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Introduction



The distributed computing setting

Task specification: (0,1,2,0,2)→ (1,1,1,1,1) 3 or 7 ?
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Distributed Computability

Goal: prove impossibility results in distributed computing.

Various methods :

Ï Valency arguments (e.g. “FLP impossibility”)

Ï Epistemic logic (Halpern and Moses 1990)

Ï Combinatorial topology (Herlihy and Shavit 1999)
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Brief overview of this talk

Combinatorial topology
(Simplicial complexes)

Distributed computing
(Fault-tolerant protocols)

Epistemic logic
(The modal logic of knowledge)

Herlihy, Shavit 1999

Saks, Zaharoglou 2000

Halpern, Moses 1990

*A Simplicial Complex Model for Dynamic Epistemic Logic
to study Distributed Task Computability.

Goubault, Ledent, Rajsbaum (2021)
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Epistemic Logic



Epistemic Logic: Syntax

Let Ag be a finite set of agents and At a set of atomic propositions.

Syntax:

ϕ ::= p | ¬ϕ | ϕ∧ϕ | Kaϕ p ∈At, a ∈Ag

Example formula: Ka¬Kb ϕ where a,b ∈Ag

“a knows that b doesn’t know that the formula ϕ is true.”

In distributed computing:

Agents ←→ Processes
Atomic propositions ←→ Facts about the system
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Example: the two generals problem

Two divisions of the same army, commanded by general A and general B,
are surrounding an enemy fortress.

Ï They must attack simultaneously.

Ï They communicate by sending messengers.

Ï Messengers might be captured by the enemy, in which case, the
message is never received.

Fortunately, on this particular night, the enemy guards are asleep. How
long will it take to coordinate the attack?

A B
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Simplicial Models for Epistemic
Logic



Chromatic Simplicial Complexes

Definition
A chromatic simplicial complex is given by (V ,S ,χ) where:

Ï (V ,S) is a simplicial complex,

Ï χ :V →Ag is a coloring map,

such that every simplex X ∈ S has all vertices of distinct colors.

Example: a pure chromatic simplicial complex of dimension 2.

7 / 20



Pure Simplicial Models

Assume the number of agents is |Ag| = n+1.

Definition
A pure simplicial model is given by C = (V ,S ,χ,`) where:

Ï (V ,S ,χ) is a pure chromatic simplicial complex of dimension n.

Ï ` :V →P(At) is a valuation function.

Example: Consider four cards, 1,2,3,4, and three agents,
We deal one card to each agent, and keep the remaining card hidden.
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Epistemic Logic: Semantics

We define the validity relation C ,X |=ϕ, where:
Ï C is a simplicial model,

Ï X ∈Facet(C ) is a world of C ,

Ï ϕ is an epistemic logic formula.

C ,X |= p iff p ∈ `(X )

C ,X |= ¬ϕ iff C ,X 6|=ϕ
C ,X |=ϕ∧ψ iff C ,X |=ϕ and C ,X |=ψ
C ,X |=Kaϕ iff C ,Y |=ϕ for all Y ∈Facet(C )

such that a ∈χ(X ∩Y )
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Equivalence with Kripke models

Suppose the number of agents is |Ag| = n+1.

Theorem (Goubault, Ledent, Rajsbaum (2018, 2021))

The category of pure simplicial models of dimension n is equivalent to
the category of proper and local Kripke models.

Example: with three agents, Ag= { a , b , c },

w1 w2 w3 ' w1 w2 w3

a

c

b
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Generalizing Simplicial Models



What about impure simplicial models?

Impure simplicial complexes.
Ï Common in distributed computing.

Ï They model systems with
detectable crashes.

Contributions:
Ï Find an equivalent class of Kripke
models.

Ï Axiomatise the logic.

A Simplicial Model for KB4:
Epistemic Logic with Agents That May Die.

Goubault, Ledent, Rajsbaum (STACS 22)
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Satisfaction relation

Recall the definition of the satisfaction relation, C ,X |=ϕ:

C ,X |= p iff p ∈ `(X )

C ,X |= ¬ϕ iff C ,X 6|=ϕ
C ,X |=ϕ∧ψ iff C ,X |=ϕ and C ,X |=ψ
C ,X |=Kaϕ iff C ,Y |=ϕ for all Y ∈Facet(C )

such that a ∈χ(X ∩Y )

Example: with Ag= { a , b , c } and At= {p}.

