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Motivating Example: Hopf Bifurcation

𝑥! = −𝑦 + 𝑥 𝜆 − 𝑥" − 𝑦"

𝑦! = 𝑥 + 𝑦 𝜆 − 𝑥" − 𝑦"



Motivating Example: Hopf Bifurcation

𝜆 ≪ 0



Motivating Example: Hopf Bifurcation

𝜆 = 0



Motivating Example: Hopf Bifurcation

𝜆 = 1



Motivating Example: Hopf Bifurcation

𝜆 = 2.5



Motivating Example: Hopf Bifurcation

𝜆 = 5



Motivating Example: Hopf Bifurcation

𝜆 = 10



Motivating Example: Hopf Bifurcation

𝜆 = 15



Motivating Example: Hopf Bifurcation

𝜆 = 17.5



Motivating Example: Hopf Bifurcation

Note: attractor from                      to

Repeller from                to  

Can we use computational topology to automatically detect these 
features?

𝜆 = −∞ 𝜆 = 16

𝜆 = 0 𝜆 = ∞



Motivating Example: Hopf Bifurcation

Note: attractor from                      to

Repeller from                to  

Can we use computational topology to automatically detect these 
features?

Yes, by using persistence

𝜆 = −∞ 𝜆 = 16

𝜆 = 0 𝜆 = ∞



Persistent Homology

Summarizes changing homology of a filtration [ELZ00]

K1 ✓ K2 ✓ . . . ✓ Kn = K



Persistence Example

t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6

K =

u

v z

K0 ⇢ K1 ⇢ K2 ⇢ K3 ⇢ K4 ⇢ K5 ⇢ K6

✓ ✓ ✓ ✓ ✓ ✓

Dimension: 0

Dimension: 1



Zigzag Persistence 

K1 ✓ K2 ◆ K3 ✓ . . . ◆ Kn



“Level Set” Persistence 

✓ ✓

✓ ✓

◆ ◆

◆ ◆
[CDM09] [DW07]  



Level Set Barcode

Dimension: 0

Dimension: 1
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Multivectors

Let       denote a simplicial complex and        denote the face relation. 

Definition: A multivector is a convex subset of       with respect to      .

Definition: A multivector field is a partition of        into multivectors.V

K 

V K 

K
a

b c

V = {{b}, {c, bc}, {a, ab, ac, abc}}



Multivector Fields



Multivector Fields as a Dynamical System

Let                  . Then                                                             .

denotes the vector in       containing 

Dynamics generator                                     defined as: 

� 2 K cl(�) = {⌧ 2 K | ⌧  �}

�[�]V V

FV : K ( K

FV (�) = [�]V [ cl (�)



Multivector Fields as a Dynamical System

FV (�) = [�]V [ cl (�)

Multivector field Image of marked edge 
Blue simplices are in
Yellow simplices are in
Red simplices are in

e

e

[e]V \ cl(e)
cl(e) \ [e]V

[e]V \ cl(e)



Paths

Definition: A path is a finite sequence of simplices 
such that 

�1,�2, . . . ,�n

�i+1 2 FV (�i)



Solutions

Definition: A solution is a bi-infinite sequence of simplices 
such that . . . ,��1,�0,�1,�2, . . . �i+1 2 FV (�i)



Definition: A solution is a bi-infinite sequence of simplices 
such that

But as                                                       , every simplex gives a solution! 

Solutions

. . . ,��1,�0,�1,�2, . . . �i+1 2 FV (�i)

FV (�) = [�]V [ cl (�)



Critical Multivectors

Definition: Let                  .  The mouth of A is defined as 

Definition: A multivector is critical if there exists a k such that 
is nontrivial. 

A ✓ K
mo (A) := cl (A) \A

[�]V
Hk(cl ([�]V) ,mo ([�]V))



Critical Multivectors

Critical:

Regular: 



Essential Solutions

Definition: Let                                                        denote a solution. If for 
each         where               is noncritical, there exists a                and   
where                                      and                                   , 
then                                                         is an essential solution.

. . . ,��1,�0,�1,�2, . . .
[�i]V�i j > i

[�i]V 6= [�j ]V
. . . ,��1,�0,�1,�2, . . .

j0 < i
[�i]V 6= [�j0 ]V



Invariant Sets

Definition: Let                 .  The invariant part of      , denoted                   , 
is the set of simplices in       which appear in an essential solution in     . 

If                            , then       is an invariant set.    

A ✓ K Inv(A)A
A A

A = Inv(A) A



Isolated Invariant Sets

Definition: Let                               , where       is an invariant set and      is 
closed (i.e.                            ). If every path in N with endpoints in      is 
contained in     , then       is an isolated invariant set, and       is an 
isolating neighborhood for     .  

AA ✓ N ✓ K N
N = cl(N) A
A A N

A



Index Pairs

Definition: Let         be an isolated invariant set, and        and        closed 
sets such that                  . If:
1. ,
2. , and
3.

Then                   is an index pair for     . 

A E P
E ✓ P

FV(E) \ P ⇢ E
FV(P \ E) ✓ P
A = Inv(P \ E)

(P,E) A



Conley Index

Theorem [LKMW2019]: Let         denote an isolated invariant set.  The 
pair                              is an index pair for       . 

A
(cl(A),mo(A)) A



Index Pairs are Not Unique



Conley Index

Definition: Let                    be an index pair for      . Then the k-
dimensional Conley Index is given by                       .

Theorem [LKMW 2019]: The k-dimensional Conley Index for     is well 
defined. 

(P,E) A
Hk(P,E)

A



Conley Indices

H2(R [ Y,R) = Z2
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in Combinatorial Dynamical Systems.” SoCG 2020.

