed spaces: examples

Example

Directed interval: I⃗ = (I , {α : I → I increasing}).

The category dTop of d-spaces and d-maps is complete and cocomplete.
We obtain more examples:

Example

Directed cube: I⃗ n = (I n, {α : I → I n all coordinates increasing})

Directed circle: S⃗1 = I⃗/0 ∼ 1 = (S1, {counterclockwise paths})
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Precubical sets

Definition

A precubical set K consist of

a sequence of sets (K [n])n≥0 (n-cells or n-cubes),

a collection of maps δεi : K [n]→ K [n − 1], 1 ≤ i ≤ n, ε = 0, 1 (face maps),

δεi ◦ δ
η
j = δηj−1 ◦ δεi for i < j (precubical identities).

A precubical map f : K → L is a sequence of compatible functions f [n] : K [n]→ L[n].

Definition

The geometric realization of a precubical set K :

|K | =
∐
n≥0

K [n]× I⃗ n/ ∼

(δεi (c), (x1, . . . , xn−1)) ∼ (c , (x1, . . . , xi−1, ε, xi , . . . , xn−1)).
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Examples of precubical sets

Example

01 11

00 010∗

1∗

∗0 ∗1∗∗

The standard n-cube □n:

□n[k] = {(a1, . . . , an) | ai ∈ {0, ∗, 1}, exactly k stars among ai ’s}.
δεi converts i-th star into ε.

The geometric realization of □n is I⃗ n.

A Euclidean complex is a precubical subset of a standard cube.

Example

The final precubical set Z :

Z [n] has exactly one element for every n,

face maps are defined the only possible way.
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Directed paths spaces on precubical sets

Question

Let K be a precubical set, v ,w ∈ K [0] its vertices.

What is the (homotopy type of) the space P⃗(K )wv of directed paths in |K | from v to w?

Results for Euclidean complexes

P⃗(I⃗ n)10 is contractible,

P⃗(∂ I⃗ n)10 ≃ Sn−2,

The length decomposition: P⃗(K )wv =
∐

n≥0 P⃗(K ; n)wv .

Prodsimplicial models for Euclidean complexes [Raussen 2010, 2012].

Every finite CW-complex is homotopy equivalent to P⃗(K )10 for K ⊆ □n [Z, 2016].
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Presentations of d-paths

Observation

Every d-path α ∈ P⃗(K ) has a presentation

α = [c1;β1]
t1∗ [c2;β1]

t2∗ · · ·
tn−1∗ [cn;βn]

where ck ∈ K [nk ], βk ∈ P⃗[tk−1,tk ](I⃗
nk ), 0 < t1 < · · · < tn−1 < 1.

c1 c2

c3

c4

0
t1

t2

t3 1

β1

β3

β2

β4
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Tame paths

Definition

A d-path α ∈ P⃗(K ) is tame if there exists a presentation

α = [c1;β1]
t1∗ · · ·

tn−1∗ [cn;βn]

such that βk(tk−1) = (0, . . . , 0) and βk(tk) = (1, . . . , 1) for all k.

Both paths are tame Tame in □3 but not in ∂□3.
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Taming theorem

Theorem [Z 2020]

For every precubical set K , the inclusion

P⃗tame(K )wv ⊆ P⃗(K )wv

is a homotopy equivalence.
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Cube chains

Definition

A cube chain in K from v to w is a sequence of cubes (c1, . . . , cn), such that

δ0all(c1) = v , δ1all(ck) = δ0all(ck+1), δ1all(cn) = w .

Every tame path “lies” in a cube chain:

c1

c2

c3

c2

c3

c1
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Cube chains on Euclidean complexes

Proposition

If K is a Euclidean complex, then:

The set Ch(K )wv of cube chains from v to w is a poset with respect to inclusion.

The set of paths P⃗(K ;C ) lying in cube chain C is contractible.⋂k
j=1 P⃗(K ;Cj) is contractible if there exists C ′ such that C ′ ≤ Cj for all j .

Otherwise,
⋂k

j=1 P⃗(K ;Cj) is empty.

Thus, {P⃗(K ;C ) | C ∈ Ch(K )wv } is a good cover of P⃗tame(K )wv .

