Pedro J. Chocano Feito

URJC

31 May 2022

- Preliminaries and motivation.
- Vietoris-like maps and multivalued maps.
- Lefschetz fixed point theorem.
- Approximating Discrete Dynamical Systems.
- Localization of finite spaces at Vietoris-like maps.

Definition

An Alexandroff space is a topological space for which arbitrary intersections of open sets are still open.

Definition

An Alexandroff space is a topological space for which arbitrary intersections of open sets are still open.

Theorem (Alexandroff, 1937)

The category of Alexandroff T_0 -spaces is isomorphic to the category of partially ordered sets.

Pedro J. Chocano Feito (URJC) Approximating Discrete Dynamical Systems

Given an Alexandroff space X and $x \in X$, U_x denotes the intersection of all the open sets which contain x. Let $x, y \in X$, $x \leq y$ if and only if $U_x \subseteq U_y$ ($U_y \subseteq U_x$).

Given an Alexandroff space X and $x \in X$, U_x denotes the intersection of all the open sets which contain x. Let $x, y \in X$, $x \le y$ if and only if $U_x \subseteq U_y$ ($U_y \subseteq U_x$).

Example. Finite topological T_0 -spaces. We call them from now on just finite spaces.

Given an Alexandroff space X and $x \in X$, U_x denotes the intersection of all the open sets which contain x. Let $x, y \in X$, $x \leq y$ if and only if $U_x \subseteq U_y$ ($U_y \subseteq U_x$).

Example. Finite topological T_0 -spaces. We call them from now on just finite spaces.

Example. Let $X = \{A, B, C, D\}$ and $\tau = \{X, \emptyset, \{A\}, \{B\}, \{A, B\}, \{C, A, B\}, \{D, A, B\}\}$. Then $U_A = \{A\}$, $U_B = \{B\}$, $U_C = \{C, A, B\}$ and $U_D = \{D, A, B\}$, which yields A < C, D and B < C, D.

Proposition

Let $f, g: X \to Y$ be continuous maps between finite spaces. Then f is homotopic to g if and only if there exists a finite sequence of continuous maps $f_1, ..., f_n: X \to Y$ such that $f(x) = f_1(x) \le f_2(x) \ge ... \le f_n(x) = g(x)$ for every $x \in X$.

Hasse diagrams. Let X be a finite space. The Hasse diagram of X is a directed graph. The vertices are the points of X and there is an edge between two points x and y if and only if x < y and there is no z satisfying x < z < y.

Hasse diagrams. Let X be a finite space. The Hasse diagram of X is a directed graph. The vertices are the points of X and there is an edge between two points x and y if and only if x < y and there is no z satisfying x < z < y. **Example.**

Order complex. Given a finite space X, the order complex of X, denoted by $\mathcal{K}(X)$, is the simplicial complex whose simplices are the non-empty chains of X.

Face poset. Given a simplicial complex *L*, the face poset of *L*, denoted by $\mathcal{X}(L)$, is the poset of simplices of *K* ordered by inclusion.

Theorem (McCord, 1966)

There exists a correspondence that assigns to each Alexandroff T_0 space a simplicial complex $\mathcal{K}(X)$ and a weak homotopy equivalence $f_X : |\mathcal{K}(X)| \to X$. Each continuous map $\varphi : X \to Y$ of Alexandroff T_0 -spaces is also a simplicial map $\mathcal{K}(\varphi) : \mathcal{K}(X) \to \mathcal{K}(Y)$, and $\varphi \circ$ $f_X = f_Y \circ \mathcal{K}(\varphi)$.

Theorem (McCord, 1966)

There exists a correspondence that assigns to each simplicial complex K an Alexandroff T_0 -space $\mathcal{X}(K)$ and a weak homotopy equivalence $f_K : |K| \to \mathcal{X}(K)$. Furthermore, to each simplicial map $\psi : K \to L$ is assigned a continuous map $\mathcal{X}(\psi) : \mathcal{X}(K) \to \mathcal{X}(L)$ such that $\mathcal{X}(\psi) \circ f_K$ is homotopic to $f_L \circ |\psi|$.

Finite barycentric subdivision. Given a finite space X, the finite barycentric subdivision of X is defined as $\mathcal{X}(\mathcal{K}(X))$. We denote by X^n the *n*-th finite barycentric subdivision of X.

Finite barycentric subdivision. Given a finite space X, the finite barycentric subdivision of X is defined as $\mathcal{X}(\mathcal{K}(X))$. We denote by X^n the *n*-th finite barycentric subdivision of X.

There is a natural map $h: X^1 \to X$ given by $h(x_1 < ... < x_n) = x_n$. Then, we can consider $h_{n,m}: X_m \to X_n$ for every $m \ge n$.

