Computing the matching distance of multi-parameter persistence from Morse critical values

Claudia Landi
Università di Modena e Reggio Emilia

GETCO 2022
May 31, 2022

Outline

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for ..
... Detecting gradient anti-alignment
... Fibering persistence modules
... Computing the matching distance

Conclusions

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for
... Detecting gradient anti-alignment
... Fibering persistence modules
Computing the matching distance

Conclusions

The pipeline of 1-parameter persistence

Combinatorics invariants decomposition: $M \cong \bigoplus_{i} \mathbb{I}_{\left[b_{i}, d_{i}\right)}$ barcodes: $B(M)=\left\{\left[b_{i}, d_{i}\right)\right\}$

The pipeline of 1-parameter persistence

Combinatorics invariants decomposition: $M \cong \bigoplus_{i} \mathbb{I}_{\left[b_{i}, d_{i}\right)}$
barcodes: $B(M)=\left\{\left[b_{i}, d_{i}\right)\right\}$

$\begin{array}{ccc}\text { Decomposition } & \Leftrightarrow & \text { barcodes } \\ \text { Interleaving distance } & = & \text { bottleneck distance }\end{array}$

The pipeline of multi-parameter persistence

decomposition: $M \cong \bigoplus_{i} M_{i}$ fibered barcodes: $\left\{B\left(M_{L}\right)\right\}_{L}$

$$
\begin{array}{clc}
\text { Decomposition } & \nLeftarrow \text { fibered barcodes } \\
\text { Interleaving distance } & \geq \text { matching distance }
\end{array}
$$

More in detail

- Σ simplicial complex
- $f=\left(f_{1}, \ldots, f_{n}\right): \Sigma \rightarrow \mathbb{R}^{n}$
- Lower level subcomplexes: for $u \in \mathbb{R}^{n}$,

$$
\Sigma^{u}:=\{\sigma \in \Sigma: f(\sigma) \preceq u\}
$$

- Nested: $u \preceq v$ implies $\Sigma^{u} \subseteq \Sigma^{v}$
- E.g., f defined on vertices and extended to any σ by

$$
f_{i}(\sigma)=\max _{v \in \sigma} f_{i}(v)
$$

- $M=\left\{H\left(\Sigma^{u}\right), i^{u, v}\right\}_{u \preceq v}$ persistence module of (Σ, f)

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for
... Detecting gradient anti-alignment
... Fibering persistence modules
... Computing the matching distance

Conclusions

Discrete gradients

A discrete gradient V is a partition of Σ into

- singletons $\{\sigma\}$ (critical cells), and
- pairs $\{\sigma, \tau\}$, where σ is a facet of τ
such that
- V is acyclic: \nexists closed path $\left\{\sigma_{i}, \tau_{i}\right\}_{1 \leq i \leq r}$ with σ_{i+1} facet of τ_{i}

Discrete gradient vector field

Not a discrete gradient vector field

Discrete Morse Theory

- Any pair $(\sigma, \tau) \in V$ defines a simplical collapse which preserves homotopy type.

- Homotopy equivalent \Longrightarrow isomorphic homology groups.
- Therefore, critical values can help identify the steps of the filtration where the associated subcomplex may undergo a change in homology.

Compatible discrete gradients

A discrete gradient V is compatible with $f: \Sigma \rightarrow \mathbb{R}^{n}$ if

$$
\forall(\sigma, \tau) \in V, f(\sigma)=f(\tau)
$$

Compatible discrete gradients

A discrete gradient V is compatible with $f: \Sigma \rightarrow \mathbb{R}^{n}$ if

$$
\forall(\sigma, \tau) \in V, f(\sigma)=f(\tau)
$$

Compatible discrete gradients

A discrete gradient V is compatible with $f: \Sigma \rightarrow \mathbb{R}^{n}$ if

