Capturing Changes in Combinatorial Dynamical Systems via Persistent Homology

Tamal K. Dey, Marian Mrozek, Ryan Slechta, GETCO 22

Overview \& Outline

- Motivating Example and Persistence
- Combinatorial Dynamical Systems \& Conley Index
- Conley Index Persistence
- Conley-Morse Graph Persistence

Motivating Example: Hopf Bifurcation

$$
\begin{gathered}
x^{\prime}=-y+x\left(\lambda-x^{2}-y^{2}\right) \\
y^{\prime}=x+y\left(\lambda-x^{2}-y^{2}\right)
\end{gathered}
$$

Motivating Example: Hopf Bifurcation

Motivating Example: Hopf Bifurcation

Note: attractor from $\lambda=-\infty$ to $\lambda=16$

Repeller from $\lambda=0$ to $\lambda=\infty$

Can we use computational topology to automatically detect these features?

Motivating Example: Hopf Bifurcation

Note: attractor from $\lambda=-\infty$ to $\lambda=16$

Repeller from $\lambda=0$ to $\lambda=\infty$

Can we use computational topology to automatically detect these features?

Yes, by using persistence

Persistent Homology

Summarizes changing homology of a filtration [ELZOO]

$$
K_{1} \subseteq K_{2} \subseteq \ldots \subseteq K_{n}=K
$$

$$
-
$$

"Level Set" Persistence

$$
\begin{aligned}
& \subseteq \subseteq \supseteq 0 \subseteq-\geq 0 \\
& \subseteq \square 00 \subseteq 0 \supseteq 0
\end{aligned}
$$

Level Set Barcode

Dimension: 0
\square

\square

Dimension: 1
\square

Overview \& Outline

- Motivating Example and Persistence
- Combinatorial Dynamical Systems \& Conley Index
- Conley Index Persistence
- Conley-Morse Graph Persistence

Multivectors

Let K denote a simplicial complex and \leq denote the face relation.
Definition: A multivector V is a convex subset of K with respect to \leq.

Definition: A multivector field \mathcal{V} is a partition of K into multivectors.

Multivector Fields

Multivector Fields as a Dynamical System
Let $\sigma \in K$. Then $\operatorname{cl}(\sigma)=\{\tau \in K \mid \tau \leq \sigma\}$.
$[\sigma]_{\mathcal{V}}$ denotes the vector in \mathcal{V} containing σ
Dynamics generator $F_{\mathcal{V}}: K \multimap K$ defined as:

$$
F_{\mathcal{V}}(\sigma)=[\sigma]_{\mathcal{V}} \cup \mathrm{cl}(\sigma)
$$

Multivector Fields as a Dynamical System

$$
F_{\mathcal{V}}(\sigma)=[\sigma]_{\mathcal{V}} \cup \mathrm{cl}(\sigma)
$$

Multivector field

Image of marked edge e
Blue simplices are in $[e]_{\mathcal{V}} \backslash \mathrm{cl}(e)$
Yellow simplices are in $\mathrm{cl}(e) \backslash[e]_{\mathcal{V}}$ Red simplices are in $[e]_{\mathcal{V}} \cap \mathrm{cl}(e)$

Paths

Definition: A path is a finite sequence of simplices $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ such that $\sigma_{i+1} \in F_{\mathcal{V}}\left(\sigma_{i}\right)$

Solutions

Definition: A solution is a bi-infinite sequence of simplices
$\ldots, \sigma_{-1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}\left(\sigma_{i}\right)$

Solutions

Definition: A solution is a bi-infinite sequence of simplices
$\ldots, \sigma_{-1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}\left(\sigma_{i}\right)$

But as $F_{\mathcal{V}}(\sigma)=[\sigma]_{\mathcal{V}} \cup \mathrm{cl}(\sigma)$, every simplex gives a solution!

Critical Multivectors

Definition: Let $A \subseteq K$. The mouth of A is defined as $\mathrm{mo}(A):=\mathrm{cl}(A) \backslash A$

Definition: A multivector $[\sigma]_{\mathcal{V}}$ is critical if there exists a k such that $H_{k}\left(\mathrm{cl}\left([\sigma]_{\mathcal{V}}\right), \operatorname{mo}\left([\sigma]_{\mathcal{V}}\right)\right)$ is nontrivial.

Critical Multivectors

Critical:

Regular:

Essential Solutions

Definition: Let $\cdot\left[, \sigma_{-1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots\right.$ denote a solution. If for each σ_{i} where $\left[\sigma_{i}\right]_{\mathcal{V}}$ is noncritical, there exists a $j>i$ and $j^{\prime}<i$ where $\left[\sigma_{i}\right]_{\mathcal{V}} \neq\left[\sigma_{j}\right]_{\mathcal{V}}$ and $\left[\sigma_{i}\right]_{\mathcal{V}} \neq\left[\sigma_{j^{\prime}}\right]_{\mathcal{V}}$, then $\ldots, \sigma_{-1}, \sigma_{0}, \sigma_{1}, \sigma_{2}, \ldots$ is an essential solution.

