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Topological Analysis of Dynamical Systems

Differential equations of the form ẋ = f (x) generate continuous-time
dynamical systems ϕ : R× Rd → Rd under suitable conditions. Trying to
understand their dynamics naturally leads to the study of bounded
invariant sets, which in turn often relies on topological methods.
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Fig. 3.4. Phase planes corresponding to the small, black diamond markers in Fig. 3.2 along the vertical line p = 1.55. (a) For r = 1.2, there is a stable limit cycle (black
curve) surrounding P0 (black dot). (b) For r = 1.45, the equilibria P1 and P2 (red and green dots) exist inside the large-amplitude stable limit cycle. (c) For r = 1.6, there is
an unstable limit cycle (red) surrounding P2 , and the relative positions of P1 and P0 have switched. (d) For r = 2, the unstable limit cycle has disappeared in the homoclinic
bifurcation. (e) For r = 2.5, a large-amplitude unstable limit cycle (red) exists inside the large-amplitude stable limit cycle. (f) For r = 3, the equilibrium P2 is the only
attractor, since the large-amplitude stable and unstable limit cycles have disappeared in a saddle–node bifurcation.

obtained after the homoclinic bifurcation curve (dashed blue curve
in Fig. 3.2) is crossed. One sees that all solutions (not on the stable
manifold of P0) are forward asymptotic to P2 (green dot) or to the
large stable limit cycle (black curve). In frame (e), there are large-
amplitude unstable (red) and stable (black) limit cycles, in the nar-
row region between the homoclinic bifurcation curve (blue) and
the curve of saddle–node bifurcations of limit cycles (black). These
disappear as one crosses the curve of saddle–node bifurcations of
limit cycles (upper black curve in Fig. 3.2). In frame (f), only the
three equilibria remain.

Remark 3.1. The bifurcation structure of (3.4) collapses to that of
the symmetric case (2.6) as s → 0 (see Fig. 3.5). More specifically,
the shifted diagonal line of saddle–node bifurcations of P1 and P2
collapses onto the diagonal line of transcritical bifurcations of P0
and P1, thus creating the diagonal line of pitchfork bifurcations of
system (2.6). The organizing centers Q0 and Q1 merge and become
the Z2-symmetric BT point at Q = (1, 1) as s → 0. Concomitantly,
the curves, e1 and e2, ofHopf bifurcationsmerge to the single curve
labeled e1, e2 in Fig. 2.1. Additionally, the curves of homoclinic
bifurcations merge into a single curve (which is tangent to the line
r − 1 = −4(p − 1) at Q ) as s → 0. Similarly, the curves of saddle–
node bifurcations of limit cycles collapse to a single curve (which
is tangent to the line r − 1 ≈ −3.03(p − 1) at Q ) as s → 0.

3.3. Bogdanov–Takens unfolding analysis

In this section, we present the unfolding analysis of the non-
degenerate BT points Q0 and Q1 in system (3.4). Specifically, we
study the homoclinic orbits of an appropriate Hamiltonian system
and use Melnikov theory [27,38] to determine the parameter sets
for which these homoclinics persist under small perturbations. In
this manner, we formally prove the persistence of the six types of
homoclinic orbits, which lie along the blue branches that emanate
from Q0 and Q1 in Fig. 3.3. Fig. 3.6 summarizes the results of this
subsection.

3.3.1. Rescaling and partition of the parameter plane
First, wemake the change of variables (x,−(x+ y)) ↦→ (x, y), so

that (3.4) becomes

ẋ = y,
ẏ = (r − p)x + (r − 1)y − (s + y)x2 − x3. (3.7)

The equilibria are P0 = (0, 0), P1 = (x∗

1, 0), and P2 = (x∗

2, 0), where
x∗

1 and x∗

2 are again given by (3.2). We rescale the dependent and
independent variables and the parameters by

x(t) = η u(t̃), y(t) = η2 v(t̃), t̃ = η t,

µ =
r − p
η2

, λ =
r − 1
η2

, δ =
s
η
. (3.8)

With these rescaled variables and parameters, system (3.7) is
equivalent with

u̇ = v,

v̇ = µu − δu2
− u3

+ η(λ− u2)v, (3.9)

where the overdot denotes d
dt̃ , and we drop the tildes.

