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I’ve worked on algebras of programs for some years
(semirings, Kleene algebras, quantales, relation algebras, . . . )

developed variants such as modal/concurrent Kleene algebras
and studied their models/properties

formalised algebra/models with proof assistants
and built program verification tools based on them

formalising models felt like playing variations on a theme

but which theme?



Kleene’s Quest



Kleene Algebra

regular expressions t ::= 0 | 1 | a ∈ Σ | t + t | tt | t∗

languages X ⊆ Σ∗

interpretation map L : RegExpΣ → PΣ∗ defines regular languages

task: axiomatise congruence s ≈ t ⇔ L(s) = L(t)

find algebra KA with signature (+, ·, 0, 1,∗ )

prove KA ` s = t ⇔ L(s) = L(t)



Conway’s Visions



Kleene Algebra Axioms

(K ,+, ·, 0, 1,∗ )

x + (y + z) = (x + y) + z x + y = y + x x + 0 = x x + x = x

x(yz) = (xy)z x1 = x 1x = x

x(y + z) = xy + xz (x + y)z = xz + yz

x0 = 0 0x = 0

1 + xx∗ = x∗ z + xy ≤ y ⇒ x∗z ≤ y

1 + x∗x = x∗ z + yx ≤ y ⇒ zx∗ ≤ y

where x ≤ y ⇔ x + y = y

and indeed KA ` s = t ⇔ L(s) = L(t)



Language Kleene Algebras

soundness proof constructs language KA over free monoid Σ∗

(PΣ∗,∪, ·, ∅, {ε},∗ )

AB = {vw | v ∈ A, w ∈ B}

A∗ =
⋃
i≥0

Ai for A0 = 1, Ai+1 = AAi

or just KA PM for any monoid M

regular languages are then sub-KAs generated by Σ



weighted languages f : Σ∗ → K form convolution KAs

(KΣ∗ ,+, ∗, 0, id ,∗ )

(f + g)(w) = f (w) + g(w)

0(w) = 0

(f ∗ g)(w) =
∑

w=u·v
f (u) · g(v)

id(w) = δε(w)

f ∗(ε) = f (ε)∗

f ∗(w) = f ∗(ε) ·
∑

w=u·v
u 6=1

f (u) · f ∗(v) for x 6= 1

standard languages take weights in KA 2



Matrix Kleene Algebras

completeness proof formalises automata as K -valued matrices

x0 x1 x2
a a

a, b [(
1
0
0

)
,

(
a + b a 0

0 0 a
0 0 0

)
,

(
0
0
1

)]

KAs are closed under matrix formation: for m, n : I × I → K

(m + n)ij = fij + gij (m · n)ij =
∑
k

fik · gkj 0ij = 0 idij = δij

the star is somewhat tricky



b

c

a d

M =

(
a b
c d

)
M∗ =

(
f ∗ f ∗bd∗

d∗cf ∗ d∗ + d∗cf ∗bd∗

)
for f = a + bd∗c

partition larger matrices into submatrices with squares along diagonal



Relation Kleene Algebras

binary relations are 2-valued matrices X × X → 2

and thus KAs

(P(X × X ),∪, ;, ∅,∆,∗ )

(RS)ab ⇔ ∃c . Rac ∧ Scb

∆ab ⇔ a = b

(R∗)ab ⇔ ∃k ≥ 0. (Rk)ab

but we can’t write (RS)a,b =
∑

c Ra,c ∧ Rc,b — sums may be infinite!



Quantales

quantale (Q,≤, ·, 1) consists of complete lattice (Q,≤) and monoid
(Q, ·, 1) such that

x(
∨

Y ) =
∨
{xy | y ∈ Y } (

∨
X )y = {xy | x ∈ X}

quantales are KAs with x∗ =
∨

i≥0 x
i

examples: (R∞+ ,≥,max, 0) (Lawvere quantale) or ([0, 1],≤, ·, 1)

we can now construct quantale QX×X of Q-valued relations
and convolution quantale QM for any monoid M



Path Quantales

automata are digraphs s, t : E → V

paths are sequences π : v1 → vn = (v1, e1, v2, . . . , vn−1, en−1, vn)

we compose them on matching ends:

v1 v2 v3π

ππ′

π′

we define AB = {ππ′ | π ∈ A, π′ ∈ B, t(π) = s(π′)} and id = {(v) | V }

this yields path KA/quantale . . . and we can add weights to edges

more generally, QC forms a category quantale for any (small) category C



Single-Set Categories?