$$
\forall(\sigma, \tau) \in V, f(\sigma)=f(\tau)
$$

Compatible discrete gradients

A discrete gradient V is compatible with $f: \Sigma \rightarrow \mathbb{R}^{n}$ if

$$
\forall(\sigma, \tau) \in V, f(\sigma)=f(\tau)
$$

Compatible discrete gradients

A discrete gradient V is compatible with $f: \Sigma \rightarrow \mathbb{R}^{n}$ if

$$
\forall(\sigma, \tau) \in V, f(\sigma)=f(\tau)
$$

Compatible discrete gradients

A discrete gradient V is compatible with $f: \Sigma \rightarrow \mathbb{R}^{n}$ if

$$
\forall(\sigma, \tau) \in V, f(\sigma)=f(\tau)
$$

[AKL'17]: The persistence module of (Σ, f) and that of its Morse complex formed by critical cells only are isomorphic

Compatible discrete gradients

A discrete gradient V is compatible with $f: \Sigma \rightarrow \mathbb{R}^{n}$ if

$$
\forall(\sigma, \tau) \in V, f(\sigma)=f(\tau)
$$

[AKL'17]: The persistence module of (Σ, f) and that of its Morse complex formed by critical cells only are isomorphic

- Convenient to speed up computations, e.g. of the fibered barcode

Construction of a compatible discrete gradient

[SIDL'20]: A discrete gradient compatible with a generic f can be built in linear time on the number of vertices.

[LS'21]: For 2D simplicial complexes and 3D cubical complexes, it is also persistence-perfect.

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for ..
... Detecting gradient anti-alignment
... Fibering persistence modules
... Computing the matching distance

Conclusions

Critical cells for ... detecting gradient anti-alignment

Critical cells localize the regions where the gradient vector fields of f_{1} and f_{2} disagree:

∇f_{1}

∇f_{2}

(color=dim)
[AKLM'19]

Hurricane Isabel dataset: temperature and pressure on cubical grid

Clusters with $\geq 10,100,400,2000$ critical cells (color encodes size)
[ISLD'16]

Critical cells ... for fibering persistence modules

- Each increasing line L in \mathbb{R}^{n} induces a 1-parameter filtration with associated persistence module M_{L}.
- The fibered barcode of M maps each line L to the barcode of M_{L}.

Note: $O\left(m^{2}\right)$ lines to consider with m number of simplices
Note: Barcode computations repeated across different lines, each taking $O\left(m^{3}\right)$ time

- A critical value is the value of the parameter at which a critical simplex enters into the filtration.
- \bar{C} is the closure of the set of critical values C under least upper bound.

We can use critical values to partition the set of all lines of \mathbb{R}^{n} into equivalence classes:

- We write $L \sim_{\bar{C}} L^{\prime}$, if L and L^{\prime} have the same reciprocal position with respect to c for all $c \in \bar{C}$.

- Here, $L \sim_{\bar{C}} L^{\prime}$, but $L^{\prime \prime} \propto_{\bar{C}} L^{\prime}$ and $L^{\prime \prime} \propto_{\bar{C}} L$

Barcodes of restrictions along equivalent lines $L \sim_{\bar{C}} L^{\prime}$ are in bijection:

So, it is sufficient to compute $B\left(M_{L}\right)$ on representative lines
[BBHLM'21]

Critical cells for ... computing the matching distance

Let M, N be 2-parameter persistence modules, L a line with positive slope. Given the barcodes $B\left(M_{L}\right)$ and $B\left(N_{L}\right)$,

- the cost $c(\sigma)$ of a partial matching $\sigma: B\left(M_{L}\right) \rightarrow B\left(N_{L}\right)$ is the maximum amount one has to enlarge or shrink the ends of each interval $[b, d]$ in B in order to obtain the interval $\sigma([b, d])$, or $\left[\frac{d-b}{2}, \frac{d-b}{2}\right]$ if $[b, d)$ is unmatched

$$
B\left(M_{L}\right)
$$

$$
B\left(N_{L}\right)
$$

- Their bottleneck distance d_{B} is the minimum cost over all partial matchings σ.
- The matching distance between M and N is defined as

$$
\sup _{L} w_{L} d_{B}\left(B\left(M_{L}\right), B\left(N_{L}\right)\right)
$$

where the weight w_{L} is given by the slope of L.

