Capturing Changes in Combinatorial Dynamical Systems via Persistent Homology

Tamal K. Dey, Marian Mrozek, Ryan Slechta, GETCO 22
Overview & Outline

• Motivating Example and Persistence
• Combinatorial Dynamical Systems & Conley Index
• Conley Index Persistence
• Conley-Morse Graph Persistence
Motivating Example: Hopf Bifurcation

\[x' = -y + x(\lambda - x^2 - y^2) \]
\[y' = x + y(\lambda - x^2 - y^2) \]
Motivating Example: Hopf Bifurcation

\[\lambda \ll 0 \]
Motivating Example: Hopf Bifurcation

\[\lambda = 0 \]
Motivating Example: Hopf Bifurcation

\[\lambda = 1 \]
Motivating Example: Hopf Bifurcation

$\lambda = 2.5$
Motivating Example: Hopf Bifurcation

\[
\lambda = 5
\]
Motivating Example: Hopf Bifurcation

$\lambda = 10$
Motivating Example: Hopf Bifurcation

\[\lambda = 15 \]
Motivating Example: Hopf Bifurcation

\[
\lambda = 17.5
\]
Motivating Example: Hopf Bifurcation

Note: attractor from $\lambda = -\infty$ to $\lambda = 16$

Repeller from $\lambda = 0$ to $\lambda = \infty$

Can we use computational topology to automatically detect these features?
Motivating Example: Hopf Bifurcation

Note: attractor from $\lambda = -\infty$ to $\lambda = 16$

Repeller from $\lambda = 0$ to $\lambda = \infty$

Can we use computational topology to automatically detect these features?

Yes, by using persistence
Persistent Homology

Summarizes changing homology of a filtration [ELZ00]

\[K_1 \subseteq K_2 \subseteq \ldots \subseteq K_n = K \]
Persistence Example

\[K = \]

\[K_0 \subset K_1 \subset K_2 \subset K_3 \subset K_4 \subset K_5 \subset K_6 \]
Zigzag Persistence

\[K_1 \subseteq K_2 \supseteq K_3 \subseteq \ldots \supseteq K_n \]
“Level Set” Persistence

[CDM09] [DW07]
Level Set Barcode
Overview & Outline

• Motivating Example and Persistence
• Combinatorial Dynamical Systems & Conley Index
• Conley Index Persistence
• Conley-Morse Graph Persistence
Multivectors

Let K denote a simplicial complex and \leq denote the face relation.

Definition: A **multivector** V is a convex subset of K with respect to \leq.

Definition: A **multivector field** \mathcal{V} is a partition of K into multivectors.

\[\mathcal{V} = \{\{b\}, \{c, bc\}, \{a, ab, ac, abc\}\} \]
Multivector Fields
Let $\sigma \in K$. Then $\text{cl}(\sigma) = \{\tau \in K \mid \tau \leq \sigma\}$.

$[\sigma]_{\mathcal{V}}$ denotes the vector in \mathcal{V} containing σ.

Dynamics generator $F_{\mathcal{V}} : K \rightarrow K$ defined as:

$$F_{\mathcal{V}}(\sigma) = [\sigma]_{\mathcal{V}} \cup \text{cl}(\sigma)$$
Multivector Fields as a Dynamical System

\[F_\mathcal{V} (\sigma) = [\sigma]_\mathcal{V} \cup \text{cl} (\sigma) \]
Paths

Definition: A path is a finite sequence of simplices $\sigma_1, \sigma_2, \ldots, \sigma_n$ such that $\sigma_{i+1} \in F_{\gamma}(\sigma_i)$.
Solutions

Definition: A solution is a bi-infinite sequence of simplices...

\[\ldots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \ldots \] such that \(\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i) \)

Definition: A solution is a bi-infinite sequence of simplices
\[\ldots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \ldots \] such that \(\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i) \)

But as \(F_{\mathcal{V}}(\sigma) = [\sigma]_{\mathcal{V}} \cup \text{cl}(\sigma) \), every simplex gives a solution!
Critical Multivectors

Definition: Let $A \subseteq K$. The mouth of A is defined as
$$\text{mo}(A) := \text{cl}(A) \setminus A$$

Definition: A multivector $[\sigma]_\mathcal{V}$ is critical if there exists a k such that
$$H_k(\text{cl}([\sigma]_\mathcal{V}), \text{mo}([\sigma]_\mathcal{V}))$$ is nontrivial.
Critical Multivectors