Shuffle Quantales

shuffle Σ∗ × Σ∗ → PΣ∗ is defined, for a, b ∈ Σ and v ,w ∈ Σ∗ as

v‖ε = {v} = ε‖v (av)‖(bw) = a(v‖(bw)) ∪ b((av)‖w)

we extend to ‖ : PΣ∗ × PΣ∗ → PΣ∗

A‖B =
⋃
{v‖w | v ∈ A, w ∈ B}

we can construct shuffle KA/quantale — and convolution algebras with

(f ‖g)(w) =
∑

w∈u‖v

f (u) · g(v)

words under ‖ don’t form category!



Catoids

a catoid (X ,�, s, t) equips set X with multioperation � : X × X → PX
and source/target maps s, t : X → X that satisfy⋃

{x � v | v ∈ y � z} =
⋃
{u � z | u ∈ x � y}

x � y 6= ∅ ⇒ t(x) = s(y) s(x)� x = {x} x � t(x) = {x}

if we extend to � : PX × PX → PX

A� B =
⋃

x∈A,y∈B

x � y ,

the first axiom becomes

x � (y � z) = (x � y)� z



a catoid morphism f : X → Y satisfies

f (x �X y) ⊆ f (x)�Y f (y) f ◦ sX = sY ◦ f f ◦ tX = tY ◦ f

it is bounded if f (x) ∈ u �Y v implies x ∈ y �X z , u = f (y), v = f (z)
for some y , z ∈ X

a catoid is functional if x , x ′ ∈ y � z ⇒ x = x ′

and local if t(x) = s(y)⇒ x � y 6= ∅

a single-set category is a local functional catoid

Xs = {x | s(x) = x} = Xt determines objects of (small) category



all structures considered so far are catoids

relations are constructed from the pair groupoid on X × X

shuffle languages form the shuffle catoid
with ‖ total and s(w) = ε = t(w) for all w ∈ Σ∗

there are many other interesting examples



Jónsson-Tarski Duality

in boolean algebras with operators
n-ary modalities in B are dual to n + 1-ary relations in X

we view · : PX × PX → PX as binary modality
and � : X × X → PX as ternary relation



for powerset structures this duality is almost trivial

x ∈ y � z ⇔ {x} ⊆ {y} · {z}

atoms in powerset structure Q define relational structure Q+

relational structure X yields powerset structure X+ with

AB =
⋃
{y � z | y ∈ A, z ∈ B}

Jónsson/Tarski have shown that (Q+)+ ∼= Q and (X+)+
∼= X

in fact, the categories of powerset and relational structures
are dually equivalent

Jónsson-Tarski duality yields modal correspondences
translating identities between X and Q



more generally we can prove 2-out-of-3 correspondences
in convolution algebras

X Q

QX

(f ∗ g)(x) =
∨

x∈y�z
f (y) · g(z)

idXs (x) =

{
1 if x ∈ Xs

0 otherwise

(
∨

F )(x) =
∨
{f (x) | f ∈ F}

0(x) = 0



Basic Correspondences

theorem:

1. if X is catoid and Q quantale, then QX is quantale

2. if QX is quantale and Q supported quantale, then X is catoid

3. if QX is quantale and X supported catoid, then Q is quantale

“supported” means structures have enough elements for a construction
(e.g., 0 6= 1 or some composable elements)

we get KA if X is finitely decomposable: {(y , z) | x ∈ y � z} finite f.a. x



(f ∗ (g ∗ h))(x) =
∨

x∈u�y
f (u) ·

( ∨
y∈v�w

g(v) · h(w)

)
=

∨
x∈u�(v�w)

f (u) · (g(v) · h(w))

=
∨

x∈(u�v)�w

(f (u) · g(v)) · h(w)

=
∨

x∈y�w

( ∨
y∈u�w

f (u) · g(v)

)
· h(w)