Given a simplicial complex K, X^0 denotes $\mathcal{X}(K)$. Therefore, there is a natural inverse sequence of finite spaces.

$$X^0 \longleftarrow X^1 \longleftarrow X^2 \longleftarrow X^3 \longleftarrow \cdots$$

Given a simplicial complex K, X^0 denotes $\mathcal{X}(K)$. Therefore, there is a natural inverse sequence of finite spaces.

$$X^0 \longleftarrow X^1 \longleftarrow X^2 \longleftarrow X^3 \longleftarrow \cdots$$

Example. Let us consider the unit interval *I*.

Theorem (Clader, 2009)

Let K be a compact simplicial complex. The inverse limit of $(X^n, h_{n,n+1})$ contains a homeomorphic copy of K, which is a strong deformation retract.

Theorem (Clader, 2009)

Let K be a compact simplicial complex. The inverse limit of $(X^n, h_{n,n+1})$ contains a homeomorphic copy of K, which is a strong deformation retract.

Remark. The same result also holds for compact metric spaces.

Pedro J. Chocano Feito (URJC) Approximating Discrete Dynamical Systems

Definition

A dynamical system for a topological space X consists of a triad (\mathbb{T}, X, φ) , where \mathbb{T} is usually \mathbb{Z} or \mathbb{R} and $\varphi : \mathbb{T} \times X \to X$ is a continuous function satisfying

1.
$$\varphi(0, x) = x$$
 for every $x \in X$.

2.
$$arphi(t+s,x)=arphi(t,arphi(s,x))$$
 for all $s,t\in\mathbb{T}$ and $x\in X$.

Main Idea:

Proposition

Let A be a finite space.

- If (\mathbb{R}, A, φ) is a continuous dynamical system, then φ is trivial.
- If (Z, A, φ) is a discrete dynamical system, there exists n ∈ N such that φⁿ = id.

Proposition

Let A be a finite space.

- If (\mathbb{R}, A, φ) is a continuous dynamical system, then φ is trivial.
- If (Z, A, φ) is a discrete dynamical system, there exists n ∈ N such that φⁿ = id.

Consider **Multivalued maps** to define dynamical systems.

We say that a topological space X is **acyclic** if the homology groups in all dimensions of X are isomorphic to the corresponding homology groups of a point.

Definition

Given a continuous map $f : X \to Y$ between two finite spaces, we say that f is a Vietoris-like map if for every chain $y_1 < y_2 < ... < y_n$ in Y we get that $\bigcup_{i=1}^n f^{-1}(y_i)$ is acyclic.

We say that a topological space X is **acyclic** if the homology groups in all dimensions of X are isomorphic to the corresponding homology groups of a point.

Definition

Given a continuous map $f : X \to Y$ between two finite spaces, we say that f is a Vietoris-like map if for every chain $y_1 < y_2 < ... < y_n$ in Y we get that $\bigcup_{i=1}^n f^{-1}(y_i)$ is acyclic.

Example. Every homeomorphism is a Vietoris-like map. Indeed, $f: X \to X$ is a Vietoris-like map if and only if f is a homeomorphism.

Theorem

If $f: X \to Y$ is a Vietoris-like map, then f induces isomorphisms in all homology groups.

Theorem

If $f : X \to Y$ is a Vietoris-like map, then f induces isomorphisms in all homology groups.

Some properties of Vietoris-like maps

Let $f : X \to Y$ and $g : Y \to Z$ be continuous maps between finite spaces.

- If f and g are Vietoris-like maps, then $g \circ f : X \to Z$ is a Vietoris-like map.
- If f and g o f are Vietoris-like maps, then g is a Vietoris-like map.
- The 2-out-of-3 property does not hold for Vietoris-like maps.

Definition

Let $F : X \multimap Y$ be a multivalued map between finite spaces. We say that F is a Vietoris-like multivalued map if the projection p onto the first coordinate from the graph of $\Gamma(F)$ is a Vietoris-like map.

Definition

Let $F : X \multimap Y$ be a multivalued map between finite spaces. We say that F is a Vietoris-like multivalued map if the projection p onto the first coordinate from the graph of $\Gamma(F)$ is a Vietoris-like map.

Remark. $F_*: H_*(X) \to H_*(Y)$ is given by $q_* \circ p_*^{-1}$, where $q: \Gamma(F) \to Y$ is the projection onto the second coordinate.

Examples

- Let f : X → Y be a continuous map. If we consider f as a multivalued map, then f is a Vietoris-like multivalued map since p : Γ(f) → X is a homeomorphism. Moreover, f_{*} = q_{*} ∘ p_{*}⁻¹.
- If $f : X \to Y$ is a Vietoris-like map, then $F : Y \multimap X$ given by $F(y) = f^{-1}(y)$ is a Vietoris-like multivalued map.

