
Catoids as a Basis for Algebras of Programs

Georg Struth

University of Sheffield, UK
& Collegium de Lyon

I’ve worked on algebras of programs for some years
(semirings, Kleene algebras, quantales, relation algebras, . . .)

developed variants such as modal/concurrent Kleene algebras
and studied their models/properties

formalised algebra/models with proof assistants
and built program verification tools based on them

formalising models felt like playing variations on a theme

but which theme?

Kleene’s Quest

Kleene Algebra

regular expressions t ::= 0 | 1 | a ∈ Σ | t + t | tt | t∗

languages X ⊆ Σ∗

interpretation map L : RegExpΣ → PΣ∗ defines regular languages

task: axiomatise congruence s ≈ t ⇔ L(s) = L(t)

find algebra KA with signature (+, ·, 0, 1,∗)

prove KA ` s = t ⇔ L(s) = L(t)

Conway’s Visions

Kleene Algebra Axioms

(K ,+, ·, 0, 1,∗)

x + (y + z) = (x + y) + z x + y = y + x x + 0 = x x + x = x

x(yz) = (xy)z x1 = x 1x = x

x(y + z) = xy + xz (x + y)z = xz + yz

x0 = 0 0x = 0

1 + xx∗ = x∗ z + xy ≤ y ⇒ x∗z ≤ y

1 + x∗x = x∗ z + yx ≤ y ⇒ zx∗ ≤ y

where x ≤ y ⇔ x + y = y

and indeed KA ` s = t ⇔ L(s) = L(t)

Language Kleene Algebras

soundness proof constructs language KA over free monoid Σ∗

(PΣ∗,∪, ·, ∅, {ε},∗)

AB = {vw | v ∈ A, w ∈ B}

A∗ =
⋃
i≥0

Ai for A0 = 1, Ai+1 = AAi

or just KA PM for any monoid M

regular languages are then sub-KAs generated by Σ

weighted languages f : Σ∗ → K form convolution KAs

(KΣ∗ ,+, ∗, 0, id ,∗)

(f + g)(w) = f (w) + g(w)

0(w) = 0

(f ∗ g)(w) =
∑

w=u·v
f (u) · g(v)

id(w) = δε(w)

f ∗(ε) = f (ε)∗

f ∗(w) = f ∗(ε) ·
∑

w=u·v
u 6=1

f (u) · f ∗(v) for x 6= 1

standard languages take weights in KA 2

Matrix Kleene Algebras

completeness proof formalises automata as K -valued matrices

x0 x1 x2
a a

a, b [(
1
0
0

)
,

(
a + b a 0

0 0 a
0 0 0

)
,

(
0
0
1

)]

KAs are closed under matrix formation: for m, n : I × I → K

(m + n)ij = fij + gij (m · n)ij =
∑
k

fik · gkj 0ij = 0 idij = δij

the star is somewhat tricky

b

c

a d

M =

(
a b
c d

)
M∗ =

(
f ∗ f ∗bd∗

d∗cf ∗ d∗ + d∗cf ∗bd∗

)
for f = a + bd∗c

partition larger matrices into submatrices with squares along diagonal

Relation Kleene Algebras

binary relations are 2-valued matrices X × X → 2

and thus KAs

(P(X × X),∪, ;, ∅,∆,∗)

(RS)ab ⇔ ∃c . Rac ∧ Scb

∆ab ⇔ a = b

(R∗)ab ⇔ ∃k ≥ 0. (Rk)ab

but we can’t write (RS)a,b =
∑

c Ra,c ∧ Rc,b — sums may be infinite!

