Approximating Discrete Dynamical Systems

Pedro J. Chocano Feito

URJC

31 May 2022
Outline

- Preliminaries and motivation.
- Vietoris-like maps and multivalued maps.
- Lefschetz fixed point theorem.
- Approximating Discrete Dynamical Systems.
- Localization of finite spaces at Vietoris-like maps.
Preliminaries and motivation

Definition

An Alexandroff space is a topological space for which arbitrary intersections of open sets are still open.
Preliminaries and motivation

Definition

An Alexandroff space is a topological space for which arbitrary intersections of open sets are still open.

Theorem (Alexandroff, 1937)

The category of Alexandroff T_0-spaces is isomorphic to the category of partially ordered sets.

Objects:
- *Alexandroff T_0-spaces*
- *Partially ordered sets*

Morphisms:
- *Continuous maps*
- *Order-preserving maps*
Given an Alexandroff space X and $x \in X$, U_x denotes the intersection of all the open sets which contain x. Let $x, y \in X$, $x \leq y$ if and only if $U_x \subseteq U_y$ ($U_y \subseteq U_x$).
Preliminaries and motivation

Given an Alexandroff space X and $x \in X$, U_x denotes the intersection of all the open sets which contain x. Let $x, y \in X$, $x \leq y$ if and only if $U_x \subseteq U_y$ ($U_y \subseteq U_x$).

Example. Finite topological T_0-spaces. We call them from now on just finite spaces.
Preliminaries and motivation

Given an Alexandroff space X and $x \in X$, U_x denotes the intersection of all the open sets which contain x. Let $x, y \in X$, $x \leq y$ if and only if $U_x \subseteq U_y$ ($U_y \subseteq U_x$).

Example. Finite topological T_0-spaces. We call them from now on just finite spaces.

Example. Let $X = \{A, B, C, D\}$ and $\tau = \{X, \emptyset, \{A\}, \{B\}, \{A, B\}, \{C, A, B\}, \{D, A, B\}\}$. Then $U_A = \{A\}$, $U_B = \{B\}$, $U_C = \{C, A, B\}$ and $U_D = \{D, A, B\}$, which yields $A < C, D$ and $B < C, D$.

Proposition

Let $f, g : X \to Y$ be continuous maps between finite spaces. Then f is homotopic to g if and only if there exists a finite sequence of continuous maps $f_1, ..., f_n : X \to Y$ such that $f(x) = f_1(x) \leq f_2(x) \geq ... \leq f_n(x) = g(x)$ for every $x \in X$.
Hasse diagrams. Let X be a finite space. The Hasse diagram of X is a directed graph. The vertices are the points of X and there is an edge between two points x and y if and only if $x < y$ and there is no z satisfying $x < z < y$.
Hasse diagrams. Let X be a finite space. The Hasse diagram of X is a directed graph. The vertices are the points of X and there is an edge between two points x and y if and only if $x < y$ and there is no z satisfying $x < z < y$.

Example.

![Hasse diagram example](image-url)
Order complex. Given a finite space X, the order complex of X, denoted by $\mathcal{K}(X)$, is the simplicial complex whose simplices are the non-empty chains of X.
Preliminaries and motivation

Face poset. Given a simplicial complex L, the face poset of L, denoted by $\mathcal{X}(L)$, is the poset of simplices of K ordered by inclusion.
Theorem (McCord, 1966)

There exists a correspondence that assigns to each Alexandroff T_0-space a simplicial complex $\mathcal{K}(X)$ and a weak homotopy equivalence $f_X : |\mathcal{K}(X)| \to X$. Each continuous map $\varphi : X \to Y$ of Alexandroff T_0-spaces is also a simplicial map $\mathcal{K}(\varphi) : \mathcal{K}(X) \to \mathcal{K}(Y)$, and $\varphi \circ f_X = f_Y \circ \mathcal{K}(\varphi)$.
Theorem (McCord, 1966)

There exists a correspondence that assigns to each simplicial complex \(K \) an Alexandroff \(T_0 \)-space \(\mathcal{X}(K) \) and a weak homotopy equivalence \(f_K : \lvert K \rvert \to \mathcal{X}(K) \). Furthermore, to each simplicial map \(\psi : K \to L \) is assigned a continuous map \(\mathcal{X}(\psi) : \mathcal{X}(K) \to \mathcal{X}(L) \) such that \(\mathcal{X}(\psi) \circ f_K \) is homotopic to \(f_L \circ \lvert \psi \rvert \).

\[
\begin{align*}
\mathcal{X}(K) & \xrightarrow{\mathcal{X}(\psi)} \mathcal{X}(L) \\
|K| & \xrightarrow{\psi} |L|
\end{align*}
\]
Finite barycentric subdivision. Given a finite space X, the finite barycentric subdivision of X is defined as $\mathcal{X}(\mathcal{K}(X))$. We denote by X^n the n-th finite barycentric subdivision of X.
Finite barycentric subdivision. Given a finite space X, the finite barycentric subdivision of X is defined as $\mathcal{K}(\mathcal{K}(X))$. We denote by X^n the n-th finite barycentric subdivision of X.

