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Geometric Semantics Combinatorial Model Invariants Conclusion

Algebraic View

A program is a sequence of
instructions

plus branches and loops

Kleene algebra:

set S with operations:

concatenation ⊗
choice ⊕
repetition ∗

idempotent semiring with
unary ∗ which computes
fixed points
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Geometric View

A program is a sequence of instructions

ignoring branches and loops for now

Now, a second program in parallel:

P
Q
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Geometric View

A program is a sequence of instructions

ignoring branches and loops for now

Now, a second program in parallel:

P
Q

an execution of P‖Q
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Holes

Adding mutual exclusion:

x← 3

x← 2

homotopic paths =̂ equivalent executions
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Holes

Adding mutual exclusion:

x← 3

x← 2

x = 3

x = 2

not an execution

homotopic paths =̂ equivalent executions
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More Holes

Semaphores à la Dijkstra (P =̂ acquire; V =̂ release):

Pa Pb Vb Va

Pb

Pa

Va

Vb
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More Holes

Semaphores à la Dijkstra (P =̂ acquire; V =̂ release):

Pa Pb Vb Va

Pb

Pa

Va

Vb

doomed

deadlocked execution

unreachable
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Geometric Semantics Combinatorial Model Invariants Conclusion

Summing Up

A program is a

directed

topological space

An execution is a

directed

path through said space

Two executions are equivalent iff their

di

paths are

di

homotopic
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Summing Up

A program is a directed topological space

An execution is a directed path through said space

Two executions are equivalent iff their dipaths are dihomotopic
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Directed Spaces

Definition (po-space)

A partially ordered space is a topological space X together with a partial
order ≤ on X such that ≤ ⊆ X × X is closed in the product topology.
A morphism of po-spaces is a ≤-preserving continuous function.

directed intervals; directed squares, cubes, etc.

concatenation ⊗, branching ⊕
no loops
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Directed Spaces

Definition (lpo-space)

A locally partially ordered space is a Hausdorff topological space X
together with a relation ≤ on X in which any x ∈ X has an open
neighborhood U 3 x such that the restriction of ≤ to U is a closed
partial order.
A morphism of po-spaces is a continuous function which is locally
≤-preserving.
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Directed Spaces

Definition (d-space)

A directed space is a topological space X together with a set ~PX of
directed paths I → X such that

all constant paths are directed,

concatenations of directed paths are directed, and

reparametrizations and restrictions of directed paths are directed.

A morphism of d-spaces is a continuous function which preserves directed
paths.

po-spaces ↪→ lpo-spaces ↪→ d-spaces (not full)

po-spaces are loop-free; lpo-spaces are vortex-free

d-spaces are nice: axiomatize directly our objects of interest
(dipaths); have good categorical properties
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Directed Paths and Homotopies

the directed interval ~I :

([0, 1],≤) (usual order): po-space; lpo-space
([0, 1], ~P[0, 1]): all (weakly) increasing paths

dipaths in X : morphisms ~I → X

for d-space (X , ~PX ): dipaths =̂ ~PX

a dihomotopy H : I × ~I → X :

all H(s, ·) dipaths
H : I × I → X continuous
H(·, 0) and H(·, 1) constrained

(some variants exist)
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Summing Up, Again

A program is a directed topological space

po-space, lpo-space, d-space
(other models exist)

An execution is a directed path through said space

Two executions are equivalent iff their dipaths are dihomotopic
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Combinatorial Model
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Transition Systems?

“Programs are topological spaces”?!?

Programs are transition systems!

have lost info on “forbidden
squares”

Higher-dimensional automata:

transition systems

plus info on concurrency
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Higher-Dimensional Automata

Definition (pc-set)

A precubical set is a graded set X = {Xn}n≥0 together with face maps
δ0i , δ

1
i : Xn → Xn−1, for i = 1, . . . , n, satisfying δνi δ

µ
j = δµj−1δ

ν
i for i < j .

δ01

δ02

δ11

δ12

δ01δ
0
2 = δ01δ

0
1

δ01δ
1
2 = δ11δ

0
1

δ11δ
0
2 = δ01δ

1
1

δ11δ
1
2 = δ11δ

1
1

Definition (HDA)

A higher-dimensional automaton is a pc-set X together with a labeling
λ : X1 → Σ and specified start and accept cells I ,F ⊆ X .

also need λ(δ0i x) = λ(δ1i x) for all x ∈ X2
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Examples

a b

a b

c c

first a, then b; all in parallel with c : ab ‖ c

Uli Fahrenberg Directed Topology and Concurrency 29/ 48



Geometric Semantics Combinatorial Model Invariants Conclusion

Examples

a b

a

b

c c

d d

a //

$$

b

c // d
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Examples

a

a

b

c

b

c

a ‖ (bc)∗
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Geometric Realization

Definition

The geometric realization of a pc-set X is the d-space
|X | =

⊔
n≥0 Xn × ~I n /∼, where ∼ is the equivalence generated by

(δνi x , (t1, . . . , tn−1)) ∼ (x , (t1, . . . , ti−1, ν, ti+1, . . . , tn−1)).

usual coend definition; left adjoint to singular pc-set functor

actually, |X | is an lpo-space
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Dipaths in Geometric Realizations

Let p : ~I → |X | be a dipath in the geometric realization of pc-set X .

let Cp = {x ∈ X | im(p) ∩ |x | 6= ∅} – all cells touched by p

organize Cp into a sequence cp = (x1, . . . , xm) s.t. ∀i :

xi = δ0+xi+1 or xi+1 = δ1+xi (iterated face maps)

⇒ the track of p

any track c gives rise to dipath pc (non-unique) with cpc = c

if cp = cq, then p and q are dihomotopic
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Homotopy of Tracks

generated by local replacements

dipaths p, q are dihomotopic iff cp and cq are homotopic

tracks c , d are homotopic iff pc and pd are dihomotopic
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Summing Up

precubical sets / higher-dimensional automata: combinatorial
models of directed spaces

natural extension of transition systems; also used in computer
science

closely linked to directed spaces via geometric realization:

dipaths =̂ tracks =̂ executions
dihomotopy =̂ track homotopy =̂ equivalence of executions
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Invariants
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Fundamental Category

topological space X ; fundamental group π(X )

all information may be reduced to loops (and base points)

directed spaces: no reduction to loops!

