Directed Homotopy Type Theory

Paige Randall North University of Pennsylvania

GETCO 2022

Outline

1 Homotopy theory via type theory

- 2 Desiderata for directed homotopy type theory
- 3 Directed homotopy type theory

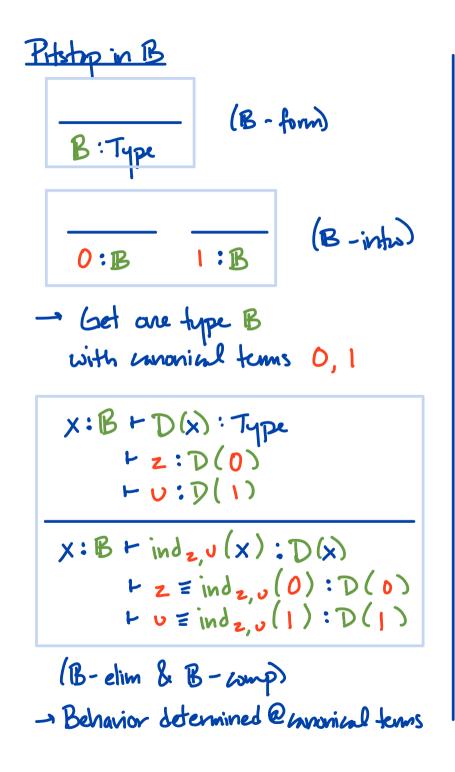
Outline

1 Homotopy theory via type theory

- 2 Desiderata for directed homotopy type theory
- 3 Directed homotopy type theory

This is because everything we can say or do respects equality / identity / homotopy (terms of Id_A (a,b)).

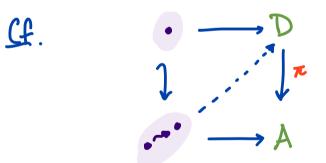
$$\frac{A: Type \quad a: A}{r_a: 1d_A(a,a)} \quad (1d - intro)$$

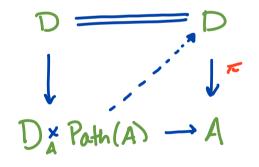


Pitstopin N
N:Type (N-form)

$$N:Type$$
 (N-form)
 $O: N$ $Sn: N$ (N-intro)
 Get are type N
with conscil terms 0, s0, so 0,...
 $X: N \vdash D(x): Type$
 $\vdash z: D(0)$
 $X: N, y: D(x) \vdash \sigma(y): D(sx)$
 $X: N \vdash ind_{z,r}(x): D(x)$
 $\vdash z \equiv ind_{z,r}(0): D(x)$
 $\downarrow z \equiv ind_{z,r}(0): D(x)$
 $(N-elim & N-comp)$
 \rightarrow Behavior determined @ hyponical terms

P. If p is rx, let px be the identity.





Looks like a Hurewicz fibration in Top.

Fibrations & transport: Examples

- · In any integory, take Path(X) to be X or XXX. (Dependent types correspond to all morphisms or isomorphisms.)
- · In Yup, take Path(X) to be TX (roughly X^I). (Dependent types correspond to Hurewicz fibrations.)
- · In Kan complexes, take Path (X) to be X SEIJ (Dependent types correspond to Kan fibrations.)
- Which can be genenlized to any Cisinski model integory.
 (Dependent types concepted to fibrations.)

Fibrations & transport: Examples

- · In any integory, take Path(X) to be X ar XXX. (Dependent types correspond to all morphisms or isomorphisms.) TT-types: need LUC
- Type: need classifying type: fibrution In Yop, take Path(X) to be TX (roughly X^I). (Dependent types correspond to Hurewicz fibertions.)
- · In Kan complexes, take Path (X) to be X AGJ e (Dependent types correspond to Kan fibrations.)
- t others (op topoets) Which can be genenlized to any Cisinski model category.
 (Dependent types concepted to fibrations.)