There are four distinct regions in the (p, r) plane, depending on
λ and µ (Fig. 3.6):

I. The set {λ > 0, µ > 0} is the region of the (p, r) plane above
the line r = 1 and above the main diagonal (red shaded
region).

II. The set {λ < 0, µ > 0} is the region below the line r = 1
and above the main diagonal (blue shaded region).

III. The set {λ > 0, −
1
4δ

2 < µ < 0} is the region above the
line r = 1 and enclosed by the two diagonals (purple shaded
region).

IV. The set {λ < 0, −
1
4δ

2 < µ < 0} is the region below the
line r = 1 and enclosed by the two diagonals (green shaded
region).

The organizing centers are Q0 = (0, 0) and Q1 = ( 14δ
2,− 1

4δ
2) in

the (λ,µ) plane, corresponding to P0 = (0, 0) and P1 = (− 1
2δ, 0),

respectively.

3.3.2. Persistence of the homoclinics to P0
The homoclinics to P0 lie in the region of µ > 0. We will study

the unperturbed (η = 0) homoclinics first, and then determine

[Figure from Engler et al., Dynamical systems analysis of the Maasch-Saltzman model for glacial cycles, Physica D (2017).]
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Invariance in Dynamical Systems

An invariant set is a subset S ⊂ Rd of phase space which satisfies

ϕ(t, x) ∈ S for all t ∈ R and x ∈ S .

Their study is part of a qualitative theory, which can provide an overall
description of the structure of the dynamics of a given model without
actually solving the underlying equation. It involves the following steps:

Equilibrium Solutions: Locate solutions of the differential equation
which are constant in time.

Periodic Solutions: These are solutions u(t) with u(t + T ) = u(t) for
all t ∈ R, for some period T > 0.

Global Dynamics: How can we make transitions between specific
solutions? For example, are there solutions which converge to
equilibria in forward and backward time?

Topological methods can be used to study invariant sets!
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Sampled Dynamics and Topological Methods

Topological methods have been used successfully for rigorous numerics and
computer-assisted proofs in dynamics. More recently, they have opened
the way to applications for sampled dynamics, based on combinatorial
multivector fields in finite topological spaces.

Combinatorial multivector field
around the Lorenz attractor
constructed from a vector field
sample [Mateusz Juda (2018)]
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Locating Equilibrium Solutions via Topology

Locating equilibria of flows might be difficult:

Nonlinear systems of equations can rarely be solved explicitly.

Numerical results might not be enough, or spurious.

Topological methods such as the Brouwer degree and the associated
winding number can be used to establish the existence of equilibria by
studying the vector field far from the actual solution. This leads to results
that are robust under small perturbations.

