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Two methods for task unsolvability

❍Topological method

✳ Model: Simplicial complexes.
✳ Strategy: Find a breach in topological invariant.
✳ Method: Tools from combinatorial topology.

❍Logical method [Goubault-Ledent-Rajsbaum2021] 

✳ Model: (Simplicial) Kripke models.
✳ Strategy: Find a logic formula (logical obstruction) that is 

inconsistent between the models.
✳ Method: Epistemic logic reasoning



Unsolvability of 1-set agreement (Topology)
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Unsolvability of 1-set agreement (Topology)

✳ General case argues higher dimensional  connectivity, resorting 
to tools from combinatorial topology (Sperner’s lemma).
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Two methods for task unsolvability

❍Topological method

✳ Model: Simplicial complexes.
✳ Strategy: Find a breach in topological invariant.
✳ Method: Tools from combinatorial topology.

❍Logical method [Goubault-Ledent-Rajsbaum2021] 

✳ Model: (Simplicial) Kripke models.
✳ Strategy: Find a logic formula (called logical obstruction) 

that is inconsistent between the models.
✳ Method: Epistemic logic reasoning



Task solvability in simplicial Kripke model

 ∃ δ

I I[P]

I[T]

πI

πI

✳ Every map f : I → O over simplicial complexes 
induces a product update model I[O], a binary 
relation encoding of f.

✳ Every product update model I [O] is a simplicial 
complex, which induces a simplicial Kripke model 
for epistemic reasoning.

C.f. task solvability (topology)

 ∃ μ

I P

T

[Goubault-Ledent-Rajsbaum2021]

A simplicial map 
that preserves the 
set of true atomic 
propositions.
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Logical obstruction to task solvability

❍ If there exists a positive epistemic formula φ and facet 
X∈I[P] such that, for any δ: I[P]→I[T], 

         I[P], X φ⊭   
 

but   

I[T], δ(X)⊨φ,

then the task is not solvable (i.e., there is no δ).

logical 
obstruction

πI

 δ

I I[P]

I[T]

πI ✕
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Pros and cons of logical method

☺ Just find a logical obstruction φ to show unsolvability.

☺ φ accounts for the reason of unsolvability in the formal language 
of epistemic logic.

☹ Limited instances of logical obstructions known to date.

✳ 1-set agreement & approximate agreement 
[Goubault-Ledent-Rajsbaum2021]

✳ k-set agreement (k>1) [Nishida2020] (w/ distributed knowledge), 
later generalized for adversary model [Yagi-Nishimura2020]

✢ This works only for single-round protocol.
✳ General logical obstruction in an extended simplicial model 

[vanDitramsch-Goubault-Lazic-Ledent-Rajsbaum2021]

✢ The general formula involves no epistemic contents and 
provides no hints for the reason of unsolvability.
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Goal of this talk

❍Find an epistemic formula Φ such that

✳ Φ is a logical obstruction to k-set agreement.
✳ Φ contains epistemic contents that account for the reason 

of unsolvability.
✳ Φ works for multi-round protocols (where processes are 

allowed to communicate arbitrarily many times).

...
1st round 2nd roundinput
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Our strategy

❍To find inconsistency between simplicial Kripke models,

✳ Rework on “Sperner’s lemma” to rephrase it as a 
statement on higher dimensional connectivity.

❍To express the inconsistency in the language of logic,

✳ Use epistemic μ-calculus, which extends epistemic logic 
with:

✢ Distributed knowledge, a modal operator for higher-
dimensional connectivity,  and

✢ Propositional greatest fixpoint for transitive closure.
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Sperner’s lemma as connectivity



Sperner’s lemma

Sperner’s lemma.      Any subdivision of a simplex with 
Sperner coloring has odd number of fully-colored facets 
(maximal simplexes).
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Proof of Sperner’s lemma (induction on dim.)

❍Each graph node other than special 
node is of degree 1 or 2.

❍A graph node is of odd degree iff it is 
a fully-colored or a special node 
(I.H.)