[DMS20]



Conley Index Persistence

First attempt: for each                                     , compute an isolated 
invariant set,                                      and corresponding index pairs. 

Gives a relative zigzag filtration:

Problem:                                                      generally not an index pair.   

V1,V2, . . . ,Vn
A1, A2, . . . , An

(cl(A1),mo(A1)), (cl(A2),mo(A2)), . . . , (cl(An),mo(An))

. . . ✓ (cl(Ai),mo(Ai)) ◆ (cl(Ai) \ cl(Ai+1),mo(Ai) \mo(Ai+1)) ✓ (cl(Ai+1),mo(Ai+1)) ◆ . . .

(cl(Ai) \ cl(Ai+1),mo(Ai) \mo(Ai+1))



Intersection Example



Index Pairs in an Isolating Neighborhood

Let                                   for closed      ,      ,       , and                  .  If:
1. ,
2. ,
3. , and
4.
then                  is an index pair in       .

E NP A ✓ N
FV(P ) \N ✓ P

FV(P \ E) ✓ N
A = Inv(P \ E)
(P,E) N

FV(E) \N ✓ E

E ⇢ P ✓ N



Push Forward

Let                     denote an arbitrary set in some closed       . Then the 
push forward of      in       is        together with all simplices in      which 
are reachable from paths originating in       and contained in     . 

A ✓ K N
NA A N

A N



Finding Index Pairs in N

Theorem [DMS20]: Let        denote an isolated invariant set, and let        
denote an isolating neighborhood for     . The pair                                 is 
an index pair in       for     .

A N
A (pf(cl(A)), pf(mo(A)))

N A



Index Pairs in an Isolating Neighborhood

Theorem (DMS20): Index Pairs in        are index pairs. 

Definition: Let        ,        denote multivector fields over      . The intersection 
of multivector fields is given by 

Theorem (DMS20): Let                      ,                     denote index pairs in      
under      ,       . The pair                                     is an index pair in        under                           

N

V1\V2 = {V1 \ V2 | V1 2 V1, V2 2 V2}

V1 V2 K

(P1, E1) (P2, E2)
(P1 \ P2, E1 \ E2)

N
V1 V2 N

V1\V2 Inv((P1 \ P2) \ (E1 \ E2))for



Intersection Example

All simplices in N, Yellow union 
Red is P, and Red is E

Dimension: 2



Conley Index Persistence: New Strategy

Fix      , and  for each                                     , compute the maximal 
invariant set in      , denoted                                     ,  and corresponding 
index pairs. 

Gives a relative zigzag filtration:

V1,V2, . . . ,Vn

(cl(A1),mo(A1)), (cl(A2),mo(A2)), . . . , (cl(An),mo(An))

N
N A1, A2, . . . , An

(pfN (clAi), pfN (moAi)) ◆ (pfN (clAi) \ pfN (clAi+1), pfN (moAi) \ pfN (moAi+1)) ✓ (pfN (clAi+1), pfN (moAi+1))



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Motivating Example: Hopf Bifurcation



Conley Index Persistence

Dimension: 0

Dimension: 2



Problem: Noise Resilience

All simplices are in N, 
Yellow union Red = P, 
and Red = E

Dimension: 2

Dimension: 2



Solution: Make E Smaller

Dimension: 2



Conley Index Persistence

Proposition [DMS20]: Let               denote an index pair for        in      . 
If                 is a regular multivector such that                            is closed, 
then                is an index pair in       for       .   

(P,E) A N
V ✓ E E0 := E \ V

(P,E0) N A



Conley Index Persistence

Proposition [DMS20]: Let               denote an index pair for        in      . 
If                 is a regular multivector such that                            is closed, 
then                is an index pair in       for        .   

(P,E) A N
V ✓ E E0 := E \ V

(P,E0) N A



Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away 
from the isolated invariant set. 



Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away 
from the isolated invariant set. 



Multivector Removal Strategy

Remove as many multivectors as possible, up to a fixed distance away 
from the isolated invariant set. 



Algorithm

MakeNoiseResilient( P, E, A,     ):

while there exists a regular multivector such that                  is 
closed and                         :

�

E \ V
d(V,A)  �

E  E \ V

V ⇢ E



Multivector Removal Strategy

Theorem [DMS’20]: This algorithm outputs index pairs

Dimension: 2
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Motivating Example



Motivating Example



Motivating Example



Motivating Example



Motivating Example



Motivating Example



Motivating Example



Motivating Example

Dimension: 0



Original Example

Dimension: 0

Dimension: 1



Conley-Morse Graph

A Morse decomposition graph equipped with information about the 
Conley Index

𝑡!

1 + 𝑡



Conley-Morse Graph



Conley-Morse Graph Persistence

Two types of filtrations:
1. Graph Filtrations
2. Conley-Morse Filtrations



Conley-Morse Filtrations

1. Assume every isolated invariant set is isolated by the same N. 
2. Fix index pair for each Morse set. 
3. Find all “maximal” sequences of index pairs across Conley-Morse 

graphs with nontrivial intersection.  



Conley-Morse Filtrations



Conley-Morse Barcodes

Dimension: 2

Dimension: 1

Dimension: 2 Dimension: 0



Conley-Morse Graph Barcodes

Dimension: 0

Dimension: 1

Dimension: 0

Dimension: 2

Dimension: 1

Periodic attractor

Attracting fixed point

Repelling fixed point AND 
periodic repeller

Dimension: 0 Graph connected component



Conclusion & Future Work

- In this presentation: devised method to capture changes in 
combinatorial dynamical systems. But… 

- Stability? 

- Inference? 
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