Univalence

- The univalence axiom characterizes identities in Type:
 Id_{Type} (A,B) ≃ (A ~ B)
- We can use it to channeterize identifies in other types: Rop. Id_A→B (f, g) = TT Id_A (fx, gx) X:A
 Rop. Id_{Set} (S, T) = (S = T)

 Rop. Id_{Set} (G, H) = (G = H) (Loquand - Danielsson)

 Rop. Id_{Cat} (G, D) = (Le=D) (Ahvers-Kapilkin-Shuhman)

 Thm. (Ahvers-N-Shuhman-Tsementzis) This pattern generalizes to encompass
 any' algebraic structore.

HOTT

- 2. It is the theory' of homotopy theory (in the sense of model theory), and so results are not just valid in sSet, but in all models.
- 3. We son study algebraic structures with homotopical tools. In particular, everything is invariant under the appropriate notion of equivalence.

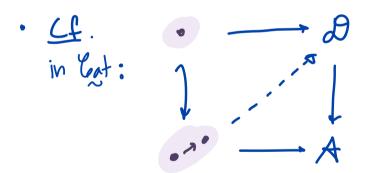
1 Homotopy theory via type theory

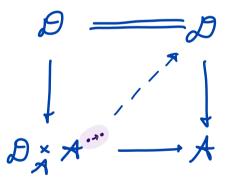
2 Desiderata for directed homotopy type theory

3 Directed homotopy type theory

Directed transport

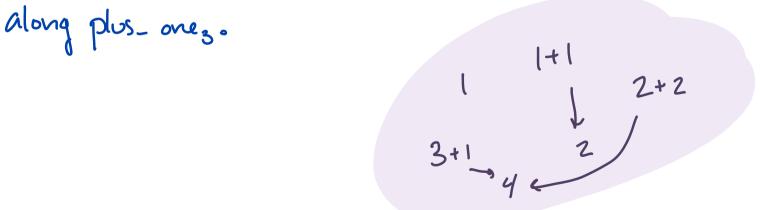
- · Everything we can say or do should respect directed identities, in a directed way.
- · Des: Given any X: A+D(X): Type and P: homa(x,y), there is a (noninvertible) Py: D(x) - D(y).



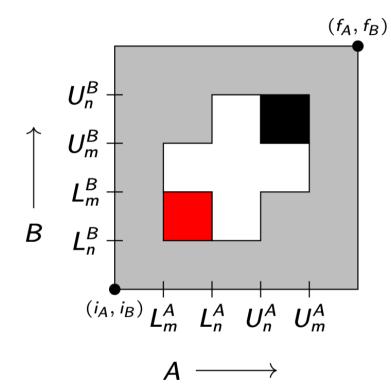


These are (the retruct closure of) the Grothendieck ophilantians.

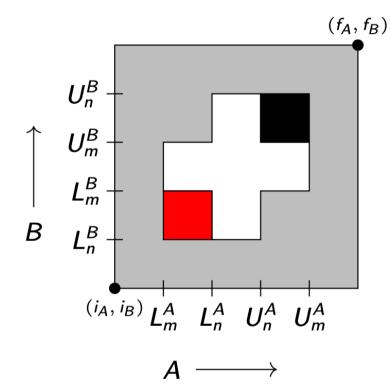
where N is a directed homotopy type with terms like 3+1, 4,... and directed paths like plus_one3: hom (3+1,4), we need to be able to transport Vert (3+1) - Vart (4)



