Capturing Changes in Combinatorial Dynamical Systems via Persistent Homology

Tamal K. Dey, Marian Mrozek, Ryan Slechta, GETCO 22

Overview & Outline

• Motivating Example and Persistence

- Combinatorial Dynamical Systems & Conley Index
- Conley Index Persistence
- Conley-Morse Graph Persistence

$$x' = -y + x(\lambda - x^2 - y^2)$$
$$y' = x + y(\lambda - x^2 - y^2)$$

$\lambda \ll 0$

 $\lambda = 0$

 $\lambda = 1$

 $\lambda = 2.5$

 $\lambda = 5$

 $\lambda = 10$

 $\lambda = 15$

 $\lambda = 17.5$

Note: attractor from $\lambda = -\infty$ to $\lambda = 16$

Repeller from $\lambda = 0$ to $\lambda = \infty$

Can we use computational topology to automatically detect these features?

Note: attractor from $\lambda = -\infty$ to $\lambda = 16$

Repeller from $\lambda = 0$ to $\lambda = \infty$

Can we use computational topology to automatically detect these features?

Yes, by using persistence

Persistent Homology

Summarizes changing homology of a filtration [ELZ00]

$$K_1 \subseteq K_2 \subseteq \ldots \subseteq K_n = K$$

Zigzag Persistence

$K_1 \subseteq K_2 \supseteq K_3 \subseteq \ldots \supseteq K_n$

"Level Set" Persistence

10 $\square \supseteq \bigcirc \bigcirc \subseteq \bigcirc \bigcirc \supseteq \bigcirc$

[CDM09] [DW07]

Level Set Barcode

Overview & Outline

- Motivating Example and Persistence
- Combinatorial Dynamical Systems & Conley Index
- Conley Index Persistence
- Conley-Morse Graph Persistence

Multivectors

Let K denote a simplicial complex and \leq denote the face relation.

Definition: A <u>multivector</u> V is a convex subset of K with respect to \leq .

Definition: A <u>multivector field</u> \mathcal{V} is a partition of K into multivectors.

$$\mathcal{V} = \{\{b\}, \{c, bc\}, \{a, ab, ac, abc\}\}$$

Multivector Fields

Multivector Fields as a Dynamical System

Let
$$\sigma \in K$$
. Then $\operatorname{cl}(\sigma) = \{ \tau \in K \mid \tau \leq \sigma \}.$

 $[\sigma]_{\mathcal{V}}$ denotes the vector in \mathcal{V} containing σ

Dynamics generator $F_{\mathcal{V}}$: $K \multimap K$ defined as:

$$F_{\mathcal{V}}\left(\sigma\right) = [\sigma]_{\mathcal{V}} \cup \mathsf{cl}\left(\sigma\right)$$

Multivector Fields as a Dynamical System

$$F_{\mathcal{V}}\left(\sigma\right) = [\sigma]_{\mathcal{V}} \cup \mathsf{cl}\left(\sigma\right)$$

Multivector field

Image of marked edge \mathcal{C} Blue simplices are in $[e]_{\mathcal{V}} \setminus cl(e)$ Yellow simplices are in $cl(e) \setminus [e]_{\mathcal{V}}$ Red simplices are in $[e]_{\mathcal{V}} \cap cl(e)$

Paths

<u>Definition</u>: A path is a finite sequence of simplices $\sigma_1, \sigma_2, \ldots, \sigma_n$ such that $\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i)$

Solutions

<u>Definition</u>: A solution is a bi-infinite sequence of simplices $\ldots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \ldots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i)$

Solutions

<u>Definition</u>: A solution is a bi-infinite sequence of simplices $\dots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \dots$ such that $\sigma_{i+1} \in F_{\mathcal{V}}(\sigma_i)$

But as $F_{\mathcal{V}}(\sigma) = [\sigma]_{\mathcal{V}} \cup \mathsf{cl}(\sigma)$, every simplex gives a solution!

Critical Multivectors

Definition: Let $A \subseteq K$. The mouth of A is defined as $mo(A) := cl(A) \setminus A$

<u>Definition</u>: A multivector $[\sigma]_{\mathcal{V}}$ is critical if there exists a k such that $H_k(\mathsf{cl}([\sigma]_{\mathcal{V}}), \mathsf{mo}([\sigma]_{\mathcal{V}}))$ is nontrivial.

