Directed Topology and Concurrency

Uli Fahrenberg

LRDE, EPITA, France

GETCO 2022

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
•000000000	000000000	0000000	0000

Algebraic View

A program is a sequence of instructions

• plus branches and loops

Kleene algebra:

- set S with operations:
- concatenation \otimes
- choice \oplus
- repetition *
- idempotent semiring with unary * which computes fixed points

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000	000000000	0000000	0000
Geometric View			

A program is a sequence of instructions

• ignoring branches and loops for now

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000	0000000000	0000000	0000
Geometric View			

- A program is a sequence of instructions
 - ignoring branches and loops for now

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000	0000000000	0000000	0000
Geometric View			

- A program is a sequence of instructions
 - ignoring branches and loops for now

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000		0000000	0000
Geometric View			

- A program is a sequence of instructions
 - ignoring branches and loops for now

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000	000000000	0000000	0000
Geometric View			

- A program is a sequence of instructions
 - ignoring branches and loops for now

Geometric Semantics	Combinatorial Model	Conclusion
00000000		

Holes

Adding mutual exclusion:

Geometric Semantics	Combinatorial Model	Conclusion
00000000		

Adding mutual exclusion:

• homotopic paths $\hat{=}$ equivalent executions

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000	0000000000	0000000	0000

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000	0000000000	0000000	0000

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000	0000000000	0000000	0000

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000		0000000	0000

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000		0000000	0000
a			

Summing Up

- A program is a topological space
- An execution is a path through said space
- Two executions are equivalent iff their paths are homotopic

Geometric Semantics	Combinatorial Model	Invariants 0000000	Conclusion 0000
a			

Summing Up

- A program is a directed topological space
- An execution is a directed path through said space
- Two executions are equivalent iff their dipaths are dihomotopic

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
0000000000		0000000	0000
Directed Spaces			

Definition (po-space)

A partially ordered space is a topological space X together with a partial order \leq on X such that $\leq \subseteq X \times X$ is *closed* in the product topology. A morphism of po-spaces is a \leq -preserving continuous function.

- directed intervals; directed squares, cubes, etc.
- concatenation \otimes , branching \oplus
- no loops

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
0000000000		0000000	0000
Directed Spaces			

Definition (Ipo-space)

A locally partially ordered space is a Hausdorff topological space X together with a relation \leq on X in which any $x \in X$ has an open neighborhood $U \ni x$ such that the restriction of \leq to U is a closed partial order.

A morphism of po-spaces is a continuous function which is *locally* \leq -preserving.

Geometric Semantics	Combinatorial Model	Invariants 0000000	Conclusion 0000

Directed Spaces

Definition (d-space)

A directed space is a topological space X together with a set $\vec{P}X$ of directed paths $I \rightarrow X$ such that

- all constant paths are directed,
- concatenations of directed paths are directed, and
- reparametrizations and restrictions of directed paths are directed.

A morphism of d-spaces is a continuous function which preserves directed paths.

- po-spaces \hookrightarrow lpo-spaces \hookrightarrow d-spaces (not full)
- po-spaces are *loop-free*; lpo-spaces are *vortex-free*
- d-spaces are nice: axiomatize directly our objects of interest (dipaths); have good categorical properties

Geometric Semantics	Combinatorial Model	Invariants 0000000	Conclusion 0000
Directed Daths and	Homotonios		

Directed Paths and Homotopies

• the directed interval \vec{l} :

- $([0,1], \leq)$ (usual order): po-space; lpo-space • $([0,1], \vec{P}[0,1])$: all (weakly) increasing paths
- dipaths in X: morphisms I → X
 for d-space (X, PX): dipaths = PX
- a dihomotopy $H: I \times \vec{l} \to X$:
 - all $H(s, \cdot)$ dipaths
 - $H: I \times I \to X$ continuous
 - $H(\cdot,0)$ and $H(\cdot,1)$ constrained
 - (some variants exist)

Geometric Semantics	Combinatorial Model	Invariants 0000000	Conclusion 0000

Summing Up, Again

- A program is a directed topological space
 - po-space, lpo-space, d-space
 - (other models exist)
- An execution is a directed path through said space
- Two executions are equivalent iff their dipaths are dihomotopic

Geometric Semantics	Combinatorial Model	Conclusion
	•00000000	

Combinatorial Model

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
	○●○○○○○○○	0000000	0000
Transition	Systems?		

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
	o●oooooooo	0000000	0000
Transition S	Systems?		

Programs are transition systems!

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
	⊙⊙⊙⊙⊙⊙⊙⊙⊙	0000000	0000
Transition	Systems?		

Programs are transition systems!

have lost info on "forbidden squares"

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
	o●oooooooo	0000000	0000
Transition	Svstems?		