(# of fully-colored nodes) 
= (# of nodes of odd degree)         
              – (1 special node)  = odd

dim.=2
even
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Proof of Sperner’s lemma (all dimensions)
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Sperner’s lemma in a single unified graph

❍Traversing from the initial node 
of dimension 0, we eventually 
reach a fully-colored facet.
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Sperner’s lemma as graph connectivity

0

2

? 0
0

0

00

1

1

1

1

1

11

?

❍ If there were no fully-colored 
facet, there would be a cycle-
free, ever-lasting path in the 
graph.
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Logical obstruction in epistemic μ-calculus



Epistemic logic for DC

Epistemic logic = Propositional modal logic for knowledge
higher dimensional connectivity        

✳ Ka φ    Process a knows φ.

✳ DA φ    The collection A of processes know φ.

✢ M, X  D⊨ A φ  iff  ∀Y∈W.(X ∼A Y  ⇒ M, Y  ⊨ φ)
where X ∼A Y  iff  X ∼a Y for every a A∈ .

p p ¬p

X

M, X  D⊨ {●,●} p

distributed 
knowledge
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Epistemic μ-calculus for DC

✳ Distributed knowledge DA φ for higher dimensional 
connectivity.

✳ Greatest fixpoint  νZ.φ  for transitive closure of connectivity
✢ greatest solution for Z = φ     (i.e., νZ.φ  ⇔ φ[νZ.φ/Z])

✳ Formulas are positive.
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Logical obstruction in extended simplicial model

Process a has input i Process a decides output i

❍Extension with atomic propositions on output values. 
[vanDitramsch-Goubault-Lazic-Ledent-Rajsbaum2021]  

If there exists a positive epistemic formula φ and a facet 
X∈I[ISm] such that, for any δ: I[SAk]→I[ISm],
 
        I[SAk], δ(X)⊨φ   but   I[ISm]δ, X φ⊭ ,

then k-set agreement task is not solvable by m-round protocol.
extended modelsextended models

logical 
obstruction

k-set agreement m rounds
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The logical obstruction to k-set agreement

Single output per 
each process

k-set
agreement

A pair of facets agree on 
the output of processes
that they share.

Validity of
agreement

Collection A of processes
decide outputs from 
the values {0, …, |A|-1}.
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The logical obstruction to k-set agreement

❍I[SAk], δ(X) Φ⊨ k 

✳ Obviously holds because OFUN, VALID, etc. are all valid. 

❍I[ISm]δ, X ⊭Φk

✳ I[ISm]δ, X ⊨Φk implies a cycle-free ever-lasting path such as:
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Combinatorial presentation of facets

❍Facet in I[IS] (1st round)
= ordered set partition 
[Kozlov2012]

❍Facet in I[ISm] (m-th round)
= sequence of m ordered set 
partitions

1st round 2nd round

0 1 

2
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Unsolvability for k-concurrency submodel



k-concurrency

A 2-round immediate snapshot (IS2) where simultaneous 
execution is restricted up to k processes.

✳ 2-concurrency in 3-process system

Theorem[Gafni-He-Kuznetsov-Rieutord2016] ℓ-set agreement task 
is solvable by k-concurrency model iff ℓ≥k.

White facets are 
excluded because of 
high congestion.
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Unsolvability for k-concurrency submodel

❍Take Φℓ as the logical obstruction for ℓ-set agreement.

✳ E.g., in 2-concurrency model, Φ1 is a logical obstruction to 
1-set agreement, because the model includes all the 
facets relevant to the proof. 

Relevant to 1-set 
agreement unsolvability.
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Summary and Future Topics



Summary

❍Unsolvability of k-set agreement task in logical method:

✳ Formula of epistemic μ-caluculs as an account for the 
reason of unsolvability.

✳ Sperner’s lemma as a statement for higher-dimensional 
connectivity.

✳ Greatest fixpoint for expressing long-range, higher-
dimensional connectivity. 
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Future topics

❍More instances!