A Coincidence theorem and consequences

Lefschetz number. Let $f : X \to X$ be a continuous map, where X is a finite space. The lefschetz number of f is given by

$$\Lambda(f) = \sum_{i=0} (-1)^i tr(f_* : H_i(X) \to H_i(X)),$$

where tr denotes the trace and f_* denotes the linear map induced by f on the torsion-free part of the homology of X.

Theorem

Let $f, g: X \to Y$ be continuous maps between finite spaces, where f is a Vietoris-like map. If $\Lambda(g_* \circ f_*^{-1}) \neq 0$, then there exists $x \in X$ such that f(x) = g(x)

Lefschetz fixed point theorem

Lefschetz fixed point theorem for multivalued maps

Let X be a finite space. If $F : X \multimap X$ is a Vietoris-like multivalued map and $\Lambda(F_* = q_* \circ p_*^{-1}) \neq 0$, then there exists $x \in X$ with $x \in F(x)$.

Lefschetz fixed point theorem

Lefschetz fixed point theorem for multivalued maps

Let X be a finite space. If $F : X \multimap X$ is a Vietoris-like multivalued map and $\Lambda(F_* = q_* \circ p_*^{-1}) \neq 0$, then there exists $x \in X$ with $x \in F(x)$.

Theorem

Let $F : X \multimap X$ be a multivalued map, where X is a finite space. Suppose that $F = G_n \circ \cdots \circ G_0$, where $G_i : Y_i \multimap Y_{i+1}$, $Y_0 = Y_{n+1} = X$, Y_i is a finite space and G_i is a Vietoris-like multivalued map. If $\Lambda(G_{n*} \circ \cdots \circ G_{0*}) \neq 0$, then there exists a point $x \in X$ such that $x \in F(x)$.

Lefschetz fixed point theorem

Lefschetz fixed point theorem for multivalued maps

Let X be a finite space. If $F : X \multimap X$ is a Vietoris-like multivalued map and $\Lambda(F_* = q_* \circ p_*^{-1}) \neq 0$, then there exists $x \in X$ with $x \in F(x)$.

Theorem

Let $F : X \multimap X$ be a multivalued map, where X is a finite space. Suppose that $F = G_n \circ \cdots \circ G_0$, where $G_i : Y_i \multimap Y_{i+1}$, $Y_0 = Y_{n+1} = X$, Y_i is a finite space and G_i is a Vietoris-like multivalued map. If $\Lambda(G_{n*} \circ \cdots \circ G_{0*}) \neq 0$, then there exists a point $x \in X$ such that $x \in F(x)$.

Remark. Not every multivalued map may be expressed as a composition of Vietoris-like multivalued maps.

Recall that given a finite space X^0 we may consider the following inverse sequence

$$X^{0} \xleftarrow{h_{0,1}} X^{1} \xleftarrow{h_{1,2}} X^{2} \xleftarrow{h_{2,3}} X^{3} \xleftarrow{h_{3,4}} \cdots X^{n} \xleftarrow{h_{n,n+1}} X^{n+1} \xleftarrow{h_{n+1,n+2}} \cdots$$

Recall that given a finite space X^0 we may consider the following inverse sequence

$$X^{0} \xleftarrow{h_{0,1}} X^{1} \xleftarrow{h_{1,2}} X^{2} \xleftarrow{h_{2,3}} X^{3} \xleftarrow{h_{3,4}} \cdots X^{n} \xleftarrow{h_{n,n+1}} X^{n+1} \xleftarrow{h_{n+1,n+2}} \cdots$$

Proposition

Let X be a finite space and $m \ge n$. Then $h_{n,m} : X^m \to X^n$ is a Vietoris-like map which induces the identity in homology.

Recall that given a finite space X^0 we may consider the following inverse sequence

$$X^{0} \xleftarrow{h_{0,1}} X^{1} \xleftarrow{h_{1,2}} X^{2} \xleftarrow{h_{2,3}} X^{3} \xleftarrow{h_{3,4}} \cdots X^{n} \xleftarrow{h_{n,n+1}} X^{n+1} \xleftarrow{h_{n+1,n+2}} \cdots$$

Proposition

Let X be a finite space and $m \ge n$. Then $h_{n,m} : X^m \to X^n$ is a Vietoris-like map which induces the identity in homology.

Corollary

Let X be a finite space and $m \ge n$. Then $H_{m,n} : X^n \multimap X^m$, defined by $H(x) = h^{-1}(x)$, is a Vietoris-like multivalued map which induces the identity in homology.