Critical values determine the matching distance

Theorem
The critical values of M and N determine a finite set $\Omega \subset \mathbb{R}^{2}$ such that the matching distance between M and N is realized by a line (not necessarily unique) through two points in $\overline{C \cup \Omega}$, or by a line through one point in $\overline{C \cup \Omega}$ having diagonal direction.

Critical values determine the matching distance

Theorem
The critical values of M and N determine a finite set $\Omega \subset \mathbb{R}^{2}$ such that the matching distance between M and N is realized by a line (not necessarily unique) through two points in $\overline{C \cup \Omega}$, or by a line through one point in $\overline{C \cup \Omega}$ having diagonal direction.

Computation of the switch points ω

3 points case: given three points $a, c \in C_{M}$ and $b \in C_{N}$, add ω such that for any line L through ω,

$$
\left\|p u s h_{L}(b)-\operatorname{push}_{L}(a)\right\|=\left\|p u s h_{L}(b)-\operatorname{push}_{L}(c)\right\|
$$

- If a and c both push rightwards to L while b pushes upwards, then $\omega=\left(x_{b},\left(y_{c}+y_{a}\right) / 2\right)$

- a and b both push rightwards to L while c pushes upwards, then $\omega=\left(x_{c}, 2 y_{b}-y_{a}\right)$

Complexity

In the worst case, taking m to be the number of critical cells of the persistence modules M and N,

- the number of switch points is $\binom{m}{4} \sim m^{4}$
- the number of lines to consider is $O\left(m^{8}\right)$
- the cost of computing the bottleneck distance along one line is $O\left(m^{1.187}\right)$ [Katz\&Sharir22]
- the cost of computing $B\left(M_{L}\right)$ and $B\left(N_{L}\right)$ for a fixed line L is $O\left(m^{3}\right)$ which dominates that of the bottleneck distance
- the total runtime cost is $O\left(m^{11}\right)$
- the space cost is $O\left(m^{4}\right)$ for storing the set of critical and switch values

Brief introduction to persistence

Persistence-preserving discrete gradients

Critical cells for

... Detecting gradient anti-alignment
... Fibering persistence modules
... Computing the matching distance

Conclusions

Conclusions

Take-home message:

- Critical cells capture diverse and fundamental aspects of multi-parameter persistence
- In particular, critical points determine the matching distance for bi-persistence

Open questions:

- reduction of the number of switch points
- computation of matching distance for n-persistence modules

References

- luricich, Scaramuccia, L., De Floriani: A discrete Morse-based approach to multivariate data analysis, Siggraph Asia 2016
- Allili, Kaczynski, L.: Reducing complexes in multidimensional persistent homology theory, J. Symb. Comput. (2017)
- L.: The Rank Invariant Stability via Interleavings (2018)
- Allili, Kaczynski, L., Masoni: Acyclic Partial Matchings for Multidimensional Persistence: Algorithm and Combinatorial Interpretation, JMIV (2019)
- Scaramuccia, luricich, De Floriani, L.: Computing multiparameter persistent homology through a discrete Morse-based approach, CGTA (2020)
- L. \& Scaramuccia, Relative-perfectness of discrete gradient vector fields and multi-parameter persistent homology, J. Comb. Opt. (2021)
- Bapat, Brooks, Hacker, L., Mahler: Morse-based Fibering of the Persistence Rank Invariant, AWM Springer, to appear (arXiv:2011.14967)
- Bapat, Brooks, Hacker, L., Mahler: Computing the matching distance of bi-persistence using critical values, in preparation

Thank you for your attention!