Theorem [Z 2018]

If K is a Euclidean complex, then Nerve Lemma implies:

P⃗(K )wv ≃ P⃗tame(K )wv ≃ |Ch(K )wv |.
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A model for directed paths on Euclidean complexes

Proposition

The following posets are isomorphic:

Ch(□n)10,

The poset of ordered partitions of {1, . . . , n}.
The face lattice of (n − 1)-dimensional permutahedron

Πn−1 = conv{(σ(1), . . . , σ(n)) | σ ∈ Perm({1, . . . , n})}.

Example

If K ⊆ □n, then |Ch(K )10| is a subcomplex of the permutahedron, for example

|Ch(∂□3)10| =
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Applications

Algorithm

If K ⊆ □n (or K ⊆ [0, n1]× [0, n2]× · · · × [0, nd ]), then there is an efficient algorithm for

calculating H∗(P⃗(K )wv ) via discrete Morse theory.

Theorem (Raussen-Meshulam, Z)

Calculation of homology of P⃗(K )wv for K being the k–skeleton of

[0, n1]× [0, n2]× · · · × [0, nd ].

This is a “no (k + 1)-equal” configuration spaces of sequences of points on R.
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Cube chain complex: general case

Definition

The wedge cube is a precubical set □∨n = □n1 ∨
1∼0
· · · ∨

1∼0
□nk . For example,

□∨(2,1,3,2) = □2 ∨□1 ∨□3 ∨□1 =
⊥ ⊤

The cube chain in K is a (bipointed) precubical map c : (□∨n,⊥,⊤)→ (K , v ,w).

Problem

If K is not a Euclidean complex, then a d-path may have different “tame” presentations using
the same cube chain c. As a consequence, the map

c∗ : P⃗(□∨n)⊤⊥ → P⃗tame(K )wv

induced by c is not necessarily injective.
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Cube chain category

Definition

The cube chain category Ch(K )wv of K :

objects = cube chains c : (□∨n,⊥,⊤)→ (K , v ,w),

morphisms = commutative diagrams of bipointed precubical maps

□∨m

□∨n

K

Theorem [Z 2020]

For every precubical set K there are homotopy equivalences

|Ch(K )wv | ≃ P⃗tame(K )wv ≃ P⃗(K )wv .
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Permutahedral complexes

Definition

The cube wedge category P:
objects: cube wedges □∨n = □n1 ∨ · · · ∨□nk ,

morphisms: precubical maps preserving the initial and final vertices.

Properties

For every bipointed precubical set K there is a forgetful functor

Ch(K )wv ∋ (c : □∨n → K ) 7→ □∨n ∈ P.

The cube chains on K form a presheaf on P (a functor Pop → Set):

Ch(K )(□∨n) = □Set∗∗(□
∨n,K ).

P ∼= Ch(Z )∗∗, where Z is the final precubical set.
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The final precubical set

Theorem [Paliga-Z, 2022]

Let Z be a final precubical set. Then

|P| ∼= P⃗(Z )∗∗
∼=

∐
n≥0

P⃗(Z ; n)∗∗
∼=

∐
n≥0

Conf (n,R2).

As a consequence, P⃗(Z ; n)∗∗ = K (Bn, 1) (Bn denotes the braid group on n strands).

Applications

Every precubical set K has a unique (bipointed) precubical map K → Z , which induces:

a representation π1(P⃗(K ; n)wv )→ Bn,

“characteric classes” in H∗(P⃗(K ; n)wv ) induced by elements of H∗(Bn).

What these invariants measure?
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Towards concurrency (with U. Fahrenberg, C. Johansen, G. Struth)

Definition

A transition system is a directed graph with edges labeled with letters of an alphabet Σ.

An automaton is a transition system with distinguished “start” and “accept” vertices.

Automata recognize languages: sets of words given by paths from start to accept states.

Letters (“events”) of words are totally ordered: no two events cannot be active
simultaneously.

Definition (Pratt-van Glabbeek)

a

a

b b

A higher dimensional automaton is a precubical set X with

a labeling λ : X [1]→ Σ,

start states X⊥ ⊆ X [0],

accept states X⊤ ⊆ X [0],

λ(δ0i (q)) = λ(δ1(q)) for q ∈ X [2], i = 1, 2.
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Looking for better definitions

Definition

A presheaf over a category C is a contravariant functor F : Cop → Set.

