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1. Basin of attraction of an equilibrium

System of autonomous ordinary differential equations{
d
dtx(t) = ẋ(t) = f(x(t))

x(0) = ξ
(1)

x(t) ∈ Rn, f : Rn → Rn

Solution of (1) is called flow and denoted Stξ := x(t)

x0

Assumptions

x0 is equilibrium (f(x0) = 0)
x0 is asymptotically stable (eigenvalues of Df(x0))

Definition (Basin of attraction) The basin of attraction of x0 is

A(x0) := {ξ ∈ Rn | ∥Stξ − x0∥
t→∞−→ 0}.

x0 is called globally stable, if A(x0) = Rn

In general difficult to determine.

Goal: Determine basin of attraction A(x0) using a Lyapunov function

Peter Giesl (Sussex, UK) Lyapunov functions and contraction metrics 3/6/2022 3 / 55



Lyapunov function: idea

Idea

Lyapunov function is like energy in dissipative system

It implies stability of equilibrium and gives lower bound on basin of
attraction

Has minimum at equilibrium

Is strictly decreasing along solutions
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Lyapunov function: definition

Definition

Let x0 be an equilibrium. Let

v ∈ C1(Rn,R)
U ⊂ Rn neighborhood of the equilibrium x0

v has strict minimum at equilibrium:
v(x) ≥ 0 for all x ∈ U and v(x) = 0 if and only if x = x0

v is strictly decreasing along trajectories:
v̇(x) ≤ 0 for all x ∈ U and v̇(x) = 0 if and only if x = x0

Then v is called a strict Lyapunov function and x0 is asymptotically stable.

v̇ derivative along solutions or orbital derivative
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Orbital derivative

Definition (Orbital derivative)

Let v ∈ C1(Rn,R). The derivative of v along solutions Stx of ẋ = f(x),
the orbital derivative, is defined as

v̇(x) =
d

dt
v(Stx)

∣∣
t=0

= ∇v(x) · f(x) =
n∑

i=1

∂v

∂xi
(x)fi(x)
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Lyapunov function determines basin of attraction

Theorem

Let x0 be equilibrium, U open neighborhood of x0 and v : Rn → R strict
Lyapunov function.
Let SR = {x ∈ Rn | v(x) ≤ R} for R ∈ R+

0 be a sublevel set of v and
assume that

SR is compact

SR ⊂ U

Then SR ⊂ A(x0) and SR is positively invariant.

Remark: Positive invariance is true if v̇(x) < 0 holds for all
x ∈ ∂SR = {x ∈ Rn | v(x) = R}
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Example

{
ẋ = −x+ x3

ẏ = −1
2y + x2

v(x, y) = 1
2x

2 + y2 sign of v̇(x, y) = ∇v(x, y) · f(x, y)

=

(
x
2y

)
·
(

−x+ x3

−1
2y + x2

)
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2. Existence and construction of Lyapunov functions

“converse Theorems” (Massera 1949) etc. – but not constructive!

explicit construction possible for linear equations, special cases

used in applications (engineering, biology)

We will present two general construction methods:

construct continuous and piece-wise affine (CPA) Lyapunov functions

solve a partial differential equation by meshless collocation with
Radial Basis Functions (RBF)

For more methods, see review (Giesl, Hafstein 2015)

Reminder: for a Lyapunov function we require

V (x) ≥ 0

V̇ (x) ≤ 0
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2.1 CPA method

Continuous piece-wise affine function, affine on each simplex

define triangulation: collection T of simplices S = co(x0,x1, . . . ,xn)

vertex set VT

hC : largest distance of vertices in a simplex

Example of triangulation
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CPA function

CPA function defined by values on vertices:

i) Fix Vx for every x ∈ VT (vertex set)

ii) V is affine on every simplex Sν ∈ T , i.e. V (x) = aTν x+ bν for x ∈ Sν

with aν ∈ Rn, bν ∈ R

Values at vertices CPA function
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CPA conditions at vertices

Translate Lyapunov function conditions

1 V (x) ≥ ∥x∥
2 V̇ (x) ≤ −∥x∥

into sufficient conditions on values at vertices
For every Sν = co(x0,x1, . . . ,xn) and every vertex xi ∈ Sν ,

1 V (xi) ≥ ∥xi∥
2 V̇ (xi) +Bνh

2
C∥∇Vν∥1 ≤ −∥xi∥ where

Bν ≥ maxm,r,s=1,...,nmaxx∈Sν

∣∣∣ ∂2fm
∂xr∂xs

(x)
∣∣∣, hC size of simplex

Remarks

Bν need to be input by hand – only upper bounds necessary

V is not differentiable, but smooth on each simplex

Constraints are linear in V (xi)
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Solution to the LP problem =⇒ CPA Lyapunov function

Write conditions as constraints of Linear Programming (LP) problem
with variables Vxi

If the LP problem has a solution, then the CPA function is a
Lyapunov function

Note: not a numerical approximation, V is a Lyapunov function!

