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Definition of a semitopology

Definition. A semitopology is a pair (P,Open⊆pow(P)) of

I a nonempty set of points and
I a set of open sets that contains P and is closed under (possibly

infinite, possibly empty) unions.

Think: “topology, minus the condition that finite intersections of
opens are open”.

(Image credit: Wikipedia.)

https://commons.wikimedia.org/w/index.php?curid=3437020
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Many definitions transfer smoothly . . .

Definition. Notions of

I closure of C ⊆ P — when C = P \ O for O ∈ Open — and
I continuity of f : P→ P′ — inverse image of open set is open,

or in symbols: f -1(O ′) ∈ Open

— can be defined as usual on semitopologies.
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. . . and there are differences too

In a topology, a minimal open neighbourhood of p is also least: any
two minimal open neighbourhoods of p can be intersected to get an
open neighbourhood included in both, hence by minimality they are
equal.

In a semitopology, p may have more than one minimal open
neighbourhood, since their intersection need not be a (smaller) open
neighbourhood.
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Relevance to distributed consensus

Interpret p ∈ P as participants in a distributed algorithm. Interpret
an open neighbourhood p ∈ O ∈ Open as a quorum sufficient for
progress to be made.

Consensus schemes like ‘decision by majority vote’ or ‘decision by
2/3 majority’ give rise to semitopologies as follows:

I A finite set P has the majority semitopology, where O ⊆ P is
open when O contains at least half of the elements of P.

I A finite set P has the supermajority semitopology, in which
O ⊆ P is open when O contains 2/3 of the elements of P.

These semitopologies are not topologies: O ∩ O ′ need not be open.
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Semitopologies are local

Many consensus algorithms are homogeneous, meaning they
determine a quorum to agree on a value v by a generalised
quantifier referring to a global property:

I Voting power is given by whoever has the most X, where
I X = ‘tokens’, or ‘computational power’, . . .

Such globality is expensive, for two reasons:

I Distributed algorithms are naturally local, by definition: a
global X can be inferred but not immediately locally computed.

I Deciding a global condition itself requires consensus, but if
consensus is the thing we are trying to determine then this
adds layers of complexity and iteration and invites attack: we
have to agree on who has most X , before we can agree to
agree on v !
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Technical slides alert

Semitopologies are a natural framework for local or heterogeneous
distributed systems. For example:

I P is a graph G and opens are generated by a local
supermajority, this being any p along with 2/3 of its immediate
neighbours.

I P = N× N, and opens are unions of rows and columns.

I will now pull some maths out of this deceptively simple setup, so
get ready for some technical slides!
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Intertwined points: the anti-Hausdorff property
Notation. Write O G O ′ when O ∩ O ′ 6= ∅.

Note: we can write the Hausdorff property as saying for every
p 6= p′ ∈ P that

∃O,O ′ ∈ Open.(p ∈ O ∧ p′ ∈ O ′) ∧ ¬(O G O ′).

Definition. Call p and p′ intertwined and write p G p′ when

∀O,O ′ ∈ Open.(p ∈ O ∧ p′ ∈ O ′)⇒ O G O ′.

In words: p G p′ when all their open neighbourhoods intersect.
Think of p G p′ as the essence of anti-Hausdorff.

Note: we can impose a metric on (P,Open) where |p, p′| is the
least i such that p G p1 G p2 · · · G pi G p′, or ω if no such chain
exists. A space is Hausdorff when the metric is trivial: points are
either 0 or ω apart.)
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(Continuous) value assignments

Fix a set of values Val and give it the discrete semitopology
(Val, pow(Val)) in which {v} is open for every v ∈ Val.

Call f : P→ Val a value assignment: fix some continuous value
assignment f and some participant p. Then:

I f -1(f (p)) ∈ Open.
I A quorum of points agree with p on its value f (p) ∈ Val.

Lemma. If p G p′ then f (p) = f (p′).

Proof. p ∈ f -1(f (p)) and p′ ∈ f -1(f (p′)) are open (by continuity),
so intersect.

Corollary 1. Continuous value assignments agree between
intertwined points.
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Transitive sets

Definition. Call S ⊆ P transitive when

∀O,O ′ ∈ Open.O G S G O ′ ⇒ O G O ′.

Call S a transitive and open set a topen set.

Lemma 1. S is topen ⇔ all its points are pairwise intertwined
(∀p, p′∈S .p G p′).

Proof. Suppose S is topen and p, p′ ∈ S and p ∈ O and p′ ∈ O ′.
Then O G S G O ′ and so O G O ′. Conversely, if all points are
pairwise intertwined and O G S G O ′ then p ∈ O and p′ ∈ O ′ for
p, p′ ∈ S and so O G O ′.

Lemma 2. S is a set of pairwise intersecting topens ⇒
⋃
S is

topen.