An element category El(F ) of a presheaf F :

objects = pairs (c, x) such that c ∈ C, x ∈ F (x).
morphisms (c, x) → (c ′, x ′) = {α ∈ C(x , x ′) | F (α)(x ′) = x}.

The canonical projection: El(F ) ∋ (c , x) 7→ c ∈ C.

Example

Directed graphs are presheaves over

G = ∅ 1

d0

d1

Example

Transition systems are presheaves over GΣ,
Ob(GΣ) = Σ ∪ {∅},
GΣ(∅, a) = {d0

a , d
1
a } (a ∈ Σ)

GΣ(a, a) = {ida}, GΣ(∅, ∅) = {id∅}
no other morphisms
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Example

Σ = {•, •}

Transition system G

a

b

c

d

v

u

w

x

El(G )

GΣ
∅

d0
•

d1
•

d0
•

d1
•

a

b

c

d

u

w

v

x

d0
•

d1
•

d0
•

d1
•

d0
•

d1
•

d0
•

d1
•
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Lo-sets and lo-maps

Orders

We use two strict transitive relations: < and 99K.

p < q means that “p happens before q” (precedence),

p 99K q means that “p has smaller id than q” (event order).

Definition

An lo-set is a triple U = (U, 99K, λ), where
U is a finite set,
99K is a (strict) total order on U,
λ : U → Σ is a labeling.

An lo-map is an order- and label-preserving map f : U → V (it is always injective).

Every lo-map U → V has the form (A ⊆ V )

∂A : U ∼= V \ A ⊆ V .
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Precube maps

Definition

A precube map from U to V is a triple (f ,A,B), where f : U → V is an lo-map and

V = f (U) ∪̇A ∪̇B

Every precube map has the form (A,B ⊆ V , A ∩ B = ∅)

dA,B = (∂A∪B ,A,B) : U → V .

Composition of precube maps dA,B : U → V and dC ,D : V →W

dC ,D ◦ dA,B = d∂A∪B (A)∪C ,∂A∪B (B)∪D .

Notation: d0
A = dA,∅, d

1
B = d∅,B .
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Definition of HDA — precube categories

Example (composition of precube maps)

U V W
dq,∅ ds,u

a

b

p

q

r

s

t

u

v

w

0

0

1 =

U W
dsv ,u

a

b

s

t

u

v

w

0

1

0
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Precubical sets

Definition

The precube category □ has lo-sets as objects and precube maps as morphisms.

We do not distinguish the precube category and its skeleton (or the quotient by
isomorphisms).

Morphisms d0
A := dA,∅ : U ∼= V \ A ⊆ V are forth-morphisms.

Morphisms d1
B := d∅,B : U ∼= V \ B ⊆ V are back-morphisms.

Definition

A precubical set X is a presheaf over □, ie, a functor X : □op → Set. Namely:

For every U = (a1 99K · · · 99K an) ∈ □ there is a set X [U].

For A,B ⊆ U ∈ □, A ∩ B = ∅, there is a map

δA,B = X [dA,B ] : X [U]→ X [U \ (A ∪ B)].

δA,B ◦ δC ,D = δA∪C ,B∪D : X [U]→ X [U \ (A ∪̇B ∪̇C ∪̇D)].
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Face maps

Let

X be a precubical set (X ∈ □Set),

U = (u1 99K u2 99K . . . 99K un) ∈ □,

x ∈ X [U].

Geometry

x is a cube with “directions” u1, . . . , un.

δ1uk (x) is the upper face of x in direction uk .

δ0uk (x) is the lower face of x in direction uk .

δA,B(x) is an iterated face of x : lower in
directions a ∈ A and upper in directions
b ∈ B.

Concurrency

x is a state with active events u1, . . . , un.

δ1uk (x) is the state after terminating uk .

δ0uk (x) is the state before starting uk .

δA,B(x) is the state obtained from x after
terminating events a ∈ A and “unstarting”
events b ∈ B.
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Higher dimensional automata

Definition

The cell category Cell(X ) of a precubical set X is its category of elements.

ev : Cell(X )→ □ is the canonical projection.

Definition

A higher dimensional automaton (HDA) is a precubical set X with

the set X⊥ ⊆ Cell(X ) of start cells,

the set X⊤ ⊆ Cell(X ) of accept cells.