Quantales

quantale (Q,≤, ·, 1) consists of complete lattice (Q,≤) and monoid
(Q, ·, 1) such that

x(
∨

Y) =
∨
{xy | y ∈ Y } (

∨
X)y = {xy | x ∈ X}

quantales are KAs with x∗ =
∨

i≥0 x
i

examples: (R∞+ ,≥,max, 0) (Lawvere quantale) or ([0, 1],≤, ·, 1)

we can now construct quantale QX×X of Q-valued relations
and convolution quantale QM for any monoid M

Path Quantales

automata are digraphs s, t : E → V

paths are sequences π : v1 → vn = (v1, e1, v2, . . . , vn−1, en−1, vn)

we compose them on matching ends:

v1 v2 v3π

ππ′

π′

we define AB = {ππ′ | π ∈ A, π′ ∈ B, t(π) = s(π′)} and id = {(v) | V }

this yields path KA/quantale . . . and we can add weights to edges

more generally, QC forms a category quantale for any (small) category C

Single-Set Categories?

Shuffle Quantales

shuffle Σ∗ × Σ∗ → PΣ∗ is defined, for a, b ∈ Σ and v ,w ∈ Σ∗ as

v‖ε = {v} = ε‖v (av)‖(bw) = a(v‖(bw)) ∪ b((av)‖w)

we extend to ‖ : PΣ∗ × PΣ∗ → PΣ∗

A‖B =
⋃
{v‖w | v ∈ A, w ∈ B}

we can construct shuffle KA/quantale — and convolution algebras with

(f ‖g)(w) =
∑

w∈u‖v

f (u) · g(v)

words under ‖ don’t form category!

Catoids

a catoid (X ,�, s, t) equips set X with multioperation � : X × X → PX
and source/target maps s, t : X → X that satisfy⋃

{x � v | v ∈ y � z} =
⋃
{u � z | u ∈ x � y}

x � y 6= ∅ ⇒ t(x) = s(y) s(x)� x = {x} x � t(x) = {x}

if we extend to � : PX × PX → PX

A� B =
⋃

x∈A,y∈B

x � y ,

the first axiom becomes

x � (y � z) = (x � y)� z

a catoid morphism f : X → Y satisfies

f (x �X y) ⊆ f (x)�Y f (y) f ◦ sX = sY ◦ f f ◦ tX = tY ◦ f

it is bounded if f (x) ∈ u �Y v implies x ∈ y �X z , u = f (y), v = f (z)
for some y , z ∈ X

a catoid is functional if x , x ′ ∈ y � z ⇒ x = x ′

and local if t(x) = s(y)⇒ x � y 6= ∅

a single-set category is a local functional catoid

Xs = {x | s(x) = x} = Xt determines objects of (small) category

all structures considered so far are catoids

relations are constructed from the pair groupoid on X × X

shuffle languages form the shuffle catoid
with ‖ total and s(w) = ε = t(w) for all w ∈ Σ∗

there are many other interesting examples

Jónsson-Tarski Duality

in boolean algebras with operators
n-ary modalities in B are dual to n + 1-ary relations in X

we view · : PX × PX → PX as binary modality
and � : X × X → PX as ternary relation

for powerset structures this duality is almost trivial

x ∈ y � z ⇔ {x} ⊆ {y} · {z}

atoms in powerset structure Q define relational structure Q+

relational structure X yields powerset structure X+ with

AB =
⋃
{y � z | y ∈ A, z ∈ B}

Jónsson/Tarski have shown that (Q+)+ ∼= Q and (X+)+
∼= X

in fact, the categories of powerset and relational structures
are dually equivalent

Jónsson-Tarski duality yields modal correspondences
translating identities between X and Q

more generally we can prove 2-out-of-3 correspondences
in convolution algebras

X Q

QX

(f ∗ g)(x) =
∨

x∈y�z
f (y) · g(z)

idXs (x) =

{
1 if x ∈ Xs

0 otherwise

(
∨

F)(x) =
∨
{f (x) | f ∈ F}

0(x) = 0

Basic Correspondences

theorem:

1. if X is catoid and Q quantale, then QX is quantale

2. if QX is quantale and Q supported quantale, then X is catoid

3. if QX is quantale and X supported catoid, then Q is quantale

“supported” means structures have enough elements for a construction
(e.g., 0 6= 1 or some composable elements)

we get KA if X is finitely decomposable: {(y , z) | x ∈ y � z} finite f.a. x

(f ∗ (g ∗ h))(x) =
∨

x∈u�y
f (u) ·

(∨
y∈v�w

g(v) · h(w)

)
=

∨
x∈u�(v�w)

f (u) · (g(v) · h(w))

=
∨

x∈(u�v)�w

(f (u) · g(v)) · h(w)

=
∨

x∈y�w

(∨
y∈u�w

f (u) · g(v)

)
· h(w)

= ((f ∗ g) ∗ h)(x)

x ∈ u � (v � w)⇔ (δu ∗ (δv ∗ δw))(x) = 1

⇔ ((δu ∗ δv) ∗ δw)(x) = 1

⇔ x ∈ (u � v)� w

Catoids and Modal Quantales

a domain quantale equips a quantale with dom : Q → Q satisfying

dom(x)x = x dom(x + y) = dom(x) + dom(y)

dom(0) = 0 dom(x) ≤ 1 dom(xdom(y)) = dom(xy)

a codomain quantale (Q, cod) is a domain quantale (Qop, dom)

a modal quantale is a domain and codomain quantale such that

dom ◦ cod = cod cod ◦ dom = dom

in relation quantale dom(R)aa ⇔ ∃b. Rab and cod(R)aa ⇔ ∃b. Rba

domain elements Qdom = {x | dom(x) = x} form distributive lattice
and boolean algebra if Q is boolean

we define modal operators for x ∈ Q and p ∈ Qdom

|x〉p = dom(xp) 〈x |p = cod(px)

|x]p =
∨
{q | |x〉q ≤ p} [x |p =

∨
{q | 〈x |q ≤ p}

this yields dynamic logics/algebras, predicate transformer algebras,
boolean algebras with operators

in relation quantale

(|R〉P)aa ⇔ ∃b. Rab ∧ Pbb (|R]P)aa ⇔ ∀b. Rab ⇒ Pbb

Modal Quantales and Program Correctness

Modal Quantales and Program Correctness

we use relations over program store to verify programs

x ∈ Q as programs, + as nondeterministic choice, · as sequential
composition, (−)∗ as finite iteration

in boolean quantale, for x ∈ Q, p ∈ Qdom

if p then x else y = px + py while p do x = (px)∗p

|x]p calculates wlp of program x from postcondition q

program x is (partially) correct if p ≤ |x]q

Local Catoids and Modal Quantales

theorem: we have 2-out-of-3 correspondences

local catoid X modal quantale Q

modal quantale QX

dom(f) =
∨
x∈X

dom(f (x))δs(x)

cod(f) =
∨
x∈X

cod(f (x))δt(x)

for Q = 2

1. if X is local catoid, then (PX ,⊆,�,Xs ,Ps,Pt) is modal quantale

2. if PX is modal quantale, then X is local catoid

we derive s(xs(y)) = s(xy) and s ◦ r = r in X and lift to dom-axioms in
PX (other dom-axioms don’t depend on identities in X)

dom(A� dom(B)) =
⋃
{s(x � s(y)) | x ∈ A, y ∈ B, t(x) = s(s(y))}

=
⋃
{s(x � y) | x ∈ A, y ∈ B, t(x) = s(y)}

= dom(A� B)

we can recover the catoid axioms from the atom structure in PX

s(x � s(y)) = dom({x} � dom({y}))

= dom({x} � {y})
= s(x � y)