Critical:

Regular:
Essential Solutions

Definition: Let \(\cdots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \cdots \) denote a solution. If for each \(\sigma_i \) where \([\sigma_i]_V\) is noncritical, there exists a \(j > i \) and \(j' < i \) where \([\sigma_i]_V \neq [\sigma_j]_V\) and \([\sigma_i]_V \neq [\sigma_{j'}]_V\), then \(\cdots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \cdots \) is an essential solution.
Definition: Let $A \subseteq K$. The invariant part of A, denoted $\text{Inv}(A)$, is the set of simplices in A which appear in an essential solution in A.

If $A = \text{Inv}(A)$, then A is an invariant set.
Isolated Invariant Sets

Definition: Let \(A \subseteq N \subseteq K \), where \(A \) is an invariant set and \(N \) is closed (i.e. \(N = \text{cl}(N) \)). If every path in \(N \) with endpoints in \(A \) is contained in \(A \), then \(A \) is an isolated invariant set, and \(N \) is an isolating neighborhood for \(A \).
Index Pairs

Definition: Let A be an isolated invariant set, and E and P closed sets such that $E \subseteq P$. If:

1. $F_V(E) \cap P \subseteq E$,
2. $F_V(P \setminus E) \subseteq P$, and
3. $A = \text{Inv}(P \setminus E)$

Then (P, E) is an index pair for A.
Conley Index

Theorem [LKMW2019]: Let \overline{A} denote an isolated invariant set. The pair $(\text{cl}(A), \text{mo}(A))$ is an index pair for \overline{A}.
Index Pairs are Not Unique
Conley Index

Definition: Let \((P, E)\) be an index pair for \(A\). Then the \(k\)-dimensional Conley Index is given by \(H_k(P, E)\).

Theorem [LKMW 2019]: The \(k\)-dimensional Conley Index for \(A\) is well defined.
Conley Indices

\[H_2(R \cup Y, R) = \mathbb{Z}_2 \]
Overview & Outline

• Motivating Example and Persistence
• Combinatorial Dynamical Systems & Conley Index
• Conley Index Persistence
• Conley-Morse Graph Persistence

Conley Index Persistence

First attempt: for each $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$, compute an isolated invariant set, A_1, A_2, \ldots, A_n and corresponding index pairs.

$$(\text{cl}(A_1), \text{mo}(A_1)), (\text{cl}(A_2), \text{mo}(A_2)), \ldots, (\text{cl}(A_n), \text{mo}(A_n))$$

Gives a relative zigzag filtration:

$$\ldots \subseteq (\text{cl}(A_i), \text{mo}(A_i)) \supseteq (\text{cl}(A_i) \cap \text{cl}(A_{i+1}), \text{mo}(A_i) \cap \text{mo}(A_{i+1})) \subseteq (\text{cl}(A_{i+1}), \text{mo}(A_{i+1})) \supseteq \ldots$$

Problem: $(\text{cl}(A_i) \cap \text{cl}(A_{i+1}), \text{mo}(A_i) \cap \text{mo}(A_{i+1}))$ generally not an index pair.
Intersection Example
Index Pairs in an Isolating Neighborhood

Let \(E \subset P \subset N \) for closed \(P, E, N \), and \(A \subset N \). If:

1. \(F_N(P) \cap N \subset P \),
2. \(F_N(E) \cap N \subset E \),
3. \(F_N(P \setminus E) \subset N \), and
4. \(A = \text{Inv}(P \setminus E) \)

then \((P, E) \) is an index pair in \(N \).
Push Forward

Let $A \subseteq K$ denote an arbitrary set in some closed N. Then the push forward of A in N is A together with all simplices in N which are reachable from paths originating in A and contained in N.

![Diagram showing the push forward concept]
Finding Index Pairs in N

Theorem [DMS20]: Let A denote an isolated invariant set, and let N denote an isolating neighborhood for A. The pair $(\text{pf(cl}(A)), \text{pf(mo}(A)))$ is an index pair in N for A.
Index Pairs in an Isolating Neighborhood

Theorem (DMS20): Index Pairs in \mathcal{N} are index pairs.