Moreover, if the triangulation is sufficiently fine, then the method
always finds a Lyapunov function
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Example

(
ẋ1
ẋ2

)
=

(
x2

−x1 + x31/3− x2

)
, Bν = 2max

x∈Sν

|x1|

Vx solution to the LP problem
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Example

(
ẋ1
ẋ2

)
=

(
x2

−x1 + x31/3− x2

)
, Bν = 2max

x∈Sν

|x1|

CPA Lyapunov function
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Computing sublevel sets

find connected component which includes equilibrium

increase level

until boundary of admissible area reached

results in subset of basin of attraction

algorithm for CPA functions
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2.2 Meshfree collocation with Radial Basis Functions
(RBF)

Converse Theorem

Theorem (Existence of V )

Let f ∈ Cσ(Rn,Rn), σ ≥ 1, 0 exponentially stable equilibrium.
Then there exists V ∈ Cσ(A(0),R) with

V̇ (x) := ∇V (x) · f(x) = −∥x∥2 for all x ∈ A(0).(2)

Proof: V (x) =
∫∞
0 ∥Stx∥2 dt

Goal: explicit construction of Lyapunov function

Idea: approximate solution of first-order linear PDE (2)
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Overview

Consider linear PDE

(PDE) LV (x) = V̇ (x) =

n∑
i=1

fi(x)
∂V

∂xi
(x) = −∥x∥2

Approximation VR of V using Meshless collocation, in particular
Radial Basis Functions (RBF)

Approximation VR itself is a Lyapunov function
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Radial Basis Functions: approximate solution of PDE
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PDE: LV (x) = −∥x∥2, L linear
differential operator (orbital derivative)

ψk(∥x∥) (Radial Basis Function), here:
ψk Wendland’s function (compact support)

Corresponds to Reproducing Kernel Hilbert space H of functions with
kernel Φ(x,y) := ψk(∥x− y∥) (Sobolev space)

Collocation points XN = {x1, . . . ,xN} ⊂ Rn, λi:= (δxi ◦ L) ∈ H∗

Solution of problem{
minimise ∥V ∥H
subject to LV (xi) = −∥xi∥2, ∀xi ∈ XN

is VR(x) =
∑N

j=1 αjλ
y
j Φ(x,y)

α ∈ RN determined by: V̇R(xj) = −∥xj∥2 for all j = 1, . . . , N , i.e.

Aα = r, where aij = λxi λ
y
j Φ(x,y), ri = −∥xi∥2

A is symmetric and positive definite ⇒ non-singular
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Error Estimate

|V̇ (x)− V̇R(x)| ≤ Ch
k−1/2
R for all x ∈ K

where

k smoothness of Radial Basis Function

hR := supy∈K minx∈XN
∥x− y∥: fill distance, measuring how dense

collocation points are in K

Estimate
VR is Lyapunov function: if Ch

k−1/2
R ≤ ε, then

V̇R(x) ≤ V̇ (x) + ε ≤ −∥x∥2 + ε < 0

for ∥x∥2 > ε (local problem)
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Example

{
ẋ = −x+ x3

ẏ = −1
2y + x2

Grid, v̇ = 0, sublevel set (thick black), previous sublevel set (thin black)
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Problem: verification

Problem:

How to verify V̇R(x) < 0 for all x ∈ K (infinitely many)?

Error estimate depends on V and is not known in practice

Two methods:

1 Evaluate computed function at finitely many points, apply Taylor
approximation with explicit bounds on derivatives.
Many evaluation points, but verifies computed function

2 Use CPA (continuous piecewise affine) interpolation VC of VR and
use verification as discussed earlier.
Much faster, but verifies different function

Both methods can be shown to always work if evaluation/interpolation is
sufficiently fine.
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Example 1: ẋ = −y, ẏ = x+ y(x2 − 1)

RBF approximation 19× 19 – CPA interpolation, x – inequality violated
4/648
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Example 2

System:

ẋ =

x(x2 + y2 − 1)− y(z2 + 1)
y(x2 + y2 − 1) + x(z2 + 1)

10z(z2 − 1)

 .