A HDA is simple if it has one start and one accept cell.
Precubical sets are regarded as HDA with no start/accept cells.

Definition

The standard U-cube □U (for U ∈ □) is the presheaf represented by U: □U [V ] = □(V ,U),
with (□U)⊥ = {d0

U ∈ □(∅,U)}, (□U)⊤ = {d1
U ∈ □(∅,U)}.
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Definition

The standard U-cube □U (for U ∈ □) is the presheaf represented by U: □U [V ] = □(V ,U),
with (□U)⊥ = {d0

U ∈ □(∅,U)}, (□U)⊤ = {d1
U ∈ □(∅,U)}.
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Paths on HDA

Definition

A path in a HDA X is a sequence

α = (x0, φ1, x1, φ2, . . . , φn, xn)

such that xk ∈ Cell(X ) and either

φk = δ0A and δA0 (xk) = xk−1 for A ⊆ ev(xk) (up-step, notation: xk−1 ↗A xk) or

φk = δ1B and δB1 (xk−1) = xk for B ⊆ ev(xk−1) (down-step, notation: xk−1 ↘B xk).

Definition

Equivalence of paths α, β ∈ P(X ) (α ∼ β)
is the equivalence relation spanned by

(x ↗A y ↗C z) ∼ (x ↗A∪C z)

(x ↘B y ↘D z) ∼ (x ↘B∪D z)

α ∼ β =⇒ γ ∗ α ∗ δ ∼ γ ∗ β ∗ δ.

Definition

Subsumption of paths α, β ∈ P(X ) (α ⊑ β)
is the transitive relation spanned by

(y ↘B w ↗A z) ⊑ (y ↗A x ↘B z)

α ⊑ β =⇒ γ ∗ α ∗ δ ⊑ γ ∗ β ∗ δ.
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Paths: example

x0

x1
x2 x3

x4

a b

c α = (x0 ↗ac x1 ↘a x2 ↗b x3 ↘c x4)

x0 y

x1
x2 x3

x4

β = (x0 ↗a y ↗c x1 ↘a x2 ↗b x3 ↘c x4) ∼ α

x0

x1
x2

z x4

γ = (x0 ↗ac x1 ↘a x2 ↘c z ↗b x4) ⊑ α
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Paths as functors

Definition

Directed category is a category C with wide subcategories C0 ⊆ C ⊇ C1.
Morphisms of C0 are forth-morphisms, morphisms of C1, back-morphisms.
A functor is directed if it preserves forth- and back-morphism.

Examples

Category □: d0
A are forth-morphisms, d1

B are back-morphisms.

The category of cells Cell(X ) is directed: a morphism (x ,U)
φ−→ (y ,V ) is a forth/back-

morphism if φ ∈ □(U,V ) is such.
Further, ev : Cell(X )→ □ is a directed functor.

Linear categories (−→ are forth-morphisms, ←− are back-morphisms)

⊥ = 0−→ 1←− 2←− 3−→ 4←− 5−→ 6−→ 7←−· · ·−→ n = ⊤
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Labels of paths

Definition

A path on HDA X is a directed functor α : L → Cell(X ) from a linear category L.

Definition

The label of a path α : L → Cell(X ) is a simple HDA

λ(α) = colim
(
L α−→ Cell(X )

ev−→ □
Yoneda−−−−→ □Set

)
∈ □Set

with λ(α)⊥ = α(⊥), λ(α)⊤ = α(⊤).

Remark

Not every simple HDA may be a label of a path.
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Tracks

Definition

A track object is a simple HDA having the form

T = colim
(
L ω−→ □

Yoneda−−−−→ □Set
)
,

T⊥ = ω(⊥L), T⊤ = ω(⊤L)

A track in HDA X is a precubical map α : T → X from a track object T .

The label of a track α is T itself.

Proposition

There is a natural label-preserving bijection between

Tracks on X .

Equivalence classes of paths on X .

Subsumption of paths corresponds to inclusion of tracks.
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The category of track objects

Definition

The 2-category of tracks objects TrO:

Objects are lo-sets (Ob(TrO) = Ob(□))

Morphisms from U to V are (isomorphisms classes of) tracks objects T such that
ev(T⊥) = U and ev(T⊤) = V .