Invariant Sets

Definition: Let $A \subseteq K$. The invariant part of A, denoted $\operatorname{Inv}(A)$, is the set of simplices in A which appear in an essential solution in A.

If $A=\operatorname{lnv}(A)$, then A is an invariant set.

Isolated Invariant Sets

Definition: Let $A \subseteq N \subseteq K$, where A is an invariant set and N is closed (i.e. $N=\overline{\mathrm{cl}}(N) \overline{)}$. If every path in N with endpoints in A is contained in A, then A is an isolated invariant set, and N is an isolating neighborhood for A.

Index Pairs

Definition: Let A be an isolated invariant set, and E and P closed sets such that $E \subseteq P$. If:

1. $F_{\mathcal{V}}(E) \cap P \subset E$,
2. $F_{\mathcal{V}}(P \backslash E) \subseteq P$, and
3. $A=\operatorname{lnv}(P \backslash E)$

Then (P, E) is an index pair for A.

Conley Index

Theorem [LKMW2019]: Let A denote an isolated invariant set. The pair $(\mathrm{cl}(A), \operatorname{mo}(A))$ is an index pair for A.

Index Pairs are Not Unique

Conley Index

Definition: Let (P, E) be an index pair for A. Then the kdimensional Conley Index is given by $H_{k}(P, E)$.

Theorem [LKMW 2019]: The k-dimensional Conley Index for A is well defined.

Conley Indices

$H_{2}(R \cup Y, R)=\mathbb{Z}_{2}$

Overview \& Outline

- Motivating Example and Persistence
- Combinatorial Dynamical Systems \& Conley Index
- Conley Index Persistence
- Conley-Morse Graph Persistence
[DMS20] T. K. Dey, M. Mrozek, R. Slechta. "Persistence of the Conley Index in Combinatorial Dynamical Systems." SoCG 2020.

Conley Index Persistence

First attempt: for each $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{n}$, compute an isolated invariant set, $A_{1}, A_{2}, \ldots, A_{n}$ and corresponding index pairs.

$$
\left(\mathrm{cl}\left(A_{1}\right), \operatorname{mo}\left(A_{1}\right)\right),\left(\mathrm{cl}\left(A_{2}\right), \operatorname{mo}\left(A_{2}\right)\right), \ldots,\left(\operatorname{cl}\left(A_{n}\right), \operatorname{mo}\left(A_{n}\right)\right)
$$

Gives a relative zigzag filtration:

$$
\ldots \subseteq\left(\operatorname{cl}\left(A_{i}\right), \operatorname{mo}\left(A_{i}\right)\right) \supseteq\left(\mathrm{cl}\left(A_{i}\right) \cap \mathrm{cl}\left(A_{i+1}\right), \operatorname{mo}\left(A_{i}\right) \cap \operatorname{mo}\left(A_{i+1}\right)\right) \subseteq\left(\mathrm{cl}\left(A_{i+1}\right), \operatorname{mo}\left(A_{i+1}\right)\right) \supseteq \ldots
$$

Problem: $\left(\mathrm{cl}\left(A_{i}\right) \cap \mathrm{cl}\left(A_{i+1}\right), \operatorname{mo}\left(A_{i}\right) \cap \operatorname{mo}\left(A_{i+1}\right)\right)$ generally not an index pair.

Intersection Example

Index Pairs in an Isolating Neighborhood

Let $E \subset P \subseteq N$ for closed P, E, N, and $A \subseteq N$. If:

1. $F_{\mathcal{V}}(P) \cap N \subseteq P$,
2. $F_{\mathcal{V}}(E) \cap N \subseteq E$,
3. $F_{\mathcal{V}}(P \backslash E) \subseteq N$, and
4. $A=\operatorname{lnv}(P \backslash E)$
then (P, E) is an index pair in N.

Push Forward

Let $A \subseteq K$ denote an arbitrary set in some closed N. Then the push forward of A in N is A together with all simplices in N which are reachable from paths originating in A and contained in N.

Finding Index Pairs in N

Theorem [DMS20]: Let A denote an isolated invariant set, and let N denote an isolating neighborhood for A. The pair ($\mathrm{pf}(\mathrm{c}(A))$, $\mathrm{pf}(\operatorname{mo}(A)))$ is an index pair in N for A.