There is a natural map $h : X^1 \to X$ given by $h(x_1 < \ldots < x_n) = x_n$. Then, we can consider $h_{n,m} : X_m \to X_n$ for every $m \geq n$.
Given a simplicial complex K, X^0 denotes $\mathcal{X}(K)$. Therefore, there is a natural inverse sequence of finite spaces.

$$X^0 \leftarrow X^1 \leftarrow X^2 \leftarrow X^3 \leftarrow \cdots$$
Preliminaries and motivation

Given a simplicial complex K, X^0 denotes $\mathcal{X}(K)$. Therefore, there is a natural inverse sequence of finite spaces.

$$X^0 \leftarrow X^1 \leftarrow X^2 \leftarrow X^3 \leftarrow \cdots$$

Example. Let us consider the unit interval I.

$I\quad X^0\quad h_{0,1}\quad X^1\quad h_{1,2}\quad X^2\quad h_{2,3}\quad \cdots$
Preliminaries and motivation

Theorem (Clader, 2009)

Let K be a compact simplicial complex. The inverse limit of $(X^n, h_{n,n+1})$ contains a homeomorphic copy of K, which is a strong deformation retract.

Remark. The same result also holds for compact metric spaces.
Preliminaries and motivation

Theorem (Clader, 2009)

Let K be a compact simplicial complex. The inverse limit of $(X^n, h_{n,n+1})$ contains a homeomorphic copy of K, which is a strong deformation retract.

Remark. The same result also holds for compact metric spaces.
A dynamical system for a topological space X consists of a triad (\mathbb{T}, X, φ), where \mathbb{T} is usually \mathbb{Z} or \mathbb{R} and $\varphi : \mathbb{T} \times X \to X$ is a continuous function satisfying

1. $\varphi(0, x) = x$ for every $x \in X$.
2. $\varphi(t + s, x) = \varphi(t, \varphi(s, x))$ for all $s, t \in \mathbb{T}$ and $x \in X$.
Preliminaries and motivation

Main Idea:
Preliminaries and motivation

Proposition

Let A be a finite space.
- If (\mathbb{R}, A, φ) is a continuous dynamical system, then φ is trivial.
- If (\mathbb{Z}, A, φ) is a discrete dynamical system, there exists $n \in \mathbb{N}$ such that $\varphi^n = id$.
Preliminaries and motivation

Proposition

Let A be a finite space.

- If (\mathbb{R}, A, φ) is a continuous dynamical system, then φ is trivial.
- If (\mathbb{Z}, A, φ) is a discrete dynamical system, there exists $n \in \mathbb{N}$ such that $\varphi^n = id$.

Consider **Multivalued maps** to define dynamical systems.
We say that a topological space X is **acyclic** if the homology groups in all dimensions of X are isomorphic to the corresponding homology groups of a point.

Definition

Given a continuous map $f : X \to Y$ between two finite spaces, we say that f is a Vietoris-like map if for every chain $y_1 < y_2 < \ldots < y_n$ in Y we get that $\bigcup_{i=1}^{n} f^{-1}(y_i)$ is acyclic.
We say that a topological space X is **acyclic** if the homology groups in all dimensions of X are isomorphic to the corresponding homology groups of a point.

Definition

Given a continuous map $f : X \to Y$ between two finite spaces, we say that f is a Vietoris-like map if for every chain $y_1 < y_2 < \ldots < y_n$ in Y we get that $\bigcup_{i=1}^n f^{-1}(y_i)$ is acyclic.

Example. Every homeomorphism is a Vietoris-like map. Indeed, $f : X \to X$ is a Vietoris-like map if and only if f is a homeomorphism.
Theorem

If $f : X \rightarrow Y$ is a Vietoris-like map, then f induces isomorphisms in all homology groups.
Vietoris-like maps and multivalued maps

Theorem

If $f : X \rightarrow Y$ is a Vietoris-like map, then f induces isomorphisms in all homology groups.

Some properties of Vietoris-like maps

Let $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ be continuous maps between finite spaces.