452 BOLSINOV et al.

1. INTRODUCTION

In this paper we follow the same idea as in our recent papers [2, 3], namely, to demonstrate
how the constructions well known in pure mathematics (in particular, in topology) can be used in
problems of mechanics. It happens quite often that such constructions are not used by specialists
in applications because of too abstract language. We would like to explain these in a less formal
language, bearing in mind not only methodical and educational purposes but mainly expanding
and developing the interaction between various branches of mathematics and mechanics. As in
our previous papers, we first expose some theoretical material, and then illustrate it with an
example from mechanics. As a new application we give the description of relative equilibria
in one of the problems in vortex dynamics. In mechanics, it is often required to analyze the
properties of singular points of a Hamiltonian depending on some parameters. It is well-known
that a nondegenerate (in the sense of Morse theory) singular point is stable with respect to small
perturbations of a parameter: it remains nondegenerate and its index does not change. However, for
some (bifurcational) values of the parameter degenerations can occur, and while passing through
them the index of a singular point may change. In such cases it is important to understand the
scenarios of possible bifurcations. One of the questions which turn out to be important in this
context (e.g., if one needs to analyze relative equilibria) is as follows: can the index of an isolated
equilibrium point change without giving rise to new equilibria? The most suitable mathematical
tool to answer this kind of questions is the Conley index, which is the topological invariant of an
isolated invariant set of a dynamical system. It was introduced and studied by Charles Conley in
the 1960s–1970s of the past century [21]. The efficiency of this invariant in various problems of
dynamical systems theory is very well known to experts [20] involved in this field, but it cannot be
said that this concept is familiar to specialists in applied areas. The following section is devoted to
the definition of the Conley index and simplest constructions related to it (see also [29, 30, 1]).

2. THE CONLEY INDEX: MOTIVATION, DEFINITION AND EXAMPLES

Before giving a formal definition of the Conley index, we remind the reader of some elementary
concepts from topological dynamics (see, e.g., [5, 18, 28]).

2.1. The Index of a Vector Field and the Morse Index

a. The index of a vector field. Let a dynamical system ẋ = v(x) be given on the plane R2

in some region U whose boundary is a smooth closed curve γ(t), t ∈ [0, 2π], γ(0) = γ(2π). Suppose
there are no equilibrium points at the boundary of U , i.e. v(x) �= 0 for all x ∈ γ. Can we find
out from the behavior of the vector field at the boundary of the region whether there exists an
equilibrium point inside the region? The index of the vector field serves as a good tool to answer
this question. The index is defined as follows.

Consider the vector field v at the boundary as a periodic vector function v(t) = v(γ(t)) of the
parameter t on the curve γ. The index of the vector field v (ind v) at the boundary γ of the region
U is the number of revolutions made by the vector v(t) when passing round along the boundary,
i.e. under the change of t from 0 to 2π (Figs. 1 and 2).

Fig. 1 Fig. 2
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[Figures from Bolsinov et al., Bifurcation analysis and the Conley index in mechanics, Regular and Chaotic Dynamics (2012).]
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Isolated Invariant Sets

Conley, Easton (1971):

In order to study more elaborate perturbation insensitive invariance and
stability one has to restrict attention to isolated invariant sets:

A compact set N is an isolating neighborhood if

Inv(N, ϕ) := {x ∈ N : ϕ(R, x) ⊂ N} ⊂ intN

A set S is an isolated invariant set if S = Inv(N, ϕ) for some isolating
neighborhood N.

 

N N
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Conley Index of Isolated Invariant Sets

Conley (1978): Degree theory for isolated invariant sets

One definition of the Conley index uses special isolating neighborhoods:

A compact set B is called an isolating block, if its exit set

B− := {x ∈ B : ϕ([0,T ), x) 6⊂ B for all T > 0}

is closed, and if there are no internal flow tangencies at the
boundary ∂B.

Every isolated invariant set has associated isolating blocks.
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Conley Index of Isolated Invariant Sets
If S is an isolated invariant set and B is an isolating block for S , then the
Conley index of S is defined as the homotopy type or homology of the
pointed topological space (B/B−, [B−]). The homological Conley index is

CH∗(S) = H∗(B/B
−, [B−]) ≈ H∗(B,B

−)

For hyperbolic equilibria the homotopy indices are pointed spheres.
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Properties of the Conley Index

Isolating blocks are rather restrictive, and one can introduce the more
general concept of index pairs to compute the Conley index.

Important properties:

The Conley index is well-defined and only depends on the isolated
invariant set S . Nevertheless, it can be computed from the
pair (B,B−) even if S itself is unknown.

Ważewski Property: If the Conley index is not trivial, then necessarily
one has S 6= ∅.
By adding additional information, the Conley index can be used to
establish more detailed information, such as the existence of periodic
orbits, heteroclinic orbits, and even chaos.