Index Pairs in an Isolating Neighborhood

Theorem (DMS20): Index Pairs in N are index pairs.
Definition: Let $\mathcal{V}_{1}, \mathcal{V}_{2}$ denote multivector fields over K. The intersection of multivector fields is given by

$$
\mathcal{V}_{1} \bar{\cap} \mathcal{V}_{2}=\left\{V_{1} \cap V_{2} \mid V_{1} \in \mathcal{V}_{1}, V_{2} \in \mathcal{V}_{2}\right\}
$$

Theorem (DMS20): Let $\left(P_{1}, E_{1}\right),\left(P_{2}, E_{2}\right)$ denote index pairs in N under $\mathcal{V}_{1}, \mathcal{V}_{2}$. The pair ($P_{1} \cap P_{2}, E_{1} \cap E_{2}$) is an index pair in N under $\mathcal{V}_{1} \bar{\cap} \mathcal{V}_{2}$ for $\operatorname{Inv}\left(\left(P_{1} \cap P_{2}\right) \backslash\left(E_{1} \cap E_{2}\right)\right)$

Intersection Example

Dimension: 2

All simplices in N , Yellow union
Red is P, and Red is E

Conley Index Persistence: New Strategy

Fix N, and for each $\mathcal{V}_{1}, \mathcal{V}_{2}, \ldots, \mathcal{V}_{n}$, compute the maximal invariant set in N, denoted $A_{1}, A_{2}, \ldots, A_{n}$, and corresponding index pairs.

$$
\left(\mathrm{cl}\left(A_{1}\right), \operatorname{mo}\left(A_{1}\right)\right),\left(\mathrm{cl}\left(A_{2}\right), \operatorname{mo}\left(A_{2}\right)\right), \ldots,\left(\operatorname{cl}\left(A_{n}\right), \operatorname{mo}\left(A_{n}\right)\right)
$$

Gives a relative zigzag filtration:

Motivating Example: Hopf Bifurcation

Conley Index Persistence

Dimension: 0

Problem: Noise Resilience

Dimension: 2

```
Dimension: 2
```

All simplices are in N, Yellow union Red $=P$, and Red $=E$

Solution: Make E Smaller

Dimension: 2

Conley Index Persistence

Proposition [DMS20]: Let (P, E) denote an index pair for A in N. If $V \subseteq E$ is a regular multivector such that $E^{\prime}:=E \backslash V$ is closed, then $\left.\overline{(P}, E^{\prime}\right)$ is an index pair in N for A.

Conley Index Persistence

Proposition [DMS20]: Let (P, E) denote an index pair for A in N. If $V \subseteq E$ is a regular multivector such that $E^{\prime}:=E \backslash V$ is closed, then $\left(P, E^{\prime}\right)$ is an index pair in N for A.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Algorithm

MakeNoiseResilient($\mathrm{P}, \mathrm{E}, \mathrm{A}, \delta$):
while there exists a regular multivector $V \subset E$ such that $E \backslash V$ is closed and $d(V, A) \leq \delta$:
$E \leftarrow E \backslash V$

Multivector Removal Strategy

Theorem [DMS'20]: This algorithm outputs index pairs

Dimension: 2

Overview \& Outline

- Motivating Example and Persistence
- Combinatorial Dynamical Systems \& Conley Index
- Conley Index Persistence
- Conley-Morse Graph Persistence
[DMS22] T. K. Dey, M. Mrozek, R. Slechta. "Persistence of Conley-Morse Graphs in Combinatorial Dynamical Systems." SIADS 2022.

Motivating Example

Dimension: 0

Original Example

Dimension: 0
Dimension: 1

Conley-Morse Graph

A Morse decomposition graph equipped with information about the Conley Index

Conley-Morse Graph

$\sum_{1+t}^{1} t+t^{2}$

|

Conley-Morse Graph Persistence

Two types of filtrations:

1. Graph Filtrations
2. Conley-Morse Filtrations

Conley-Morse Filtrations

1. Assume every isolated invariant set is isolated by the same N .
2. Fix index pair for each Morse set.
3. Find all "maximal" sequences of index pairs across Conley-Morse graphs with nontrivial intersection.

Conley-Morse Filtrations

Conley-Morse Barcodes

Dimension: 2
Dimension: 1

Conley-Morse Graph Barcodes

```
Dimension: 0
```

Periodic attractor

```
Dimension: 1
```

Dimension: 0 Attracting fixed point

Dimension: 2

Repelling fixed point AND
periodic repeller

Conclusion \& Future Work

- In this presentation: devised method to capture changes in combinatorial dynamical systems. But...
- Stability?
- Inference?

References

[CDM09] G. Carlsson, V. de Silva, D. Morozov. "Zigzag Persistent Homology and Real Valued Functions." SoCG ‘09
[DW07] T. Dey, R. Wenger. "Stability of Critical Points with Interval Persistence." Discret. Comput. Geom. Volume 33, Issue 3.
[ELZOO] H. Edelsbrunner, D. Letscher, A. Zomordian "Toplogical Persistence and Simplification." FOCS ‘00.
[LKMW19] M. Lipinski, J. Kubica, M. Mrozek, T. Wanner. "Conley-MorseForman theory for generalized combinatorial multivector fields on finite topological spaces." Preprint.
[Mr17] M. Mrozek. "Conley-Morse-Forman Theory for Combinatorial Multivector Fields." FOCM Volume 17, Issue 6.