Given a continuous map $f : |K| \to |K|$, there is a natural inverse sequence induced by f (use simplicial approximation theorem).

$$X^0 \stackrel{f_{0,1}}{\longleftarrow} X^1 \stackrel{f_{1,2}}{\longleftarrow} X^2 \stackrel{f_{2,3}}{\longleftarrow} X^3 \stackrel{\cdots}{\longleftarrow} \cdots$$

Given a continuous map $f : |K| \to |K|$, there is a natural inverse sequence induced by f (use simplicial approximation theorem).

$$X^0 \stackrel{f_{0,1}}{\longleftarrow} X^1 \stackrel{f_{1,2}}{\longleftarrow} X^2 \stackrel{f_{2,3}}{\longleftarrow} X^3 \stackrel{\cdots}{\longleftarrow} \cdots$$

Therefore, we have

where $F_{n+1} = H_{n+1,n} \circ f_{n,n+1}$.

Proposition

If $\Lambda(f) \neq 0$, then there exists a point $x_{n+1} \in X^{n+1}$ such that $x_{n+1} \in F_{n+1}(x_{n+1})$ for every $n \in \mathbb{N}$.

Proposition

If $\Lambda(f) \neq 0$, then there exists a point $x_{n+1} \in X^{n+1}$ such that $x_{n+1} \in F_{n+1}(x_{n+1})$ for every $n \in \mathbb{N}$.

Theorem

If $f : |K| \to |K|$ is a continuous map, where K is a simplicial complex, then f has a fixed point if and only if there exist a finite approximative sequence for f, $(X^n, h_{n,n+1})$, a sequence $\{x_{n+1}\}_{n\in\mathbb{N}}$ and $m \in \mathbb{N}$ such that $x_{n+1} \in X^{n+1}$, $x_n = h_{n,n+1}(x_{n+1})$ for every $n \in \mathbb{N}$ and $x_{n+1} \in F_{n+1}(x_{n+1})$ for every $n+1 \ge m$.

Example. Let $f : S^1 \to S^1$ be given by f(x, y) = (x, -y).

Example. Let $f : S^1 \to S^1$ be given by f(x, y) = (x, -y).

Goal. Generalize these results to compact metric spaces using more geometrical constructions.

Main Idea: Enclose Vietoris-like multivalued maps in a category to get other dynamical invariants.

Main Idea: Enclose Vietoris-like multivalued maps in a category to get other dynamical invariants.

Definition

Let X and Y be finite spaces. We say that $X \xleftarrow{p} Z \xrightarrow{q}$ is a span or a diagram if p is a Vietoris-like map.

Main Idea: Enclose Vietoris-like multivalued maps in a category to get other dynamical invariants.

Definition

Let X and Y be finite spaces. We say that $X \xleftarrow{p} Z \xrightarrow{q}$ is a span or a diagram if p is a Vietoris-like map.

Examples. Continuous maps and Vietoris-like multivalued maps.

Main Idea: Enclose Vietoris-like multivalued maps in a category to get other dynamical invariants.

Definition

Let X and Y be finite spaces. We say that $X \xleftarrow{p} Z \xrightarrow{q}$ is a span or a diagram if p is a Vietoris-like map.

Examples. Continuous maps and Vietoris-like multivalued maps.

Steps
 Define the composition of spans. Solution: pull-backs. Define an equivalence relation between spans. Solution: define a new notion of homotopy that generalizes the usual notion of homotopy for single valued maps in the category of finite spaces.

Pedro J. Chocano Feito (URJC)

Approximating Discrete Dynamical Systems

Topological degree

- 1. Let X and Y be finite models of S^n . In the usual category it is not possible to get that every integer number may be realized as the topological degree of a continuous map $f : X \to Y$.
- 2. In the localized category of finite spaces the above result is possible.

References I

- P.S. Alexandroff. *Diskrete Räume*. Mathematiceskii Sbornik (N.S.) 2, 3 (1937) 501-518.
- Barmak, J. A., Mrozek, M. and Wanner, T. A Lefschetz fixed point theorem for multivalued maps of finite spaces. Mathematische Zeitschrift 294 (2020), 1477–1497.
- Chocano, P. J., Morón M. A. and Ruiz del Portal, F. R. Computational approximations of compact metric spaces Physica D: Nonlinear Phenomena 433 (2022), 133168.
- 4. Chocano, P. J., Morón M. A. and Ruiz del Portal, F. R. *Coincidence theorems for finite topological spaces* arXiv:2010.12804v1.

- 5. Chocano, P. J *Category of fractions and localization on finite spaces* In preparation.
- 6. E. Clader. *Inverse limits of finite topological spaces*. Homology, homotopy and applications 11, 2 (2009) 223–227.
- 7. M.C. McCord. Singular homology and homotopy groups of finite spaces. Duke Mathematical Journal 33, 3 (1966) 465-474.

Thanks for your attention! Any questions?