Level set (red); orbital derivative (of CPA interpolation) is not negative
(blue dots)
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Summary

Lyapunov function

minimum at equilibrium (v(x) ≥ 0)

decreasing along solutions (v̇(x) ≤ 0, orbital derivative)

gives information about basin of attraction/positively invariant sets
through (sub)level sets

Construction methods

CPA: affine function on simplices, conditions as constraints of Linear
Programming problem

RBF: smooth function, conditions as solution of linear Partial
Differential Equation
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Comparison: CPA vs. RBF

CPA and RBF work on compact set and have problems close to
equilibrium

CPA: inequalities, RBF needs equation

CPA slow but delivers a true (nonsmooth) Lyapunov function

RBF (comparatively) fast, smooth function, but separate verification
is necessary

CPA and RBF are guaranteed to succeed if sufficiently fine
simplices/dense collocation points
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3. Complete Lyapunov functions

Classical Lyapunov functions: for one attractor, e.g. equilibrium or periodic
orbit. Now consider ẋ = f(x), x ∈ Ω ⊆ Rn.

Phase space can be split into chain-recurrent set R (containing
equilibria, periodic orbits, attractors, repellers, etc.) and the
complement with gradient-like flow

Complete Lyapunov function (Conley) V : Ω → R satisfies

V̇ (x) < 0 (decreasing along solutions) on gradient-like part (transient
behaviour)
V̇ (x) = 0 on chain-recurrent set, has distinct values on distinct
chain-transitive components of R

(Conley 1978, 1988), (Hurley 1991, 1998), (Osipenko 2007), (Patrao 2011)
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Construction of complete Lyapunov functions

Goal to find a (candidate) complete Lyapunov function satisfying
V̇ (x) ≤ 0 for all x ∈ Ω

with large area {x ∈ Ω | V̇ (x) < 0}

Then

{x ∈ Ω | V̇ (x) = 0} contains chain-recurrent set

Maxima/minima of V indicate stability
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Example: ẋ = −x(x2 − 1)

V̇ (x)

V (x)

- - �� vvv
−1 0 1
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3.1 Numerical construction: Meshfree collocation RBF
(equation)

Solve V̇ (x) = −1 via meshless collocation.

the PDE has no solution on chain-recurrent set

meshless collocation has solution v

set where V̇R(x) ≈ 0 approximates chain-recurrent set R
iterations for better approximations

no proof of convergence

software LyapXool
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Complete Lyapunov function: equation
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More appropriate: differential equation/inequality

solve 
minimise ∥V ∥H
subject to V̇ (x) = −1 for all x ∈ Γ

V̇ (x) ≤ 0 for all x ∈ Ω(\Γ)

Remarks:

We need to ensure Γ lies in the gradient-flow part

How large does Γ need to be?

Can we assume V̇ (x) = −1 in the gradient-flow part; does such a
function exist?

How do we find a (numerical) solution?
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Existence of complete Lyapunov function with prescribed
derivative

Theorem (Giesl, Suhr, Hafstein (2022))

Let ẋ = f(x) define a dynamical system on an open set Ω ⊂ Rd with
f ∈ C l(Ω,Rd), where l ∈ N ∪ {∞}.
Then for every compact set K ⊂ Ω \ R and every C l-function
g : ΩK → (−∞, 0) defined on a neighborhood ΩK ⊂ Ω of K there exists a
complete C l-Lyapunov function V : Ω → R with

V̇ (x) = g(x) for all x ∈ K and

V̇ (x) < 0 for all x ∈ Ω \ R.

Proof is based on a modification of a C∞ complete Lyapunov function
from (Hafstein, Suhr 2021)

Hence, we can set g(x) = −1
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3.2 Discretising differential inequalities

Let Γ ⊂ Ω ⊂ Rd

Goal: solve {
Lv(x) = −1, ∀x ∈ Γ,
Lv(x) ≤ 0, ∀x ∈ Ω \ Γ

L is a linear (differential) operator

Consider (Reproducing Kernel) Hilbert space H of functions
v : Ω → R with kernel Φ(x,y)

Optimisation problem for v ∈ H
minimise ∥v∥H
subject to Lv(x) = −1, ∀x ∈ Γ,

Lv(x) ≤ 0, ∀x ∈ Ω \ Γ.
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Discretising differential inequalities: convergence

Continuous problem:
minimise ∥v∥H
subject to Lv(x) = −1, ∀x ∈ Γ,

Lv(x) ≤ 0, ∀x ∈ Ω \ Γ.
(3)

Meshfree collocation: discretise problem. Given discrete (regular)
points XΓ ⊂ Γ, XΩ ⊂ Ω \ Γ, solve

minimise ∥v∥H
subject to Lv(xi) = −1, ∀xi ∈ XΓ,

Lv(xi) ≤ 0, ∀xi ∈ XΩ.