Conley index was developed as a generalization of the Morse index of
hyperbolic equilibrium solutions. It allows for the generalization of Morse
theory to hierarchies of isolated invariant sets called Morse decompositions.
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Computer-Assisted Proofs via Discretizations

Many computational techniques have been developed to find isolating
blocks or index pairs for dynamical systems generated by maps,
multi-valued maps, and flows, based on triangulations and other
discretizations. Combined with interval arithmetic, they can lead to
computer-assisted existence proofs for specific dynamical structures.

Mrozek, Srzednicki, Thorpe, W. (2022):

Existence of periodic orbits in arbitrary dimensions via flow-transverse
phase space decompositions.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.5

1

1.5

2

Jonathan Barmak & Thomas Wanner Combinatorial Topological Dynamics Paris, May 31, 2022



Chaos via Phase Space Decompositions

These techniques have the potential to algorithmically prove chaos in
differential equations by identifying combinatorial flow structures that
imply complicated dynamical behavior.

Mrozek, Srzednicki, Thorpe, W. (2022):

Lorenz-like structure with transverse flow panels along the boundary which
automatically yields infinitely many periodic orbits in its interior.
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Forman’s Combinatorial Vector Fields

Forman’s combinatorial vector fields have found numerous applications in
areas such as visualization and mesh compression, astronomy, homology
computations, and many others. But from a purely dynamical point of
view, they raise the following questions:

Is it possible to formulate a qualitative dynamical theory directly in
the combinatorial setting, in the sense of Conley index and Morse
decompositions?

Are there formal links between combinatorial dynamics and classical
dynamics? Does every combinatorial vector field give rise to a
classical semiflow on the underlying polytope?

σ4

σ3 σ2 σ1
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3τ
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ω

Combinatorial Vector Field:

Critical cells (index is given
by the cell dimension)
Arrows (from facet to simplex)
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Dynamics Induced by a Combinatorial Vector Field

Let V denote a combinatorial vector field on a simplicial complex X , that
is, a partition of X into singletons {σ} and doubletons {σ−, σ+}, where
we always assume that dimσ+ = 1 + dimσ−.

In its original form, a combinatorial vector field V does not automatically
define a dynamical system. However, our intuition implies the following:

Critical cells σ should lead to both fixed points and flow towards the
boundary of the respective simplex.

Arrow sources σ− should always lead to flow towards the arrow target
simplex σ+.

Arrow targets σ+ should always lead to flow towards the boundary of
the simplex σ+, but not towards the face σ−.
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The Multivalued Flow-Map ΠV

We can therefore think of the dynamics induced by a combinatorial vector
field V on the simplicial complex X as the iteration of an associated
multivalued flow-map ΠV : X ( X defined by

ΠV(τ) :=


Clσ if τ = σ is a critical cell ,

{σ+} if τ = σ− is an arrow source ,

Bdσ+ \ {σ−} if τ = σ+ is an arrow target .

Cl/Bd denote the combinatorial closure/boundary of a simplex.
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Orbits of a Combinatorial Vector Field V
With these definitions, a solution ρ, or orbit, of the field V is a
map ρ : I → X , where I denotes an interval in Z, such that

ρk+1 ∈ ΠV (ρk) for all k, k + 1 ∈ I

A full solution through σ ∈ X is a solution with I = Z and ρ0 = σ.

For the combinatorial vector field V below, one can find three equilibria,
one periodic orbit, as well as a number of heteroclinic orbits. All of these
correspond to paths in the associated digraph.
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Invariant Sets for Combinatorial Vector Fields

Let V denote a combinatorial vector field on a finite simplicial complex X .
Then a set S ⊂ X is called an invariant set for the associated flow ΠV , if
for each simplex σ ∈ S there exists a full solution ρ : Z→ X through σ
which lies completely in S.

The following two examples exhibit a wide variety of invariant sets.