= ((f ∗ g) ∗ h)(x)

x ∈ u � (v � w)⇔ (δu ∗ (δv ∗ δw ))(x) = 1

⇔ ((δu ∗ δv ) ∗ δw )(x) = 1

⇔ x ∈ (u � v)� w



Catoids and Modal Quantales

a domain quantale equips a quantale with dom : Q → Q satisfying

dom(x)x = x dom(x + y) = dom(x) + dom(y)

dom(0) = 0 dom(x) ≤ 1 dom(xdom(y)) = dom(xy)

a codomain quantale (Q, cod) is a domain quantale (Qop, dom)

a modal quantale is a domain and codomain quantale such that

dom ◦ cod = cod cod ◦ dom = dom

in relation quantale dom(R)aa ⇔ ∃b. Rab and cod(R)aa ⇔ ∃b. Rba



domain elements Qdom = {x | dom(x) = x} form distributive lattice
and boolean algebra if Q is boolean

we define modal operators for x ∈ Q and p ∈ Qdom

|x〉p = dom(xp) 〈x |p = cod(px)

|x ]p =
∨
{q | |x〉q ≤ p} [x |p =

∨
{q | 〈x |q ≤ p}

this yields dynamic logics/algebras, predicate transformer algebras,
boolean algebras with operators

in relation quantale

(|R〉P)aa ⇔ ∃b. Rab ∧ Pbb (|R]P)aa ⇔ ∀b. Rab ⇒ Pbb



Modal Quantales and Program Correctness



Modal Quantales and Program Correctness

we use relations over program store to verify programs

x ∈ Q as programs, + as nondeterministic choice, · as sequential
composition, (−)∗ as finite iteration

in boolean quantale, for x ∈ Q, p ∈ Qdom

if p then x else y = px + py while p do x = (px)∗p

|x ]p calculates wlp of program x from postcondition q

program x is (partially) correct if p ≤ |x ]q



Local Catoids and Modal Quantales

theorem: we have 2-out-of-3 correspondences

local catoid X modal quantale Q

modal quantale QX

dom(f ) =
∨
x∈X

dom(f (x))δs(x)

cod(f ) =
∨
x∈X

cod(f (x))δt(x)



for Q = 2

1. if X is local catoid, then (PX ,⊆,�,Xs ,Ps,Pt) is modal quantale

2. if PX is modal quantale, then X is local catoid

we derive s(xs(y)) = s(xy) and s ◦ r = r in X and lift to dom-axioms in
PX (other dom-axioms don’t depend on identities in X )

dom(A� dom(B)) =
⋃
{s(x � s(y)) | x ∈ A, y ∈ B, t(x) = s(s(y))}

=
⋃
{s(x � y) | x ∈ A, y ∈ B, t(x) = s(y)}

= dom(A� B)

we can recover the catoid axioms from the atom structure in PX

s(x � s(y)) = dom({x} � dom({y}))

= dom({x} � {y})
= s(x � y)



Models of Modal Quantales

if you want to build a modal convolution quantale, look for a catoid

the lifting is then generic

locality axiom dom(xdom(y)) = dom(xy) is precisely the composition
pattern of categories

absorption axiom dom(x)x = x corresponds to left unit axiom of catoids

every category gives rise to modal quantale



Catoids and Concurrent Quantales

word concatenation interacts with shuffle via interchange law

(v‖v ′) · (w‖w ′) ⊆ (v · w)‖(v ′ · w ′)

we can lift it to (A‖A′) · (B‖B ′) ⊆ (A · B)‖(A′‖B ′)

an interchange catoid (X ,�0, s0, t0,�1, s1, t1) consists of two catoids
that interact via (x �1 x

′)�0 (y �1 y
′) ⊆ (x �0 y)�1 (x ′ �0 y

′)

an interchange quantale (Q,≤, ·0, 10, ·1, 11) consists of two quantales
that interact via (x ·1 x ′) ·0 (y ·0 y ′) ≤ (x ·0 y) ·1 (x ′ ·0 y ′)



theorem: we have 2-out-of-3 correspondences

int. catoid X int. quantale Q

int. quantale QX

it suffices to consider correspondences for interchange



Interleaving Concurrency

correspondences yield (weighted) shuffle languages with interchange laws

‖ is commutative, there’s a general 2-out-of-3 for commutativity

the shuffle catoid has one single unit ε

in interchange catoids/quantales with one single unit there’s a collapse
à la Eckmann-Hilton, small interchange laws are derivable

x ·0 y ≤ x ·1 y x ·0 (y ·1 z) ≤ (x ·0 y) ·1 z (x ·1 y) ·0 z ≤ x ·1 (y ·0 z)

and commutative variants in catoid/quantale



Non-Interleaving Concurrency

pomsets are a standard model of non-interleaving concurrency

a b c a

b c

a a

d b

a

b

a

they are composed using serial/parallel composition

b d b d

a · f = a f

c e c e

a b

a b ‖ c d =

c d

operations · and ‖ share the empty pomset ε as their unit



P

Q Q′

P′

�

P

Q Q′

P′

pomset Q subsumes pomset P, P � Q, if there exists pomset morphism
Q → P that is bijective on points

