Proving Unsolvability of Set Agreement Task with Epistemic μ-Calculus

Susumu Nishimura
susumu@math.kyoto-u.ac.jp
Dept. Math, Kyoto University

GETCO 2022 — May 30-Jun 3, 2022, Paris
Two methods for task unsolvability

- **Topological method**
 - Model: Simplicial complexes.
 - Strategy: Find a breach in topological invariant.

- **Logical method** [Goubault-Ledent-Rajsbaum2021]
 - Model: (Simplicial) Kripke models.
 - Strategy: Find a logic formula (logical obstruction) that is inconsistent between the models.
 - Method: Epistemic logic reasoning
Unsolvability of 1-set agreement (Topology)

\[I \]

\[P = IS \text{ (standard chromatic subdivision)} \]

immediate snapshot

simplicial map \(\mu \)

\[T \]
Unsolvability of 1-set agreement (Topology)

General case argues higher dimensional connectivity, resorting to tools from combinatorial topology (Sperner’s lemma).

* General case argues *higher dimensional connectivity*, resorting to tools from combinatorial topology (Sperner’s lemma).
Two methods for task unsolvability

- **Topological method**
 - Model: Simplicial complexes.
 - Strategy: Find a breach in topological invariant.

- **Logical method** [Goubault-Ledent-Rajsbaum2021]
 - Model: (Simplicial) Kripke models.
 - Strategy: Find a logic formula (called logical obstruction) that is inconsistent between the models.
 - Method: Epistemic logic reasoning
Every map \(f: I \rightarrow O \) over simplicial complexes induces a **product update model** \(I[O] \), a binary relation encoding of \(f \).

Every product update model \(I[O] \) is a simplicial complex, which induces a simplicial Kripke model for epistemic reasoning.
If there exists a positive epistemic formula φ and facet $X \in I[P]$ such that, for any δ: $I[P] \rightarrow I[T]$, $I[P], X \not\vDash \varphi$ but $I[T], \delta(X) \vDash \varphi$, then the task is not solvable (i.e., there is no δ).
Pros and cons of logical method

😊 Just find a logical obstruction φ to show unsolvability.

😊 φ accounts for the reason of unsolvability in the formal language of epistemic logic.

😞 Limited instances of logical obstructions known to date.

* 1-set agreement & approximate agreement
 [Goubault-Ledent-Rajsbaum2021]

* k-set agreement ($k>1$) [Nishida2020] (w/ distributed knowledge), later generalized for adversary model [Yagi-Nishimura2020]
 + This works only for single-round protocol.

* General logical obstruction in an extended simplicial model
 [vanDitramsch-Goubault-Lazic-Ledent-Rajsbaum2021]
 + The general formula involves no epistemic contents and provides no hints for the reason of unsolvability.
Goal of this talk

- Find an epistemic formula Φ such that
 - Φ is a logical obstruction to \textit{k-set agreement}.
 - Φ contains epistemic contents that account for the reason of unsolvability.
 - Φ works for \textit{multi-round protocols} (where processes are allowed to communicate arbitrarily many times).
Our strategy

◼ To find inconsistency between simplicial Kripke models,
 ◆ Rework on “Sperner’s lemma” to rephrase it as a statement on higher dimensional connectivity.

◼ To express the inconsistency in the language of logic,
 ◆ Use epistemic μ-calculus, which extends epistemic logic with:
 ◆ Distributed knowledge, a modal operator for higher-dimensional connectivity, and
 ◆ Propositional greatest fixpoint for transitive closure.
Sperner’s lemma as connectivity
Sperner’s lemma. Any subdivision of a simplex with Sperner coloring has odd number of fully-colored facets (maximal simplexes).
Proof of Sperner’s lemma (induction on dim.)

dim. = 2
Proof of Sperner’s lemma (induction on dim.)

dim.=2
Proof of Sperner's lemma (induction on dim.)

dim. = 2
Proof of Sperner’s lemma (induction on dim.)

- Each graph node other than special node is of degree 1 or 2.
- A graph node is of odd degree iff it is a fully-colored or a special node (I.H.)

\[
\begin{align*}
\text{(dim.}=2\text{)} \\
\text{(# of fully-colored nodes)} \\
= \text{(# of nodes of odd degree)} \\
- (1 \text{ special node}) = \text{odd}
\end{align*}
\]
Proof of Sperner’s lemma (all dimensions)
Traversing from the initial node of dimension 0, we eventually reach a fully-colored facet.
If there were no fully-colored facet, there would be a cycle-free, ever-lasting path in the graph.
Logical obstruction in epistemic μ-calculus
Epistemic logic for DC

Epistemic logic = Propositional modal logic for knowledge higher dimensional connectivity

* $K_a \phi$ Process a knows ϕ.
* $D_A \phi$ The collection A of processes know ϕ.