But what about isolation? This requires topology!
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The Simplicial Complex as Finite Topological Space

The face relation on a finite simplicial complex X defines the Alexandrov
topology, and turns X into a finite T0 topological space. A subset A ⊂ X
is open in this topology if all cofaces of any element of A are also in A.
The closure of A, denoted by ClA, is the family of all faces of all
simplices in A.

Considering X as finite T0 space has advantages. For example, singular
homology groups are automatically defined. But we have to accept that
interesting invariant sets might no longer be closed.

The set S which contains the top vertex, the two top edges, and the
2-simplex, is invariant, but not closed. It is in fact open.
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Non-Isolated Invariant Sets

General invariant sets are difficult to study. Therefore, Conley proposed to
focus on isolated invariant sets. In the classical theory, these are invariant
sets S for which there exists a compact set N such that S is the largest
invariant set in N, as well as S ⊂ intN.

Using classical flows associated with V, one can see that also in the
combinatorial setting there should be a notion of isolation.
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Isolated Invariant Set

Let S ⊂ X denote an invariant set for ΠV , and define the exit set or
mouth of S by

MoS := ClS \ S .

Then the invariant set S is an isolated invariant set, if we have:

(a) The exit set MoS is closed in the simplicial complex X .

(b) There exists no solution ρ : [−1, 1] ∩ Z→ X of ΠV such that both
ρ−1 ∈ S and ρ1 ∈ S hold, as well as ρ0 ∈ MoS.

The closure ClS is called an isolating block for the isolated invariant set S.
Note that (b) rules out internal tangencies, analogous to the classical case.

(a), not (b): (b), not (a):
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Isolated Invariant Set
It is possible to characterize isolated invariant sets purely through the
combinatorial vector field V:

Theorem (Kaczynski, Mrozek, W., 2016)

Let S ⊂ X be an invariant set for ΠV . Then S is an isolated invariant set
if and only if MoS is closed, and every arrow of V either lies completely
in S or completely outside of S.

In the example, the invariant set S is shown in light gray, while its exit
set MoS is dark gray.
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Conley Index of an Isolated Invariant Set

Definition (Conley Index)

Let S ⊂ X be an isolated invariant set for ΠV . Then the Conley index
of S is the (simplicial) homology

C∗(S) := H∗ (ClS,MoS) .

The Poincaré polynomial of S is defined by

pS(t) :=
∞∑
k=0

βk(S)tk , where βk(S) = rankCk(S) .

t t

1+t 1
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Morse Decompositions and Conley-Morse Graphs

Morse decompositions can be defined using the notion of limit sets:

For a solution ρ : [a,∞) ∩ Z→ X , we define the ω-limit set as the
intersection ω(ρ) = ∩n≥a{ρk : k ≥ n}. Similarly for α-limit sets.

A family M = {Mp | p ∈ P}, where P is a poset, of disjoint isolated
invariant subsets of X is a Morse decomposition of X , if the following
hold:

For every solution ρ we have α(ρ) ⊂Mp and ω(ρ) ⊂Mq for some
p ≥ q, as long as the limit sets are defined. If in addition p = q, then
we require im ρ ⊂Mp.

The associated Conley-Morse graph is the partial order induced on M
by the existence of connections, and represented as a directed graph
labelled with the Conley indices of the isolated invariant sets in M in
terms of their Poincaré polynomials.
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Morse Decompositions and Conley-Morse Graphs

Given a combinatorial vector field V on a simplicial complex X , one can
easily find the finest Morse decomposition M by determining the strongly
connected path components of the digraph associated with the
multivalued map ΠV : X ( X .

1+t 1 1

ttt

t t2 2
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Morse Inequalities for Morse Decompositions
It is possible to obtain analogues of the classical Morse inequalities:

Theorem (Mrozek, 2017)

Let S ⊂ X be an invariant set for ΠV , and let M = {Ma | a ∈ P} be a
Morse decomposition of S. Then for a polynomial q with nonnegative
coefficients one has∑

a∈P
pMa(t) = pS(t) + (1 + t)q(t) .