Programs are transition systems!

- have lost info on "forbidden squares"
- Higher-dimensional automata:
 - transition systems
 - plus info on concurrency

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
	⊙●○○○○○○○	0000000	0000
Transition	Systems?		

Programs are transition systems!

- have lost info on "forbidden squares"
- Higher-dimensional automata:
 - transition systems
 - plus info on concurrency

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
0000000000	oo●ooooooo	0000000	0000

Higher-Dimensional Automata

Definition (pc-set)

A precubical set is a graded set $X = \{X_n\}_{n \ge 0}$ together with face maps $\delta_i^0, \delta_i^1 : X_n \to X_{n-1}$, for i = 1, ..., n, satisfying $\delta_i^{\nu} \delta_j^{\mu} = \delta_{j-1}^{\mu} \delta_i^{\nu}$ for i < j.

Definition (HDA)

A higher-dimensional automaton is a pc-set X together with a labeling $\lambda: X_1 \to \Sigma$ and specified start and accept cells $I, F \subseteq X$.

• also need
$$\lambda(\delta_i^0 x) = \lambda(\delta_i^1 x)$$
 for all $x \in X_2$
Uli Fahrenberg Directed Topology and C

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
0000000000	000●000000	0000000	0000

first *a*, then *b*; all in parallel with *c*: $ab \parallel c$

Geometric Semantics	Combinatorial Model	Conclusion
	00000000	

Examples

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
0000000000	0000000000	0000000	0000
Examples			

 $a \parallel (bc)^*$

Geometric Semantics	Combinatorial Model	Conclusion
	0000000000	

Geometric Realization

Definition

The geometric realization of a pc-set X is the d-space $|X| = \bigsqcup_{n \ge 0} X_n \times \vec{l^n} / \sim$, where \sim is the equivalence generated by $(\delta_i^{\nu} x, (t_1, \ldots, t_{n-1})) \sim (x, (t_1, \ldots, t_{i-1}, \nu, t_{i+1}, \ldots, t_{n-1})).$

- usual coend definition; left adjoint to *singular pc-set* functor
- actually, |X| is an *lpo-space*

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
	00000000000	0000000	0000
Dipaths in	Geometric Realizations		

Let $p : \vec{l} \to |X|$ be a dipath in the geometric realization of pc-set X. • let $C_p = \{x \in X \mid im(p) \cap |x| \neq \emptyset\}$ – all cells touched by p • organize C_p into a sequence $c_p = (x_1, \dots, x_m)$ s.t. $\forall i$:

$$x_i = \delta^0_+ x_{i+1}$$
 or $x_{i+1} = \delta^1_+ x_i$ (iterated face maps)

Geometric Semantics	Combinatorial Model	Invariants 0000000	Conclusion 0000
Dipaths in	Geometric Realizations		

Let $p : \vec{l} \to |X|$ be a dipath in the geometric realization of pc-set X. • let $C_p = \{x \in X \mid im(p) \cap |x| \neq \emptyset\}$ – all cells touched by p• organize C_p into a sequence $c_p = (x_1, \dots, x_m)$ s.t. $\forall i$:

 $x_i = \delta^0_+ x_{i+1}$ or $x_{i+1} = \delta^1_+ x_i$ (iterated face maps) \Rightarrow the track of p

- any track c gives rise to dipath p_c (non-unique) with $c_{p_c} = c$
- if $c_p = c_q$, then p and q are dihomotopic

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000	0000000000	0000000	0000
Homotopy of Tra	cks		

• generated by local replacements

- dipaths p, q are dihomotopic iff c_p and c_q are homotopic
- tracks c, d are homotopic iff p_c and p_d are dihomotopic

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
000000000		0000000	0000

Summing Up

- precubical sets / higher-dimensional automata: combinatorial models of directed spaces
- natural extension of transition systems; also used in computer science
- closely linked to directed spaces via geometric realization:
 - dipaths $\hat{=}$ tracks $\hat{=}$ executions
 - dihomotopy $\hat{=}$ track homotopy $\hat{=}$ equivalence of executions

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
		000000	

Invariants

Geometric Semantics	Combinatorial Model	Invariants 0●00000	Conclusion 0000
Fundamental C	ategory		

- topological space $X \rightsquigarrow$ fundamental group $\pi(X)$
 - all information may be reduced to loops (and base points)
- directed spaces: no reduction to loops!
- \Rightarrow directed space $X \rightsquigarrow$ fundamental category $\vec{\Pi} X$
 - objects points of X
 - morphisms dihomotopy classes of dipaths
 - inspired by fundamental groupoids of topological spaces
 - (higher dihomotopy invariants: unclear!)