(4)

Results:

(3) and (4) have unique solution

(4) can be solved by quadratic optimisation

Strong convergence in H of solutions of discretised problem (4) to
solution of continuous system (3)
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Discretised version: quadratic optimisation

H RKHS with kernel Φ, M,N ∈ N, λi= (δxi ◦ L) ∈ H∗,
i = 1, . . . ,M +N linearly independent

minimise ∥v∥H
subject to λi(v) = −1, i = 1, . . . ,M,

λM+i(v) ≤ 0, i = 1, . . . , N.
(5)

Then

(5) has unique minimiser v∗(x) =
∑M+N

j=1 αjλ
y
j Φ(x,y)

coefficients αj are the unique solution of the minimisation problem

(6)


minimise αTAα
subject to A1 α = −1 ∈ RM

and A2 α ≤ 0 ∈ RN .

A = (aij) =

(
A1

A2

)
, A1 ∈ RM×(M+N), A2 ∈ RN×(M+N) and

aij = λxi λ
y
j Φ(x,y)
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Example 1: two periodic orbits(
ẋ
ẏ

)
=

(
−x(x2 + y2 − 1/4)(x2 + y2 − 1)− y
−y(x2 + y2 − 1/4)(x2 + y2 − 1) + x

)
v(x, y) v̇(x, y)
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v̇(0.1846, 0) = −1 by the equality constraint
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Example 2: homoclinic orbit(
ẋ
ẏ

)
=

(
x(1− x2 − y2)− y((x− 1)2 + (x2 + y2 − 1)2)
y(1− x2 − y2) + x((x− 1)2 + (x2 + y2 − 1)2)

)
v(x, y) v̇(x, y)
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v̇(0.1846, 0) = −1 by the equality constraint
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3.3 New optimisation problem

Drawback of previous approach: some knowledge of chain-recurrent
set (for equality condition){

minimise ∥V ∥H
subject to V̇ (x) ≤ 0 for all x ∈ Ω

has trivial solution V ≡ 0

New idea (Giesl, Argáez, Hafstein, Wendland 2021): consider{
minimise ∥V ∥2H +

∫
Ω V̇ (x) dx

subject to V̇ (x) ≤ 0 for all x ∈ Ω

Cost function rewards areas with negative orbital derivative

No knowledge of gradient-like flow required

Still leads to quadratic optimisation problem
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Example 1: two periodic orbits
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Example 2: Lorenz attractor

blue: computed set containing attractor, red: attractor
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4. Contraction metrics

Consider ẋ = f(x)

Adjacent solutions contract with respect to contraction metric
Can be used to show existence, uniqueness, stability and basin of
attraction of equilibria/periodic orbits
Robust with respect to perturbations of the system

Problem Find Riemannian metric M ∈ C1(Ω; Sn×n) (symmetric matrices)
with scalar product ⟨v, w⟩M = vTM(x)w such that

M(x) ≻ 0 (positive definite)
LM(x) :=M(x)Df(x) + Ṁ(x) +Df(x)TM(x) ≺ 0 (negative
definite)
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Idea of contraction metric

y

x

Stx

StyIdea

Solutions Stx and Sty,
y near x

Time-dependent
distance (squared)

d2(t) := (Sty − Stx)
TM(Stx)(Sty − Stx)

Derivative, denoting v = Sty − Stx: exponential decay of d(t)

d

dt
d2(t) ≈ (Sty − Stx)

TDf(Stx)
TM(Stx)(Sty − Stx)

+(Sty − Stx)
T Ṁ(Stx)(Sty − Stx)

+(Sty − Stx)
TM(Stx)Df(Stx)(Sty − Stx)

= vT [M(Stx)Df(Stx) + Ṁ(Stx) +Df(Stx)
TM(Stx)︸ ︷︷ ︸

=LM(Stx)≺−2νM(Stx)

]v

≤ −2ν d2(t)
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Contraction metric and basin of attraction