Essential Solutions

<u>Definition</u>: Let $\ldots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \ldots$ denote a solution. If for each σ_i where $[\sigma_i]_{\mathcal{V}}$ is noncritical, there exists a j > i and j' < i where $[\sigma_i]_{\mathcal{V}} \neq [\sigma_j]_{\mathcal{V}}$ and $[\sigma_i]_{\mathcal{V}} \neq [\sigma_{j'}]_{\mathcal{V}}$, then $\ldots, \sigma_{-1}, \sigma_0, \sigma_1, \sigma_2, \ldots$ is an essential solution.

Invariant Sets

<u>Definition</u>: Let $A \subseteq K$. The invariant part of A, denoted $\operatorname{Inv}(A)$, is the set of simplices in A which appear in an essential solution in A.

00

Isolated Invariant Sets

Definition: Let $A \subseteq N \subseteq K$, where A is an invariant set and N is closed (i.e. $N = \operatorname{cl}(N)$). If every path in N with endpoints in A is contained in A, then A is an isolated invariant set, and N is an isolating neighborhood for A.

Index Pairs

Definition: Let A be an isolated invariant set, and E and P closed sets such that $E \subseteq P$. If:

1. $F_{\mathcal{V}}(E) \cap P \subset E$, 2. $F_{\mathcal{V}}(P \setminus E) \subseteq P$, and 3. $A = \operatorname{Inv}(P \setminus E)$

Then (P, E) is an index pair for A.

Conley Index

Theorem [LKMW2019]: Let A denote an isolated invariant set. The pair $({\rm cl}(A),{\rm mo}(A))$ is an index pair for A .

Index Pairs are Not Unique

Conley Index

<u>Definition</u>: Let (P,E) be an index pair for A . Then the k-dimensional Conley Index is given by $H_k(P,E)$.

<u>Theorem [LKMW 2019]</u>: The k-dimensional Conley Index for A is well defined.

Conley Indices

$H_2(R \cup Y, R) = \mathbb{Z}_2$

Overview & Outline

- Motivating Example and Persistence
- Combinatorial Dynamical Systems & Conley Index
- Conley Index Persistence
- Conley-Morse Graph Persistence

[DMS20] T. K. Dey, M. Mrozek, R. Slechta. "Persistence of the Conley Index in Combinatorial Dynamical Systems." SoCG 2020.

Conley Index Persistence

First attempt: for each $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$, compute an isolated invariant set, A_1, A_2, \ldots, A_n and corresponding index pairs.

$$(\mathsf{cl}(A_1),\mathsf{mo}(A_1)),(\mathsf{cl}(A_2),\mathsf{mo}(A_2)),\ldots,(\mathsf{cl}(A_n),\mathsf{mo}(A_n)))$$

Gives a relative zigzag filtration:

 $\ldots \subseteq (\mathsf{cl}(A_i), \mathsf{mo}(A_i)) \supseteq (\mathsf{cl}(A_i) \cap \mathsf{cl}(A_{i+1}), \mathsf{mo}(A_i) \cap \mathsf{mo}(A_{i+1})) \subseteq (\mathsf{cl}(A_{i+1}), \mathsf{mo}(A_{i+1})) \supseteq \ldots$

Problem: $(cl(A_i) \cap cl(A_{i+1}), mo(A_i) \cap mo(A_{i+1}))$ generally not an index pair.

Intersection Example

Index Pairs in an Isolating Neighborhood

Let $E \subset P \subseteq N$ for closed P, E, N, and $A \subset N$. If: 1. $F_{\mathcal{V}}(P) \cap N \subseteq P$, 2. $F_{\mathcal{V}}(E) \cap N \subseteq E$, 3. $F_{\mathcal{V}}(P \setminus E) \subseteq N$, and $\mathbf{O}\mathbf{O}$ 4. $A = Inv(P \setminus E)$ then (P, E) is an index pair in N.

Push Forward

Let $A \subseteq K$ denote an arbitrary set in some closed N. Then the push forward of A in N is A together with all simplices in N which are reachable from paths originating in A and contained in N.

Finding Index Pairs in N

<u>Theorem [DMS20]</u>: Let A denote an isolated invariant set, and let N denote an isolating neighborhood for A. The pair (pf(cl(A)), pf(mo(A))) is an index pair in N for A.

Index Pairs in an Isolating Neighborhood

Theorem (DMS20): Index Pairs in N are index pairs.