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
0000000000	000000000	000●000	0000

Path Spaces

Idea: objects of interest are not *points* of *X*, but *dipaths* in $\vec{P}X$

- equip $\vec{P}X$ with compact-open topology
- *PX* is standard topological space
 ⇒ can use tools!

Usually consider traces: dipaths modulo direparametrizations: $\vec{T}X$

- if X is precubical, then $\vec{P}X \simeq \vec{T}X$
 - \simeq prod*simplicial* complex
 - $\simeq \operatorname{prod} permutahedral \operatorname{complex}$
 - \simeq nerve of cube chain category

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
	000000000	0000000	0000

Directed Homology

-_(シ)_/⁻

Geometric Semantics	Combinatorial Model	Invariants 00000●0	Conclusion 0000
Natural Homology			

- - Trace space $\vec{T}X$ forms a (topological) category: objects points; morphisms $\vec{T}X(x, y)$ traces from x to y
 - Idea: $\vec{H}_n X(x, y) = H_{n-1} \vec{T} X(x, y)$
 - These combine into a *natural system* of abelian groups:
 - Let \vec{FTX} be the factorization category of \vec{TX}

- \vec{H}_n maps traces $\beta \in \vec{T}X(x, y)$ to $H_{n-1}\vec{T}X(x, y)$
- and extensions $(\alpha * * \gamma)$ to $H_{n-1}(\alpha * * \gamma)$

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
	000000000	000000●	0000

Natural Homology

Huge but manageable:

Fig. 2: Natural homology of two simple pospaces

Geometric Semantics	Combinatorial Model	Invariants	Conclusion
0000000000		0000000	●000
Conclusion			

- Programs are directed topological spaces
 - $\bullet \ \mathsf{po-spaces} \hookrightarrow \mathsf{lpo-spaces} \hookrightarrow \mathsf{d-spaces}$
 - (Ipo-spaces \rightarrow po-spaces: delooping / universal dicover)
 - executions are dipaths; equivalence of executions is dihomotopy
- Programs are precubical sets
 - higher-dimensional automata
 - executions are tracks; equivalence of executions is track homotopy
 - strong link to spaces via geometric realization
- Invariants
 - fundamental category, component category
 - path spaces
 - natural homology

Geometric Semantics	Combinatorial Model	Conclusion
		0000

Current Work

- Languages of higher-dimensional automata
- Path spaces via cube chains and discrete Morse theory
- Model categories for directed topology
- Directed homology via persistent homology
- Higher-dimensional Kleene algebra

• . . .

Geometric Semantics	Combinatorial Model	Invariants 0000000	Conclusion 0000

Incomplete (!) Bibliography

- L.Fajstrup, E.Goubault, M.Raussen. *Detecting deadlocks in concurrent* systems. CONCUR 1998
- L.Fajstrup. Dicovering spaces. Homology Homotopy Appl. 2003
- L.Fajstrup, M.Raussen, E.Goubault, E.Haucourt. *Components of the fundamental category.* Appl.Categ.Struct. 2004
- U.Fahrenberg. *Higher-dimensional automata from a topological viewpoint*. PhD thesis, 2005
- L.Fajstrup. *Dipaths and dihomotopies in a cubical complex.* Adv.Appl.Math. 2005
- E.Haucourt. *Directed algebraic topology and concurrency.* PhD thesis, 2005
- L.Fajstrup, M.Raussen, E.Goubault. *Algebraic topology and concurrency.* Theor.Comput.Sci. 2006
- R.van Glabbeek. *On the expressiveness of higher dimensional automata.* Theor.Comput.Sci. 2006

Geometric Semantics	Combinatorial Model	Invariants 0000000	Conclusion 000

Incomplete (!) Bibliography

- U.Fahrenberg, M.Raussen. *Reparametrizations of continuous paths.* Homotopy Relat.Struct. 2007
- M.Grandis. Directed algebraic topology. Cambridge Univ.Press 2009
- M.Raussen, K.Ziemiański. *Homology of spaces of directed paths on Euclidean cubical complexes.* Homotopy Relat.Struct. 2014
- L.Fajstrup, E.Goubault, E.Haucourt, S.Mimram, M.Raussen. *Directed algebraic topology and concurrency.* Springer 2016
- J.Dubut. Directed homotopy and homology theories for geometric models of true concurrency. PhD thesis, 2017
- K.Ziemiański. *Spaces of directed paths on pre-cubical sets.* Appl.Algebra Eng.Commun.Comput. 2017
- U.Fahrenberg, C.Johansen, G.Struth, K.Ziemiański. Languages of higher-dimensional automata. Math.Struct.Comput.Sci. 2021
- M.Raussen. *Strictifying and taming directed paths in higher dimensional automata.* Math.Struct.Comput.Sci. 2021