Models of Modal Quantales

if you want to build a modal convolution quantale, look for a catoid

the lifting is then generic

locality axiom dom(xdom(y)) = dom(xy) is precisely the composition
pattern of categories

absorption axiom dom(x)x = x corresponds to left unit axiom of catoids

every category gives rise to modal quantale

Catoids and Concurrent Quantales

word concatenation interacts with shuffle via interchange law

(v‖v ′) · (w‖w ′) ⊆ (v · w)‖(v ′ · w ′)

we can lift it to (A‖A′) · (B‖B ′) ⊆ (A · B)‖(A′‖B ′)

an interchange catoid (X ,�0, s0, t0,�1, s1, t1) consists of two catoids
that interact via (x �1 x

′)�0 (y �1 y
′) ⊆ (x �0 y)�1 (x ′ �0 y

′)

an interchange quantale (Q,≤, ·0, 10, ·1, 11) consists of two quantales
that interact via (x ·1 x ′) ·0 (y ·0 y ′) ≤ (x ·0 y) ·1 (x ′ ·0 y ′)

theorem: we have 2-out-of-3 correspondences

int. catoid X int. quantale Q

int. quantale QX

it suffices to consider correspondences for interchange

Interleaving Concurrency

correspondences yield (weighted) shuffle languages with interchange laws

‖ is commutative, there’s a general 2-out-of-3 for commutativity

the shuffle catoid has one single unit ε

in interchange catoids/quantales with one single unit there’s a collapse
à la Eckmann-Hilton, small interchange laws are derivable

x ·0 y ≤ x ·1 y x ·0 (y ·1 z) ≤ (x ·0 y) ·1 z (x ·1 y) ·0 z ≤ x ·1 (y ·0 z)

and commutative variants in catoid/quantale

Non-Interleaving Concurrency

pomsets are a standard model of non-interleaving concurrency

a b c a

b c

a a

d b

a

b

a

they are composed using serial/parallel composition

b d b d

a · f = a f

c e c e

a b

a b ‖ c d =

c d

operations · and ‖ share the empty pomset ε as their unit

P

Q Q′

P′

�

P

Q Q′

P′

pomset Q subsumes pomset P, P � Q, if there exists pomset morphism
Q → P that is bijective on points

� is partial order on pomsets

we get interchange catoid (Pom(Σ), ·,⇓, ε) with x ⇓ y = {z | z � x‖y}

it lifts to a powerset interchange quantale,
the downclosed languages form subquantale

this generalises to convolution quantales (under technical restrictions)

Models of Conurrent Quantales

construction of interchange/concurrent quantales motivated
this approach

correspondences for interchange catoids/quantales simplified
discussions about potential models

Single-Set n-Categories

n-Catoids

a (globular) n-catoid (X ,�i , si , ti)0≤i<n consists of n-catoids
(X ,�i , si , ti) that interact, for all 0 ≤ i < j < n, via

si ◦ sj = sj ◦ si si ◦ tj = tj ◦ si ti ◦ sj = sj ◦ ti ti ◦ tj = tj ◦ ti
(w �j x)�i (y �j z) ⊆ (w �i y)�j (x �i z)

sj(x �i y) = sj(x)�i sj(y) tj(x �i y) = tj(x)�i tj(y)

si (x �j y) ⊆ si (x)�j si (y) ti (x �j y) ⊆ ti (x)�j ti (y)

sj ◦ si = si sj ◦ ti = ti tj ◦ si = si tj ◦ ti = ti

a single-set n-category is a local functional n-catoid

s0(x) t0(x)

s1(x)

t1(x)

x

s1(x �0 y) = s1(x)�0 s1(y) and t1(x �0 y) = t1(x)�0 t1(y)

s0(x) t0(x) t0(y)

s1(x)

t1(x)

x

s1(y)

t1(y)

y

s0(x �1 y) ⊆ s0(x)�1 s0(y) and t0(x �1 y) ⊆ t0(x)�1 t0(y)

t0(x)

s0(x)

t0(y)

s1(x)

t1(x)
s1(y)

t1(y)

x

y

s0(x) t0(y)

s1(x)

t1(y)

x

y

s0(x)

t0(x)

s0(y)

s1(x)