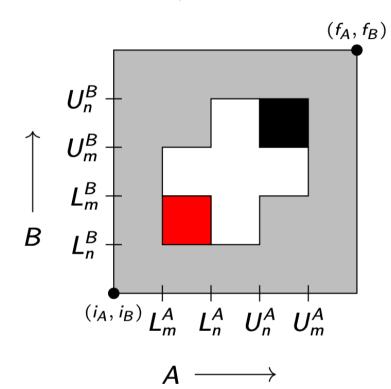
=Xan



EX amp



Example



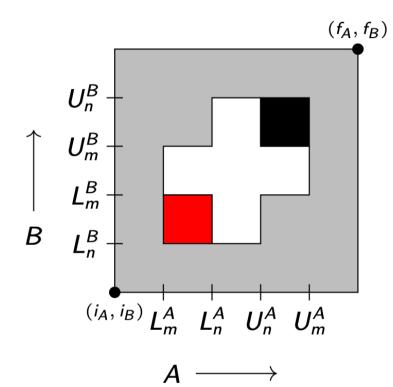
Then

X: F+ hom (x,x) : Type

can only be transported along invertible diverted paths.

And individed homotopy shald be expressible, as in X: F, y: F, f: homp (x,y), g: homp(x,y) + Id homp(x,y) (f,g)

Example



Then

X: F+ hom(x,x): Type

can only be transported along invertible directed paths.

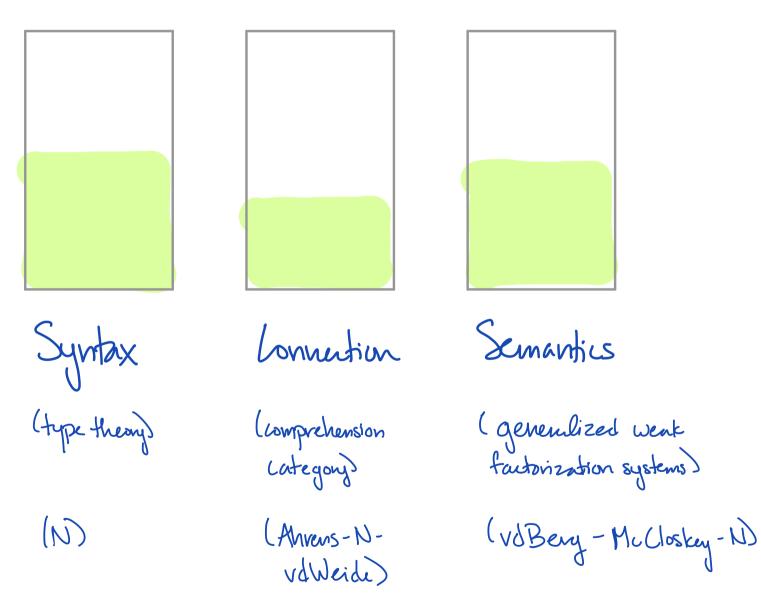
And undiverted homotopy shald be expressible, as in X: F, y: F, f: homp (x,y), g: homp(x,y) + Id homp(x,y) (f,g)

For longer contexts, we have more complianted diagrams...

1 Homotopy theory via type theory

2 Desiderata for divated homotopy type theory

3 Directed homotopy type theory



- · There are left and right versions of the elimination and computation rules that allow for

 - forward transport along homomorphisms in A
 backward transport along homomorphisms in A^{op}
 both along homomorphisms in A^{core}.
- · Model in look.

- · There are left and right versions of the elimination and computation rules that allow for

 - forward transport along homomorphisms in A
 backward transport along homomorphisms in A^{op}
 both along homomorphisms in A^{core}.
- · Model in Coot.

- · Use how rules from above.
- · Unange the notion of dependency so that X: A+D(x): Type X: A+D(x): Type X: A+D(x): Type X: A: D(x): Type

produce the four kinds of timesport.

- . This walls Id off from how to prevent them from collapsing into each other.
- · Models in any category le with the following kind of weak factorization system.

• In intended models of the hom - type we also have a functional path object:

$$X \xrightarrow{\leftarrow} Z hom(X,y) \xrightarrow{\epsilon_0} X$$

- · We generalize the notion of weak factorization system to encompose various shapes.
- · Two-sided fibrations in least are captured by the theory.

Thank you!