❍From topology to logic

✳ Sperner’s lemma
→ higher-dimensional connectivity as a greatest fixpoint in 
epistemic μ-calculus

✳ Others?? (Index lemma, Nerve lemma, ...)

30 / 40



Thank you for listening.

Manuscript on arXiv:
http://arxiv.org/abs/2205.06452
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Epistemic logic

Epistemic logic = Propositional logic with modality Ka φ

✳ Ka φ    Process a knows φ.

❍Kripke model semantics  M = (W, , ∼ L) 

✳ W is the set of epistemic states (possible worlds).
✳ L(X) gives the set of true propsitions in X∈W.
✳ ∼a (for each a Π∈ ) is an equivalence relation over W.

✢ M, X  K⊨ a φ  iff  ∀Y∈W.(X ∼a Y  ⇒ M, Y  ⊨ φ)
❍Every complex C gives rise to a simplicial Kripke model:

✢ W is the set of facets in C.
✢ X ∼a Y iff X ∼a Y share a common vertex of color a.
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Simplicial Kripke model semantics

❍Simplicial Kripke model  M = (W, , ∼ L) 

✳ W is the set of facets (maximal simplexes) in a chromatic 
simplicial complex.

✳ L(X) gives the set of true props. in X∈W.
✳ ∼a (a Π∈ ) is an equivalence relation over W defined by:  

X ∼a Y ⇔ X and Y are simplexes sharing a common
                vertex of color a.

❍Semantics of knowledge modality Ka φ

✳ M, X  K⊨ a φ  iff  ∀Y∈W.(X ∼a Y  ⇒ M, Y  ⊨ φ)
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Unsolvability proof with epistemic logic

❍There exists no δ that makes the following diagram commute 
(hence the task is not solvable),

if there exists a positive epistemic formula φ and facet X∈C 
such that  I[T], δ(X)⊨φ but  I[P], X ⊭φ.z

δ

I I[P]

I[T]

πI

πI

logical 
obstruction

Knowledge gain theorem.     Suppose C            D, 
X∈C, and φ is a positive epistemic formula. Then,   
D, δ(X)⊨φ  implies C, X ⊨φ.

δ
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(Un)solvability in extended simplicial model

❍ If there exists a positive epistemic formula φ and facet 
X∈I[ISm] such that I[SAk], δ(X)⊨φ but  I[ISm]δ, X ⊭φ,  then k-set 
agreement task is not solvable by m-round protocol.

δ

I I[ISm]

I[SAk]

πI

πI

δ

I[ISm]δ

k-set
agreement

m rounds

I[SAk]

extended set of atomic 
propositions (both input 
and output)

X∈I[ISm]δ admits the 
same set of atomic 
propositions that 
δ(X)∈I[SAk] does.

[vanDitramsch-Goubault-Lazic-Ledent-Rajsbaum2021]
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k-set agreement task
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Input   Each of (n+1) processes has its private input value.

Output  Each process decides an output value satisfying:

✳ Validity. Each process decides a value out of (n+1) inputs.
✳ Agreement. Processes decide at most k different values.

A 2-set agreement:
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k-set agreement task
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Input   Each of (n+1) processes has its private input value.

Output  Each process decides an output value satisfying:

✳ Validity. Each process decides a value out of (n+1) inputs.
✳ Agreement. Processes decide at most k different values.

A 2-set agreement:

Fact. k-set agreement task is not solvable by a (wait-free, 
asynchronous) system of n+1 processes, unless k≥n+1.
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Topological model for DC

❍chromatic simplex of dimension n
= system state of (n+1) processes

❍chromatic simplicial complex
= nondeterministic set of states

❍Task solvability (topological)         

input
complex

output
(task)

complex

output
(protocol)
complex

Simplicial map
Color-preserving vertex-to-
vertex mapping s.t. 
μ(X)∈T for every simplex X∈P.

10

2

 ∃ μ 

I P

T

=  {(○,0),(●,1),(●,2)}

vertex
= color×value

1
1

1

00

0
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Common knowledge as fixpoint

❍P is a common knowledge among the set A of processes.
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