Definition: Let \mathcal{V}_1 , \mathcal{V}_2 denote multivector fields over K. The intersection of multivector fields is given by

 $\mathcal{V}_1 \overline{\cap} \mathcal{V}_2 = \{ V_1 \cap V_2 \mid V_1 \in \mathcal{V}_1, \ V_2 \in \mathcal{V}_2 \}$

<u>Theorem (DMS20)</u>: Let (P_1, E_1) , (P_2, E_2) denote index pairs in Nunder $\mathcal{V}_1, \mathcal{V}_2$. The pair $(P_1 \cap P_2, E_1 \cap E_2)$ is an index pair in N under $\mathcal{V}_1 \overline{\cap} \mathcal{V}_2$ for $\operatorname{Inv}((P_1 \cap P_2) \setminus (E_1 \cap E_2))$

Intersection Example

Dimension: 2

All simplices in N, Yellow union Red is P, and Red is E

Conley Index Persistence: New Strategy

Fix N, and for each $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$, compute the maximal invariant set in N, denoted A_1, A_2, \ldots, A_n , and corresponding index pairs.

 $(cl(A_1), mo(A_1)), (cl(A_2), mo(A_2)), \dots, (cl(A_n), mo(A_n))$

Gives a relative zigzag filtration:

 $(\mathsf{pf}_N(\mathsf{cl} A_i),\mathsf{pf}_N(\mathsf{mo} A_i)) \supseteq (\mathsf{pf}_N(\mathsf{cl} A_i) \cap \mathsf{pf}_N(\mathsf{cl} A_{i+1}),\mathsf{pf}_N(\mathsf{mo} A_i) \cap \mathsf{pf}_N(\mathsf{mo} A_{i+1})) \subseteq (\mathsf{pf}_N(\mathsf{cl} A_{i+1}),\mathsf{pf}_N(\mathsf{mo} A_{i+1}))$

Conley Index Persistence

Dimension: 2

Problem: Noise Resilience

Dimension: 2

Dimension: 2

All simplices are in N, Yellow union Red = P, and Red = E

Solution: Make E Smaller

Dimension: 2

Conley Index Persistence

<u>Proposition [DMS20]</u>: Let (P, E) denote an index pair for A in N. If $V \subseteq E$ is a regular multivector such that $E' := E \setminus V$ is closed, then (P, E') is an index pair in N for A.

Conley Index Persistence

<u>**Proposition [DMS20]:**</u> Let (P, E) denote an index pair for A in N. If $V \subseteq E$ is a regular multivector such that $E' := E \setminus V$ is closed, then (P, E') is an index pair in N for A.

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Remove as many multivectors as possible, up to a fixed distance away from the isolated invariant set.

Algorithm

MakeNoiseResilient(P, E, A, δ):

while there exists a regular multivector $V \subset E$ such that $E \setminus V$ is closed and $d(V, A) \le \delta$:

Theorem [DMS'20]: This algorithm outputs index pairs

Overview & Outline

- Motivating Example and Persistence
- Combinatorial Dynamical Systems & Conley Index
- Conley Index Persistence
- Conley-Morse Graph Persistence

[DMS22] T. K. Dey, M. Mrozek, R. Slechta. "Persistence of Conley-Morse Graphs in Combinatorial Dynamical Systems." SIADS 2022.

Motivating Example

Motivating Example

Dimension: 0

Original Example

Conley-Morse Graph

A Morse decomposition graph equipped with information about the Conley Index

Conley-Morse Graph

Conley-Morse Graph Persistence

Two types of filtrations:

- 1. Graph Filtrations
- 2. Conley-Morse Filtrations

Conley-Morse Filtrations

- 1. Assume every isolated invariant set is isolated by the same N.
- 2. Fix index pair for each Morse set.
- 3. Find all "maximal" sequences of index pairs across Conley-Morse graphs with nontrivial intersection.

Conley-Morse Filtrations

Conley-Morse Barcodes

Dimension: 0		Periodic attractor		
Dimension:	1			
	Dimension: 0		Attracting fixed point	
Dimension: 2 Dimension: 1		Repelling fixed po periodic repeller	Repelling fixed point AND periodic repeller	
Dimension:	— — — — — — — — — — — — — —		Graph connected component	

Conclusion & Future Work

- In this presentation: devised method to capture changes in combinatorial dynamical systems. But...
- Stability?
- Inference?

References

[CDM09] G. Carlsson, V. de Silva, D. Morozov. "Zigzag Persistent Homology and Real Valued Functions." SoCG '09

[DW07] T. Dey, R. Wenger. "Stability of Critical Points with Interval Persistence." Discret. Comput. Geom. Volume 33, Issue 3.

[ELZ00] H. Edelsbrunner, D. Letscher, A. Zomordian "Toplogical Persistence and Simplification." FOCS '00.

[LKMW19] M. Lipinski, J. Kubica, M. Mrozek, T. Wanner. "Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces." Preprint.

[Mr17] M. Mrozek. "Conley-Morse-Forman Theory for Combinatorial Multivector Fields." FOCM Volume 17, Issue 6.