Theorem

∅ ̸= K ⊂ Rn positively invariant, compact and connected

Riemannian metric M ∈ C1(Rn, Sn×n) (M(x) ≻ 0)

LM(x) =M(x)Df(x) + Ṁ(x) +Df(x)TM(x) ≺ −2νM(x) for all
x ∈ K with ν > 0

Then

Existence and uniqueness of an exponentially asymptotically stable
equilibrium x0 ∈ K

−ν is upper bound on rate of exponential attraction

K ⊂ A(x0) (basin of attraction)

Remark: On compact set, it is sufficient to have

LM(x) =M(x)Df(x) + Ṁ(x) +Df(x)TM(x) ≺ 0
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Idea of numerical construction

There exists specific contraction metric satisfying

LM(x) :=M(x)Df(x) + Ṁ(x) +Df(x)TM(x) = −C ≺ 0

for all x ∈ A(x0)

Approximate M satisfying equation above using meshless collocation
(of matrix-valued functions)

Interpolation with CPA metric to verify conditions
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Examples: Van der Pol (time-reversed, equilibrium)

ẋ = −y
ẏ = x− 3(1− x2)y

Black: 1926 collocation points Green: equilibrium
Blue: M(x) not positive definite Red: LM(x) not negative definite
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Example: Van der Pol (time-reversed, equilibrium)

ẋ = −y
ẏ = x− 3(1− x2)y

Dark green: positively invariant set (using Lyapunov-like function)
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Contraction metric for periodic orbit

x = STx

Γ

periodic orbit Γ = {Stx | t ∈ [0, T )} with x = STx

basin of attraction
A(Γ) = {ξ ∈ Rn | dist(Stξ,Γ)

t→∞−→ 0}
similar method for periodic orbits: contraction only in
(n− 1)-dimensional hyperplane perpendicular to f(x)
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Example: unit circle (periodic orbit)

ẋ = (x+ ε)(1− x2 − y2)− (y + ε)
ẏ = (y + ε)(1− x2 − y2) + (x+ ε)

ε = 0 ε = 0.2 (same metric)

Peter Giesl (Sussex, UK) Lyapunov functions and contraction metrics 3/6/2022 51 / 55



References

Review

P. Giesl, S. Hafstein & C. Kawan, Review on contraction analysis and computation of
contraction metrics. J. Comp. Dyn. accepted, arXiv:2203.01367

Existence of contraction metrics

P. Giesl, Converse theorems on contraction metrics for an equilibrium. J. Math. Anal.
Appl. 424 (2015), 1380-1403.

P. Giesl, On a matrix-valued PDE characterizing a contraction metric for a periodic orbit.
Discrete Contin. Dyn. Syst. Ser. B 26 (2021), 4839-4865.

Computation

P. Giesl & H. Wendland, Kernel-based Discretisation for Solving Matrix-Valued PDEs.
SIAM J. Numer. Anal. 56 No. 6 (2018), 3386-3406.

P. Giesl, Computation of a contraction metric for a periodic orbit. SIAM J. Appl. Dyn.
Syst. 18 (2019), 1536-1564.

CPA verification

P. Giesl, S. Hafstein & I. Mehrabinezhad, Computation and Verification of Contraction
Metrics for Equilibria. J. Comput. Appl. Math. 390 (2021), 113332.

P. Giesl, S. Hafstein & I. Mehrabinezhad, Computation and verification of contraction
metrics for periodic orbits. J. Math. Anal. Appl. 503 (2021), Article 125309.

Peter Giesl (Sussex, UK) Lyapunov functions and contraction metrics 3/6/2022 52 / 55



Summary

Analytical tools:

(complete) Lyapunov function V : Rn → R
contraction metric M : Rn → Sn×n,
robust with respect to perturbations, no information about
equilibrium/periodic orbit required

Numerical methods:

RBF (Radial Basis Functions) – meshless collocation (solve system of
linear equations or quadratic optimisation for differential inequalities)
CPA (continuous piecewise affine) – linear optimisation (triangulation
of compact phase space, verification)
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Extensions

Discrete systems xn+1 = f(xn)

Periodic time ẋ = f(t,x), f(t+ T,x) = f(t,x)

Finite time ẋ = f(t,x), t ∈ [0, T ]

Non-smooth systems

Stochastic systems

Dimension of attractors, entropy
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QUESTIONS?

Webpage: http://users.sussex.ac.uk/∼pag20/
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