1+t 1 1

ttt

t t2 2

2t2+4t+3 =

1 + 2(1 + t)2
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Connection Matrices

Mrozek, W. (2022):

Connection matrices can be defined directly for V, and they are the
analogue of the boundary operator in the Morse complex.

Nonzero entries in a connection matrix guarantee connecting orbits
between the associated Morse sets, just as in the Morse complex.

These connection matrices can be computed explicitly using the
algorithms of Harker, Mischaikow, Spendlove (2018) and Dey,
Lipinski, Mrozek, Slechta (2022).
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Uniqueness of Connection Matrices

Theorem (Mrozek, W., 2022)

If V is a gradient combinatorial vector field and M its finest Morse
decomposition, then the connection matrix is uniquely determined.

CD AC BD DF ABC EFG

A 0 1 1 0
C 0 1 1 0

CD 1 0
AC 1 0
BD 1 0
DF 0 1
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Linking Combinatorial Dynamics and Classical Semiflows

The dynamics of a combinatorial vector field V on a simplicial complex X
can always be represented as a classical semiflow.

Theorem (Mrozek, W., 2021)

For every combinatorial vector field V on a simplicial complex X one can
construct a classical semiflow ϕ : R+

0 × X → X on any geometric
realization X of X which exhibits the same dynamics as V in the sense of
Conley-Morse graphs.
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Constraints Imposed by Forman Vector Fields

While the Conley-Morse theory for combinatorial vector fields successfully
mimics its classical counterpart, Forman vector fields on simplicial
complexes often prove to be too restrictive:

Constructing flow transverse phase space decompositions from
classical vector fields becomes more feasible if one allows for
polygonal or even more complicated regions.

In applications based on discrete data, precise flow directions might
not be known, and flexibility is needed to capture the actual
dynamical possibilities.
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Extension to Finite Topological Spaces

Constraints imposed by the use of simplicial complexes can be removed by
considering combinatorial dynamics on finite topological spaces.

Finite T0 topological spaces X correspond to partially ordered sets.

For every point x ∈ X there exists a smallest closed set cl x which
contains x .

The partial order on X is defined as x ≤ y if and only if x ∈ cl y .

Finite T0 topological spaces generalize simplicial complexes, cellular
complexes, as well as Lefschetz complexes.
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Dynamics through Multivectors

Motivated by the case of combinatorial vector fields, the default
dynamical behavior wants to move points downwards in the poset.
The inherent flow is towards the boundary.

This is analogous to pure gradient dynamics.
Natural cmvf’s 14

Definition. A natural cmvf on a finite topological space X is
a partition into singletons. Then, the associated combinatorial
dynamical system F : X ( X is given by F (x) := clx.
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Dynamics through Multivectors

In order to obtain systems with interesting dynamics we introduce
lifts, i.e., multivectors which allow one to move upwards.

A multivector is any convex set in the poset. Equivalently, such sets
are locally closed. This generalizes Forman’s arrows and critical cells.

Natural cmvf’s 15

In a general multivector field singletons may be grouped. This may be inter-
preted as building lifts.
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Multivector Fields on Finite Topological Spaces

Definition (Multivector Field)

A multivector field V on a finite topological space X is a partition of X
into locally closed sets.

For each multivector V ∈ V the relative homology H∗(clV ,moV ) is
well-defined, and it allows for the following classification:

Critical multivector: H∗(clV ,moV ) 6= 0 (e.g. Forman’s singleton)

Regular multivector: H∗(clV ,moV ) = 0 (e.g. Forman’s doubleton)
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V = {{A,C ,G}, {D}, {H}, {E , I , J}, {B,F}}

Critical: {D}, {H}, and {B,F}
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Combinatorial Flow for a Multivector Field

We define the combinatorial flow associated with the multivector field V
as the multivalued map ΠV : X ( X given by

ΠV(x) := cl x ∪ [x ]V

where [x ]V denotes the unique multivector in V containing x .