Definition: Let \mathcal{V}_1, \mathcal{V}_2 denote multivector fields over K. The intersection of multivector fields is given by

$$\mathcal{V}_1 \cap \mathcal{V}_2 = \{ V_1 \cap V_2 \mid V_1 \in \mathcal{V}_1, \ V_2 \in \mathcal{V}_2 \}$$

Theorem (DMS20): Let (P_1, E_1), (P_2, E_2) denote index pairs in \mathcal{N} under $\mathcal{V}_1, \mathcal{V}_2$. The pair $(P_1 \cap P_2, E_1 \cap E_2)$ is an index pair in \mathcal{N} under $\mathcal{V}_1 \cap \mathcal{V}_2$ for $\text{Inv}((P_1 \cap P_2) \setminus (E_1 \cap E_2))$
Intersection Example

All simplices in N, Yellow union
Red is P, and Red is E

Dimension: 2
Conley Index Persistence: New Strategy

Fix N, and for each V_1, V_2, \ldots, V_n, compute the maximal invariant set in N, denoted A_1, A_2, \ldots, A_n, and corresponding index pairs.

$$(\text{cl}(A_1), \text{mo}(A_1)), (\text{cl}(A_2), \text{mo}(A_2)), \ldots, (\text{cl}(A_n), \text{mo}(A_n))$$

Gives a relative zigzag filtration:

$$(\text{pf}_N(\text{cl}A_i), \text{pf}_N(\text{mo}A_i)) \supseteq (\text{pf}_N(\text{cl}A_i) \cap \text{pf}_N(\text{cl}A_{i+1}), \text{pf}_N(\text{mo}A_i) \cap \text{pf}_N(\text{mo}A_{i+1})) \subseteq (\text{pf}_N(\text{cl}A_{i+1}), \text{pf}_N(\text{mo}A_{i+1}))$$
Motivating Example: Hopf Bifurcation
Conley Index Persistence

Dimension: 0

Dimension: 2
Problem: Noise Resilience

All simplices are in N,
Yellow union Red = P,
and Red = E
Solution: Make E Smaller
Conley Index Persistence

Proposition [DMS20]: Let \((P, E)\) denote an index pair for \(A\) in \(\mathcal{N}\). If \(V \subseteq E\) is a regular multivector such that \(E' := E \setminus V\) is closed, then \((P, E')\) is an index pair in \(\mathcal{N}\) for \(A\).
Conley Index Persistence

Proposition [DMS20]: Let \((P, E)\) denote an index pair for \(\mathcal{A}\) in \(\mathcal{N}\). If \(V \subseteq E\) is a regular multivector such that \(E' := E \setminus V\) is closed, then \((P, E')\) is an index pair in \(\mathcal{N}\) for \(\mathcal{A}\).
Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.
Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.
Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.
Algorithm

\textbf{MakeNoiseResilient}(P, E, A, \delta):

\textbf{while} there exists a regular multivector \(V \subset E \) such that \(E \setminus V \) is closed and \(d(V, A) \leq \delta \):

\(E \leftarrow E \setminus V \)
Multivector Removal Strategy

Theorem [DMS'20]: This algorithm outputs index pairs
Overview & Outline

• Motivating Example and Persistence
• Combinatorial Dynamical Systems & Conley Index
• Conley Index Persistence
• Conley-Morse Graph Persistence

Motivating Example

Dimension: 0
Original Example

Dimension: 0

Dimension: 1
Conley-Morse Graph

A Morse decomposition graph equipped with information about the Conley Index
Conley-Morse Graph
Conley-Morse Graph Persistence

Two types of filtrations:
1. Graph Filtrations
2. Conley-Morse Filtrations
Conley-Morse Filtrations

1. Assume every isolated invariant set is isolated by the same N.
2. Fix index pair for each Morse set.
3. Find all “maximal” sequences of index pairs across Conley-Morse graphs with nontrivial intersection.
Conley-Morse Filtrations
Conley-Morse Barcodes
Conley-Morse Graph Barcodes

- Dimension: 0
 - Periodic attractor

- Dimension: 1

- Dimension: 2
 - Repelling fixed point AND periodic repeller

- Dimension: 1

- Dimension: 0
 - Attracting fixed point

- Dimension: 0
 - Graph connected component
Conclusion & Future Work

- In this presentation: devised method to capture changes in combinatorial dynamical systems. But...

- Stability?

- Inference?
References