$M, X \vDash D_A \phi$ iff $\forall Y \in W. (X \sim_A Y \implies M, Y \vDash \phi)$

where $X \sim_A Y$ iff $X \sim_a Y$ for every $a \in A$.

$M, X \vDash D_{\{\circ,\bullet\}} p$
Epistemic logic for DC

Epistemic logic = Propositional modal logic for knowledge
higher dimensional connectivity

\[\text{Process } a \text{ knows } \phi. \]

\[\text{The collection } A \text{ of processes know } \phi. \]

\[M, X \models D_A \phi \iff \forall Y \in W. (X \sim_A Y \Rightarrow M, Y \models \phi) \]

where \(X \sim_A Y \iff X \sim_a Y \) for every \(a \in A \).

\[M, X \models D_{\{\cdot, \cdot\}} p \]
Epistemic μ-calculus for DC

$$\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid D_A \varphi \mid \nu Z.\varphi$$

* **Distributed knowledge** $D_A \varphi$ for higher dimensional connectivity.

* **Greatest fixpoint** $\nu Z.\varphi$ for transitive closure of connectivity
 + greatest solution for $Z = \varphi$ (i.e., $\nu Z.\varphi \Leftrightarrow \varphi[\nu Z.\varphi/Z]$)

* Formulas are positive.
Logical obstruction in extended simplicial model

Extension with atomic propositions on output values.
[vanDitramsch-Goubault-Lazic-Ledent-Rajsbaum2021]

Process \(a \) has input \(i \)

\[p ::= \text{input}^i_a \mid \text{decide}^i_a \quad (a \in \Pi, i \in Value) \]

If there exists a positive epistemic formula \(\varphi \) and a facet \(X \in I[IS^m] \) such that, for any \(\delta: I[SA_k] \to I[IS^m] \),

\[I[\widehat{SA_k}], \delta(X) \models \varphi \quad \text{but} \quad I[IS^m]_\delta, X \not\models \varphi, \]

then \(k \)-set agreement task is not solvable by \(m \)-round protocol.
The logical obstruction to k-set agreement

Single output per each process

$$\Phi_k = \nu Z. \left[\text{OFUN} \land \text{VALID} \land \bigwedge_{\emptyset \subsetneq A \subseteq \Pi} \left(\text{DEC}_A \Rightarrow D_A(\text{KNOW} \land \text{AGREE}_k \land Z) \right) \right]$$

Validity of agreement

A pair of facets agree on the output of processes that they share.

Collection A of processes decide outputs from the values $\{0, \ldots, |A|-1\}$.

k-set agreement

\[
\begin{align*}
\text{OFUN} &= \bigwedge_{a \in \Pi} \left(\bigwedge_{d,e \in \Pi, d \neq e} \neg (\text{decide}_a^d \land \text{decide}_a^e) \land \bigvee_{d \in \Pi} \text{decide}_a^d \right) \\
\text{VALID} &= \bigwedge_{a \in \Pi} \bigwedge_{d \in \Pi} \left(\text{decide}_a^d \Rightarrow \bigvee_{b \in \Pi} \text{input}_b^d \right) \\
\text{AGREE}_k &= \bigvee_{A \subseteq \Pi, 0 < |A| \leq k} \bigwedge_{a \in \Pi} \bigvee_{d \in A} \text{decide}_a^d \\
\text{KNOW} &= \bigwedge_{A \subseteq \Pi} \bigwedge_{a \in A} \bigwedge_{d \in \Pi} \left(\text{decide}_a^d \Rightarrow D_A \text{decide}_a^d \right) \\
\text{DEC}_A &= \bigwedge_{d=0}^{|A|-1} \bigvee_{a \in A} \text{decide}_a^d
\end{align*}
\]
The logical obstruction to k-set agreement

- $I[SA_k], \delta(X) \models \Phi_k$
 - Obviously holds because OFUN, VALID, etc. are all valid.
- $I[IS^m], X \not\models \Phi_k$
 - $I[IS^m], X \models \Phi_k$ implies a cycle-free ever-lasting path such as:
Combinatorial presentation of facets

- **Facet in** \(I[IS] \) (**1st round**)
 - = ordered set partition
 - [Kozlov2012]

- **Facet in** \(I[IS^m] \) (**m-th round**)
 - = sequence of \(m \) ordered set partitions
Unsolvability for k-concurrency submodel
k-concurrency

A 2-round immediate snapshot (IS^2) where simultaneous execution is restricted up to k processes.

* 2-concurrency in 3-process system

Theorem [Gafni-He-Kuznetsov-Rieutord2016] ℓ-set agreement task is solvable by k-concurrency model iff $\ell \geq k$.

White facets are excluded because of high congestion.
Take Φ_ℓ as the logical obstruction for ℓ-set agreement.