The flow towards the boundary is encapsulated in the cl x part of the
image. The lift motion is encoded in [x ]V .

Solutions ρ : Z→ X can be defined as in the Forman case, but this
would imply that every subset of X is invariant.

We therefore only consider essential solutions. They are characterized
by the property that if ρ(k) lies in a regular multivector V , then there
are `1 < k < `2 with ρ(`i ) 6∈ V .

Essential solutions can only remain in critical multivectors for infinite time,
they have to exit regular multivectors in finite forward and backward time.
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Conley-Morse Theory for Multivector Fields

Theorem (Kubica, Lipinski, Mrozek, W., 2019)

Based on earlier work by Mrozek (2017), one can develop a complete
Conley-Morse theory for combinatorial multivector fields on finite T0

topological spaces. This leads to notions of isolated invariant sets, Conley
index, Morse decompositions, and the Morse inequalities.

Invariant sets are isolated invariant sets if they are locally closed and
V-compatible. We say that a set is V-compatible, if it is the union of
a collection of multivectors.

The homological Conley index of an isolated invariant set S is given
by the relative homology C∗(S) = H∗(cl S ,mo S).
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Conley-Morse Theory for Multivector Fields

Theorem (Kubica, Lipinski, Mrozek, W., 2019)

Based on earlier work by Mrozek (2017), one can develop a complete
Conley-Morse theory for combinatorial multivector fields on finite T0

topological spaces. This leads to notions of isolated invariant sets, Conley
index, Morse decompositions, and the Morse inequalities.

Finest Morse decompositions can be found via strongly connected
components of the digraph associated with ΠV which contain
essential solutions.

Attractors are precisely given by closed isolated invariant sets, while
repellers are open isolated invariant sets.

A

C D E

G H

F

I J

B
M3 = {B,F}

M2 = {A,C ,D,E ,G , I , J}

M1 = {H}

C∗(M3) = H̃∗(S
1)

C∗(M2) = H̃∗(S
1)

C∗(M1) = H̃∗(S
0)

Jonathan Barmak & Thomas Wanner Combinatorial Topological Dynamics Paris, May 31, 2022



Connection Matrices for Multivector Fields

Theorem (Mrozek, W., 2022)

The existence of connection matrices can be established for multivector
fields on Lefschetz complexes.

The above result provides a categorical approach to connection matrix
theory which allows for changes in the Morse decomposition poset.

Connection matrices can be computed using the algorithms developed
by Harker, Mischaikow, Spendlove (2018) and Dey, Lipinski, Mrozek,
Slechta (2022).

C1 C2 C3

C1 0
C2 1
C3
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Multivectors and Nonunique Connection Matrices

Multivectors can be used in a natural way to allow for flow ambiguities.
By breaking up the multivector and therefore choosing specific dynamical
behavior, one can determine multiple connection matrices, which can be
indicative of potential saddle-saddle connections.

d′ A B AB CD CE

A −1 −1 −1
B 1
AB
CD
CE

d′′ A B AB CD CE

A −1
B 1 −1 −1
AB
CD
CE
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Towards a General Theory

Kubica, Lipinski, Mrozek, W. (2019):

Based on earlier work by Mrozek (2017), one can develop a complete
Conley-Morse theory for combinatorial multivector fields on finite T0

topological spaces.

Multivectors seem to allow for easier passage from classical dynamical
systems to discretized structures, as they can be used to avoid
decisions of precise flow directions.

Barmak, Mrozek, W. (2020):

One can prove a Lefschetz fixed point theorem for multivalued maps
of finite T0 topological spaces.

Barmak, Mrozek, W. (2022):

In the discrete-time setting, it is possible to develop a Conley index
theory for iterated multivalued maps on finite T0 topological spaces.
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Thank You!
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