t1(x)
s1(y)

t1(y)

x

y

(w �1 x)�0 (y �1 z) ⊆ (w �0 y)�1 (x �0 z)

s0(x) t0(x) t0(y)

s1(w)

t1(x)

w

x

s1(y)

t1(z)

y

z

s0(x) t0(x) s0(y) t0(y)

s1(w)

t1(x)

x

t1(z)

w

s1(y)

y

z

Reduced n-Catoid Axioms

the following axioms are irredundant and subsume the previous ones

(w �j x)�i (y �j z) ⊆ (w �i y)�j (x �i z)

sj(x �i y) = sj(x)�i sj(y) tj(x �i y) = tj(x)�i tj(y)

this streamlines correspondence proofs

n-Quantales

a (globular) n-quantale (Q,≤, ·i , 1i , domi , cod i)0≤i<n consists of n modal
quantales (Q,≤, ·i , 1i , domi , cod i) that interact, for all 0 ≤ i < j < n, via

(w ·j x) ·i (y ·j z) ≤ (w ·i y) ·j (x ·i z)

domj(x ·i y) = domj(x) ·i domj(y) cod j(x ·i y) = cod j(x) ·i cod j(y)

domi (x ·j y) ≤ domi (x) ·j domi (y) cod i (x ·j y) ≤ cod i (x) ·j cod i (y)

domj(domi (x)) = domi (x)

n-Catoids and n-Quantales

theorem: we have 2-out-of-3 correspondences

local n-catoid X n-quantale Q

n-quantale QX

relative to previous correspondences it remains to check the globular ones

Higher Rewriting

(modal) Kleene algebras allow proving facts from abstract rewriting
(Church-Rosser theorem, Newman’s lemma, . . .)

n-Kleene algebras allow proving analogous fact from higher rewriting
(using free (n, p)-categories constructed using polygraphs/computads)

our correspondences justify the axioms of n-Kleene algebra firmly
in terms of (free) n-categories

we can justify those of (n, p)-Kleene algebras by integrating
(single-set) groupoids

Jónnson-Tarski knew about correspondence between groupoids
and relation algebras

single-set approach makes approach easily accessible to proof assistants
and even SMT-solvers

Conclusion

catoids simplify the construction of models for algebras of programs

they often tell where axioms in algebras of programs come from

they provide a particular way of dealing with partiality
(in algebra or category theory)

they might allow formaling higher categories using automated theorem
provers/SMT solvers . . . but this is speculation

Thanks

Cameron Calk, James Cranch, Simon Doherty, Brijesh Dongol,
Uli Fahrenberg, Éric Goubault, Ian Hayes, Christian Johansen,
Philippe Malbos, Damien Pous, Krzysztof Ziemiański

Papers

C. Calk, P. Malbos, G. Struth, D. Pous. Catoids and Globular Convolution Quantales
(manuscript)

U. Fahrenberg, C. Johansen, G. Struth, K. Ziemiański. lr-Multisemigroups and Modal
Convolution Algebras. CoRR abs/2105.00188, 2021

J. Cranch, S. Doherty, G. Struth. Convolution and Concurrency, MSCS, 2021

B. Dongol, I. J. Hayes, G. Struth. Convolution Algebras: Relational Convolution,
Generalised Modalities and Incidence Algebras, LMCS, 2021

C. Calk, U. Fahrenberg, C. Johansen, G. Struth, K. Ziemiański. lr-Multisemigroups,
Modal Quantales and the Origin of Locality. RAMiCS 2021

C. Calk, É. Goubault, P. Malbos, G. Struth. Algebraic Coherent Confluence and
Higher-Dimensional Globular Kleene Algebra, CoRR abs/2006.16129, 2020

B. Dongol, I. J. Hayes, G. Struth. Convolution as a Unifying Concept: Applications in

Separation Logic, Interval Calculi and Concurrency, ACM TOCL, 2016