Composition of T ∈ TrO(U,V ) and T ′ ∈ T (V ,W ) is

T ∗ T ′ = colim
(
T

⊤←− □V ⊥−→ T ′
)
.

2-morphisms T ⇒ T ′ are HDA-maps (subsumptions).

2-composition is the composition of HDA-maps.
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The category of tracks

Definition

The track complex Tr(X ) of a precubical set X is a 2-category:

Objects are cells of X (Ob(Tr(X )) = Ob(Cell(X )))

Morphisms from x to y are tracks α : T → X from x to y (ie, α(T⊥) = x , α(T⊤) = y).

Composition of α : T → X and β : T ′ → X is the concatenation

α ∗ β : T ∗ T ′ → X .

2-morphisms T ⇒ T ′ are HDA-maps (subsumptions).

2-composition is the composition of HDA-maps.

Proposition

The forgetful functor Tr(X )→ TrO is a “presheaf” on TrO.
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Understanding track objects: ipomsets

Definition

An ipomset is a tuple (P, λ,<, 99K,S ,T ), where

P is a finite set,

λ : P → Σ is a labelling,

< is a partial order on P (precedence order),

99K is a partial order on P (event order),

S ⊆ P is a subset of <-minimal elements of P (source interface),

T ⊆ P is a subset of <-maximal elements of P (target interface).

Elements p, q ∈ P are parallel (p ∥ q) if p ̸= q, p ̸< q and q ̸< p.
We require that

If p ∥ q, then p 99K q or q 99K p.

An ipomset is interval if (P, <) is an interval order.
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Ipomsets: an example

colors = labels

precedence

event orderS

S source interface

T

T

T target interface
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Serial composition of ipomsets

Definition

A serial composition of ipomsets P, Q such that TP ≃ SQ is

P ∗ Q = (P ∪̇Q)/TP ∼ SQ

r <P∗Q s if r <P s or r <Q s or r ∈ P \ TP , s ∈ Q \ SQ ,
99KP∗Q is the transitive closure of <P ∪<Q ,

SP∗Q = SP , TP∗Q = TQ .

S

T

T

S

S

S* =
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Subsumption of ipomsets

Definition

A subsumption of ipomsets (P ⊑ Q) is a bijective map f : P → Q that

preserves labels (λ(f (p)) = λ(p)),

reflects precedence (f (p) < f (p′) =⇒ p < p′),

preserves essential event order (p ∥ p′ ∧ p 99K p′ =⇒ f (p) 99K f (p′)),

preserves interfaces (f (SP) = SQ , f (TP) = TQ).

S

T

S

T

S

T

⊑ ⊑
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Ipomset category

Definition

The 2-category of ipomsets iPoms:

Objects are lo-sets (Ob(iPoms) = Ob(□))

Morphisms from U to V are (isomorphisms classes of) ipomsets P such that SP ∼= U and
TP
∼= V .

Composition of P ∈ iPoms(U,V ) and Q ∈ iPoms(V ,W ) is

P ∗ Q ∈ iPoms(U,W ).

2-morphisms P ⇒ Q are subsumptions f : P ⊑ Q.

2-composition is the composition of subsumptions.

Let iiPoms ⊆ iPoms be the full subcategory of interval ipomsets.

Theorem

There is a natural 2-equivalence iiPoms ∋ P 7→ □P ∈ TrO.
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Conclusions

The track complex Tr(X ) admits a functor ev : Tr(X )→ iiPoms that makes it a
“presheaf” over iiPoms.

The cube chain category P is a full subcategory of iiPoms consisting of serial
compositions of discrete ipomsets:

“Taming” theorem for track complexes: every track complex is determined uniquely by its
values on P ⊆ iiPoms (it is a “sheaf”).
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Appendix: languages of HDA and Kleene theorem

Definition

Let X be a HDA.

A track α : T → X is accepting if α(T⊥) ∈ X⊥ and α(T⊤) ∈ X⊤.

The language of X is Lang(X ) = {P ∈ iiPoms | HDA(□P ,X ) ̸= ∅}.

Definition

A language L ⊆ iiPoms is regular if L = Lang(X ) for a finite HDA X .

Kleene theorem for HDA

The family of regular languages is the concurrent Kleene algebra generated from singleton
languages by unions, serial compositions, parallel compositions and Kleene plus.
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