E.g., in 2-concurrency model, Φ_1 is a logical obstruction to 1-set agreement, because the model includes all the facets relevant to the proof.
Summary and Future Topics
Summary

- Unsolvability of k-set agreement task in logical method:
 - Formula of epistemic μ-caluculs as an account for the reason of unsolvability.
 - Sperner’s lemma as a statement for higher-dimensional connectivity.
 - Greatest fixpoint for expressing long-range, higher-dimensional connectivity.
Future topics

◉ More instances!

◉ From topology to logic
 ✷ Sperner’s lemma
 → higher-dimensional connectivity as a greatest fixpoint in epistemic μ-calculus
 ✷ Others?? (Index lemma, Nerve lemma, ...)

30 / 40
Thank you for listening.

Manuscript on arXiv:
http://arxiv.org/abs/2205.06452

E. Gafni, Y. He, P. Kuznetsov and T. Rieutord, “Read-write memory and k-set consensus as an affine task”, OPODIS 2016.

blank page
Epistemic logic

Epistemic logic = Propositional logic with modality $K_a \varphi$

* $K_a \varphi$ Process a knows φ.

*Kripke model semantics $M = (W, \sim, L)$

* W is the set of epistemic states (possible worlds).
* $L(X)$ gives the set of true propositions in $X \in W$.
* \sim_a (for each $a \in \Pi$) is an equivalence relation over W.
 + $M, X \models K_a \varphi$ iff $\forall Y \in W.(X \sim_a Y \Rightarrow M, Y \models \varphi)$

*Every complex C gives rise to a simplicial Kripke model:
 + W is the set of facets in C.
 + $X \sim_a Y$ iff $X \sim_a Y$ share a common vertex of color a.
Simplicial Kripke model semantics

- **Simplicial Kripke model** $M = (W, \sim, L)$
 - W is the set of *facets* (maximal simplexes) in a chromatic simplicial complex.
 - $L(X)$ gives the set of true props. in $X \in W$.
 - $\sim_a (\forall a \in \Pi)$ is an equivalence relation over W defined by:
 \[X \sim_a Y \iff X \text{ and } Y \text{ are simplexes sharing a common vertex of color } a. \]

- **Semantics of knowledge modality $K_a \varphi$**
 - $M, X \models K_a \varphi \iff \forall Y \in W. (X \sim_a Y \Rightarrow M, Y \models \varphi)$
Unsolvability proof with epistemic logic

Knowledge gain theorem. Suppose $C \xrightarrow{\delta} D$, $X \in C$, and ϕ is a positive epistemic formula. Then, $D, \delta(X) \models \phi$ implies $C, X \models \phi$.

There exists no δ that makes the following diagram commute (hence the task is not solvable),

If there exists a positive epistemic formula ϕ and facet $X \in C$ such that $I[T], \delta(X) \models \phi$ but $I[P], X \not\models \phi$.

logical obstruction
If there exists a positive epistemic formula φ and facet $X \in I[IS^m]$ such that $I[SA_k], \delta(X) \models \varphi$ but $I[IS^m], X \not\models \varphi$, then k-set agreement task is not solvable by m-round protocol.
k-set agreement task

Input Each of (n+1) processes has its private input value.

Output Each process decides an output value satisfying:

* **Validity.** Each process decides a value out of (n+1) inputs.
* **Agreement.** Processes decide at most k different values.

A 2-set agreement:

![Diagram showing a 2-set agreement with processes deciding different values]
Input Each of $(n+1)$ processes has its private input value.

Output Each process decides an output value satisfying:
- **Validity.** Each process decides a value out of $(n+1)$ inputs.
- **Agreement.** Processes decide at most k different values.

A 2-set agreement:

![Diagram showing 2-set agreement with input values 0, 1, and 2 leading to output values 0 and 2.]

Fact. k-set agreement task is *not solvable* by a (wait-free, asynchronous) system of $n+1$ processes, unless $k \geq n+1$.
Topological model for DC

- **Chromatic simplex** of dimension n = system state of $(n+1)$ processes
- **Chromatic simplicial complex** = nondeterministic set of states
- **Task solvability (topological)**

\[\exists \mu \rightarrow T \]

Simplicial map
- Color-preserving vertex-to-vertex mapping s.t. $\mu(X) \in T$ for every simplex $X \in P$.

Vertex = color×value

\[\{(○,0),(●,1),(●,2)\} \]
P is a common knowledge among the set A of processes.

\[C_A P \]

\[\Leftrightarrow \nu Z. \left(P \land \bigwedge_{a \in A} K_a Z \right) \]

\[\Leftrightarrow P \land \bigwedge_{a \in A} K_a \left(\nu X. \left(P \land \bigwedge_{a \in A} K_a X \right) \right) \]

\[\Leftrightarrow P \land \bigwedge_{a \in A} K_a \left(P \land \bigwedge_{a \in A} K_a \left(P \land \bigwedge_{a \in A} K_a \cdots \right) \right) \]