⇒ directed space X ; fundamental category ~ΠX

objects points of X
morphisms dihomotopy classes of dipaths
inspired by fundamental groupoids of topological spaces

(higher dihomotopy invariants: unclear!)
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Component Category

The fundamental category ~ΠX is huge!

objects: points of X . . .

but some points are
equivalent

Definition

α ∈ ~ΠX (x , y) is a future weak
iso if ∀z ∈ X s.t. ~ΠX (y , z) 6= ∅,
α induces an iso between
~ΠX (y , z) and ~ΠX (x , z).

quotient by future weak isos

(or by past weak isos, or by
weak isos)

Pa Pb Vb Va

Pb

Pa

Va

Vb
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Path Spaces

Idea: objects of interest are not points
of X , but dipaths in ~PX

equip ~PX with compact-open
topology
~PX is standard topological space
⇒ can use tools!

Usually consider traces: dipaths modulo
direparametrizations: ~TX

if X is precubical, then
~PX ' ~TX
' prodsimplicial complex
' prodpermutahedral complex
' nerve of cube chain category
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Directed Homology

_
\_( ") )_/

_
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Natural Homology

Trace space ~TX forms a (topological) category: objects points;
morphisms ~TX (x , y) traces from x to y

Idea: ~HnX (x , y) = Hn−1
~TX (x , y)

These combine into a natural system of abelian groups:

Let F ~TX be the factorization category of ~TX

objects traces

morphisms extensions

x
β

//

��

y

γ

��
w

α

OO

α∗β∗γ
// z

~Hn maps traces β ∈ ~TX (x , y) to Hn−1
~TX (x , y)

and extensions (α ∗ ∗ γ) to Hn−1(α ∗ ∗ γ)
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Natural Homology

Huge but manageable:

It is natural to compare pospaces X with two distinguished endpoints 0 and

1 by determining their dihomology groups
−→
Hn(X; 0,1). For n = 1, the two

pospaces above both have exactly six traces up to dihomotopy, shown as thick
lines: the two pospaces have the same dihomology group for n = 1, namely Z6.

For n ≥ 2, they also have the same dihomology groups
−→
Hn(X; 0,1), because the

path-connected components of their trace spaces are contractible. Therefore, the−→
Hn( ; 0,1) construction does not distinguish the two pospaces, although they
visibly have very different behaviors.
However, when we zoom in, and look at different pairs of end-
points, the situation changes. Consider the (PaVa || PaVa) •
(PaVaPbVb || PbVbPaVa) pospace again, but look at its diho-

mology group
−→
H 1(X; 0, t), where t is shown on the right: this

is equal to Z4. However, no trace space of the other pospace
(PaVaPaVa || PaVaPaVa) has exactly four connected compo-
nents, so Z4 cannot be a dihomology group of the latter. This
detects an essential difference between the two pospaces.

•

•

0

t

Given a trace 〈π〉, with π a dipath of X from a to b, we define
−→
Hn(X; 〈π〉) =−→

Hn(X; a, b). The family of groups
−→
Hn(X; 〈π〉), when 〈π〉 varies over traces, has

extra structure: if α is a dipath from a′ to a and β is a dipath from b to b′,
we obtain a continuous map from Tr(X; a, b) to Tr(X; a′, b′), which maps every
trace 〈π′〉 to 〈α ? π′ ? β〉. We call extensions the pairs (〈α〉, 〈β〉). Applying the
Hn−1 functor to the map 〈π′〉 7→ 〈α ? π′ ? β〉, we obtain a morphism of groups−→
Hn(X; 〈π〉) to

−→
Hn(X; 〈α ? π ? β〉), which we denote by 〈α ? ? β〉. This keeps

track of how the homology picture formed by the traces from a to b inserts into
the larger picture formed by the traces from the lower point a′ to the higher
point b′.

0 1

x y

0 1x y

[0, x] [y, 1][x, y]

[0, y][x, 1]

[0, 1]

Z ZZ Z

Z ZZ

Z Z

Z

0 1

a

b

x y

x′ y′

0 x y

[0, x] [y, 1][x, y]

[0, y] [x, 1]

a

1x′ y′

[0, x′] [y′, 1][x′, y′]

[0, y′][x′, 1]

b

Z Z Z

Z ZZ

Z Z

Z2

ZZ Z

Z ZZ

Z Z

Z2

Fig. 2: Natural homology of two simple pospaces

We are ready to give formal definitions. Let X be a pospace, and FcX be
the small category whose objects are traces of X, and whose morphisms are
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Conclusion

Programs are directed topological spaces

po-spaces ↪→ lpo-spaces ↪→ d-spaces
(lpo-spaces → po-spaces: delooping / universal dicover)
executions are dipaths; equivalence of executions is dihomotopy

Programs are precubical sets

higher-dimensional automata
executions are tracks; equivalence of executions is track
homotopy
strong link to spaces via geometric realization

Invariants

fundamental category, component category
path spaces
natural homology
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Current Work

Languages of higher-dimensional automata

Path spaces via cube chains and discrete Morse theory

Model categories for directed topology

Directed homology via persistent homology

Higher-dimensional Kleene algebra

. . .
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