Proof. O G
⋃
S G O ′ implies (wlog) O G S G S ′ G O ′ for some

S , S ′ ∈ S, and by transitivity O G O ′.
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The fundamental theorem

Theorem 1.

1. Any semitopology (P,Open) partitions into disjoint maximal
topen sets (plus isolated points), and

2. continuous value assignments are constant on each partition.

Proof.

By Lemma 2, if topen S and S ′ intersect then S G S ′ is topen. Also
using Lemma 2, an increasing chain S0 ⊆ S1 ⊆ . . . of topens is
topen. The partitioning follows.

Continuous value assignments are constant from Lemma 1 (all
points intertwined) and Corollary 1 (value assignment is constant on
intertwined points).
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Theorem 1 = consensus

Theorem 1 provides a high-level account of consensus, in 3 easy
steps:

1. Let participants make local choices about who they trust.
2. Derive a semitopological notion of quorum from these local

choices by taking suitable unions (for details see witness
functions, below).

3. Compute locally continuous value assignments.

Theorem 1 guarantees that the system will self-organise into a
partition of maximal topens on which local consensus is guaranteed.

Note how this is reminiscent of real life organises itself into
communities with (literally) shared values.
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Why infinities matter, even in a finite world

Computer systems are finite, but this is (perhaps surprisingly) no
reason to assume (P,Open) is finite:

I A participant p ∈ P sees only a local portion of the universe:
as far as p is concerned, P may be unbounded.
Thus, a distributed algorithm running at p must behave as if P
might be infinite. (Similarly we have only a finite view of
π ∈ R, but we behave as if a perfect circle exists.)

I Hostile participants may be free to join the network and tell
arbitrary lies. Thus, the system may appear arbitrarily large,
due to input from hostile players, even if physically it is smaller.
Thus, algorithms must be resilient and terminating even on
potentially hostile, potentially nonterminating inputs.

A theory of infinite semitopologies is therefore relevant even if we
can only realise finite approximations in the real world.
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Semitopologies in practice

We can sum up the essential challenge of semitopologies for
consensus as follows:

Use (semi)topology and combinatorics to design, and prove
well-behavedness properties of, algorithms to compute con-
tinuous local value assignments on general classes of semi-
topologies.

The Stellar payments network does this, in practice, to facilitate
cross-border payments.

We see broader applications to distributed systems in which notions
of quorum and identity are handled locally, rather than by (some
emulation of) a central authority.

The mathematics of semitopologies has rich structure . . .
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A flavour of the rest of the maths

Definition.

I A witness function is an assignment w : P→ fin(pow(P))
(finite set of subsets of P).

I Given a w , the witness semitopology sets O to be open when
p ∈ O implies w ⊆ O for at least one witness w ∈ w(p).

This is how Stellar actually works: participants don’t choose
quorums; they choose witnesses, and quorums are dynamically
computed as needed.
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A flavour of the rest of the maths: semicompactness
Proposition. Suppose O0 ⊇ O1 ⊇ O2 . . . is a descending chain of
open sets in a witness semitopology.

(Image credit: Katzourakis. F → O)

Then
⋂
Oi is open. (Infinite intersections of opens aren’t generally

open, but they are here.) As a corollary, every p ∈ O has a minimal
open neighbourhood p ∈ M ⊆ O.

This expresses a termination property: a minimal open
neighbourhood for p always exists, for a local value assignment.
Open Problem: Does semicompactness characterise witness
semitopologies?

https://www.researchgate.net/profile/Nikos-Katzourakis/publication/321085532_An_Illustrative_Introduction_to_Modern_Analysis/links/5a27c73aaca2727dd883c956/An-Illustrative-Introduction-to-Modern-Analysis.pdf?origin=publication_detail
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Conclusions

Semitopology generalises topology, and is useful in the study of
distributed algorithms, including for consensus. In this world,
continuity at p is interpreted as consensus at p.

We are particularly interested in computing continuous functions on
anti-Hausdorff spaces having lots of intertwined points. Far from
being boring, such intertwined spaces have rich mathematical,
combinatorial, and algorithmic structure.

Semitopologies may become of increasing relevance, especially as
distributed systems become more common, especially due to recent
interest in heterogeneous distributed systems, which are truly
distributed in the sense that they do not necessarily seek to emulate
the effect of a centralised authority.
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More examples of semitopologies . . .

. . . just to give a sense of the design space:

I Take P = N and let the many semitopology be generated by
countable subsets. (This models the ‘many’ generalised
quantifier.)
This is not a topology: just because there are many points in
O and in O ′ does not mean there are many in O ∩ O ′.

I Take P = N∗ (finite sequences of natural numbers), and let
O ⊆ P be open when if p ∈ O then there exists n ∈ N such
that p, n ∈ O.
This models a space of nonterminating processes.