� is partial order on pomsets

we get interchange catoid (Pom(Σ), ·,⇓, ε) with x ⇓ y = {z | z � x‖y}

it lifts to a powerset interchange quantale,
the downclosed languages form subquantale

this generalises to convolution quantales (under technical restrictions)



Models of Conurrent Quantales

construction of interchange/concurrent quantales motivated
this approach

correspondences for interchange catoids/quantales simplified
discussions about potential models



Single-Set n-Categories





n-Catoids

a (globular) n-catoid (X ,�i , si , ti )0≤i<n consists of n-catoids
(X ,�i , si , ti ) that interact, for all 0 ≤ i < j < n, via

si ◦ sj = sj ◦ si si ◦ tj = tj ◦ si ti ◦ sj = sj ◦ ti ti ◦ tj = tj ◦ ti
(w �j x)�i (y �j z) ⊆ (w �i y)�j (x �i z)

sj(x �i y) = sj(x)�i sj(y) tj(x �i y) = tj(x)�i tj(y)

si (x �j y) ⊆ si (x)�j si (y) ti (x �j y) ⊆ ti (x)�j ti (y)

sj ◦ si = si sj ◦ ti = ti tj ◦ si = si tj ◦ ti = ti

a single-set n-category is a local functional n-catoid

s0(x) t0(x)

s1(x)

t1(x)

x



s1(x �0 y) = s1(x)�0 s1(y) and t1(x �0 y) = t1(x)�0 t1(y)

s0(x) t0(x) t0(y)

s1(x)

t1(x)

x

s1(y)

t1(y)

y



s0(x �1 y) ⊆ s0(x)�1 s0(y) and t0(x �1 y) ⊆ t0(x)�1 t0(y)

t0(x)

s0(x)

t0(y)

s1(x)

t1(x)
s1(y)

t1(y)

x

y

s0(x) t0(y)

s1(x)

t1(y)

x

y

s0(x)

t0(x)

s0(y)

s1(x)

t1(x)
s1(y)

t1(y)

x

y



(w �1 x)�0 (y �1 z) ⊆ (w �0 y)�1 (x �0 z)

s0(x) t0(x) t0(y)

s1(w)

t1(x)

w

x

s1(y)

t1(z)

y

z

s0(x) t0(x) s0(y) t0(y)

s1(w)

t1(x)

x

t1(z)

w

s1(y)

y

z



Reduced n-Catoid Axioms

the following axioms are irredundant and subsume the previous ones

(w �j x)�i (y �j z) ⊆ (w �i y)�j (x �i z)

sj(x �i y) = sj(x)�i sj(y) tj(x �i y) = tj(x)�i tj(y)

this streamlines correspondence proofs



n-Quantales

a (globular) n-quantale (Q,≤, ·i , 1i , domi , cod i )0≤i<n consists of n modal
quantales (Q,≤, ·i , 1i , domi , cod i ) that interact, for all 0 ≤ i < j < n, via

(w ·j x) ·i (y ·j z) ≤ (w ·i y) ·j (x ·i z)

domj(x ·i y) = domj(x) ·i domj(y) cod j(x ·i y) = cod j(x) ·i cod j(y)

domi (x ·j y) ≤ domi (x) ·j domi (y) cod i (x ·j y) ≤ cod i (x) ·j cod i (y)

domj(domi (x)) = domi (x)



n-Catoids and n-Quantales

theorem: we have 2-out-of-3 correspondences

local n-catoid X n-quantale Q

n-quantale QX

relative to previous correspondences it remains to check the globular ones



Higher Rewriting

(modal) Kleene algebras allow proving facts from abstract rewriting
(Church-Rosser theorem, Newman’s lemma, . . . )

n-Kleene algebras allow proving analogous fact from higher rewriting
(using free (n, p)-categories constructed using polygraphs/computads)

our correspondences justify the axioms of n-Kleene algebra firmly
in terms of (free) n-categories

we can justify those of (n, p)-Kleene algebras by integrating
(single-set) groupoids

Jónnson-Tarski knew about correspondence between groupoids
and relation algebras

single-set approach makes approach easily accessible to proof assistants
and even SMT-solvers



Conclusion

catoids simplify the construction of models for algebras of programs

they often tell where axioms in algebras of programs come from

they provide a particular way of dealing with partiality
(in algebra or category theory)

they might allow formaling higher categories using automated theorem
provers/SMT solvers . . . but this is speculation
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