X1
X2

X4
X3

p is true in X1 only.

Ï C ,X1 |=Kap

Ï C ,X1 |= ¬Kb p

Ï C ,X4 |= (Kb¬p) ∧ (Kc¬p)
Ï C ,X2 |=Kap

Ï C ,X1 |=KbKap

12 / 20
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KB4: Epistemic logic with agents that may die

Define the following formulas, for an agent a ∈Ag:

dead(a) :=Ka false alive(a) :=¬dead(a)

One can check that:

C ,w |= alive(a) iff a ∈χ(w)

Example: Some valid formulas in KB4:

Ï Dead agents know everything: KB4` dead(a) =⇒ Kaϕ.

Ï Alive agents know they are alive: KB4` alive(a) =⇒ Ka alive(a).

Ï Alive agents satisfy Axiom T: KB4` alive(a) =⇒ (Kaϕ ⇒ ϕ).
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Simplicial set models

Definition
A pre-simplicial set is given by a sequence of sets (Sn)n∈N, together with
maps dn

i : Sn → Sn−1 for every n ∈N and 0≤ i ≤ n, satisfying the simplicial
identities.

S0 S1 S2 S3 · · ·
d0

d1

d0

d2

d1
d1
d2

d0

d3

c

b

a

cw ′
1 w ′

2 v.s. c

b

a

cw1 w2

Idea:

Ï Define simplicial models based on (pre-)simplicial sets.
Ï What is the associated logic?
Ï What are some use cases?
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Applications to Distributed
Computing



Topological characterization of task solvability (Herlihy et al.)

Input complex

Protocol complex

Execution
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specification
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Epistemic proofs of impossibility

Idea: find a logical obstruction to the existence of the simplicial map δ.

Lemma (Knowledge Gain)

Let δ :C −→C ′ be a morphism of simplicial models, and let ϕ be a
positive formula. Then:

C ′,δ(X ) |=ϕ implies C ,X |=ϕ

Recipe for impossibility proofs:

Ï Assume by contradiction that δ :P −→O exists.

Ï Choose a suitable formula ϕ such that:

Ï ϕ is true everywhere in the output model

Ï ϕ is false somewhere in the protocol model

16 / 20
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Ï ϕ is false somewhere in the protocol model
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Results

Goubault, Ledent, Rajsbaum (2018, 2021)

Ï 3 Consensus: impossbility proof using common knowledge.
Ï 3 Approximate agreement: impossibility proof using iterated
knowledge.

Ï 7 Set agreement: an impossibility proof is given, but the formula
is unsatisfactory.

Nishimura, Yagi, Logical Obstruction to Set Agreement Tasks for
Superset-Closed Adversaries (2020)

Ï 3 Set agreement: a more informative impossibility formula is used,
but only for one round.

Goubault, Lazić, Ledent, Rajsbaum, A Dynamic Epistemic Logic analysis of
Equality Negation (2019)

Ï 7 Equality negation: no formula can prove impossibility.
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Research directions



1 – Enrich the logic

Distributed knowledge. DB ϕ, where B ⊆Ag.

Ï A group of agents put their knowledge in common.

Ï In simplicial models: simplexes sharing a B-coloured face.

Common Distributed Knowledge. CDβϕ, where β⊆P (Ag)

Ï Infinitary iteration of distributed knowledge.

Ï Subsumes both common knowledge and distributed knowledge.

Other topological operators?

Distributed computing Topology Logic
consensus connectedness common knowledge

k-set agreement k-connectedness ???
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2 – Logical invariants of topological spaces

Topology vs logic: can we characterize topological properties via logical
formulas?

Examples:

Ï Is there a ϕ such that C |=ϕ iff C is a (pseudo-)manifold?

Ï Is there a sound and complete axiomatization for the class of
collapsible simplicial models?

Ï Which logical formulas are preserved under subdivision?
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3 – Link with directed topology

Theorem
There is a bijection between facets of the n-dimensional chromatic
subdivision and cube chains in the (n+1)-dimensional cube.
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3 – Link with directed topology

Theorem
There is an order isomorphism between the face poset of the
n-dimensional chromatic subdivision and the poset of partial cube chains
in the (n+1)-dimensional cube.
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Thanks!
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