- If f and g are Vietoris-like maps, then $g \circ f : X \rightarrow Z$ is a Vietoris-like map.
- If f and $g \circ f$ are Vietoris-like maps, then g is a Vietoris-like map.
- The 2-out-of-3 property does not hold for Vietoris-like maps.
Vietoris-like maps and multivalued maps

Definition

Let $F : X \rightrightarrows Y$ be a multivalued map between finite spaces. We say that F is a Vietoris-like multivalued map if the projection p onto the first coordinate from the graph of $\Gamma(F)$ is a Vietoris-like map.
Vietoris-like maps and multivalued maps

Definition

Let \(F : X \rightarrow Y \) be a multivalued map between finite spaces. We say that \(F \) is a Vietoris-like multivalued map if the projection \(p \) onto the first coordinate from the graph of \(\Gamma(F) \) is a Vietoris-like map.

Remark. \(F_* : H_*(X) \rightarrow H_*(Y) \) is given by \(q_* \circ p_*^{-1} \), where \(q : \Gamma(F) \rightarrow Y \) is the projection onto the second coordinate.
Vietoris-like maps and multivalued maps

Examples

- Let $f : X \to Y$ be a continuous map. If we consider f as a multivalued map, then f is a Vietoris-like multivalued map since $p : \Gamma(f) \to X$ is a homeomorphism. Moreover, $f_* = q_* \circ p_*^{-1}$.

- If $f : X \to Y$ is a Vietoris-like map, then $F : Y \to X$ given by $F(y) = f^{-1}(y)$ is a Vietoris-like multivalued map.
A Coincidence theorem and consequences

Lefschetz number. Let $f : X \rightarrow X$ be a continuous map, where X is a finite space. The lefschetz number of f is given by

$$
\Lambda(f) = \sum_{i=0} \left(-1 \right)^i tr(f_* : H_i(X) \rightarrow H_i(X)),
$$

where tr denotes the trace and f_* denotes the linear map induced by f on the torsion-free part of the homology of X.

Theorem

Let $f, g : X \rightarrow Y$ be continuous maps between finite spaces, where f is a Vietoris-like map. If $\Lambda(g_* \circ f_*^{-1}) \neq 0$, then there exists $x \in X$ such that $f(x) = g(x)$.
Lefschetz fixed point theorem for multivalued maps

Let X be a finite space. If $F : X \mapsto X$ is a Vietoris-like multivalued map and $\Lambda(F_* = q_* \circ p_*^{-1}) \neq 0$, then there exists $x \in X$ with $x \in F(x)$.

Remark. Not every multivalued map may be expressed as a composition of Vietoris-like multivalued maps.
Lefschetz fixed point theorem

Let X be a finite space. If $F : X \rightarrow X$ is a Vietoris-like multivalued map and $\Lambda(F_* = q_* \circ p_*^{-1}) \neq 0$, then there exists $x \in X$ with $x \in F(x)$.

Theorem

Let $F : X \rightarrow X$ be a multivalued map, where X is a finite space. Suppose that $F = G_n \circ \cdots \circ G_0$, where $G_i : Y_i \rightarrow Y_{i+1}$, $Y_0 = Y_{n+1} = X$, Y_i is a finite space and G_i is a Vietoris-like multivalued map. If $\Lambda(G_n* \circ \cdots \circ G_0*) \neq 0$, then there exists a point $x \in X$ such that $x \in F(x)$.
Lefschetz fixed point theorem

Lefschetz fixed point theorem for multivalued maps

Let X be a finite space. If $F : X \rightarrow X$ is a Vietoris-like multivalued map and $\Lambda(F_* = q_* \circ p_*^{-1}) \neq 0$, then there exists $x \in X$ with $x \in F(x)$.

Theorem

Let $F : X \rightarrow X$ be a multivalued map, where X is a finite space. Suppose that $F = G_n \circ \cdots \circ G_0$, where $G_i : Y_i \rightarrow Y_{i+1}$, $Y_0 = Y_{n+1} = X$, Y_i is a finite space and G_i is a Vietoris-like multivalued map. If $\Lambda(G_n_* \circ \cdots \circ G_0_*) \neq 0$, then there exists a point $x \in X$ such that $x \in F(x)$.

Remark. Not every multivalued map may be expressed as a composition of Vietoris-like multivalued maps.
Recall that given a finite space X^0 we may consider the following inverse sequence

$$
X^0 \xleftarrow{h_{0,1}} X^1 \xleftarrow{h_{1,2}} X^2 \xleftarrow{h_{2,3}} X^3 \xleftarrow{h_{3,4}} \cdots X^n \xleftarrow{h_{n,n+1}} X^{n+1} \xleftarrow{h_{n+1,n+2}} \cdots
$$
Recall that given a finite space X^0 we may consider the following inverse sequence

$$
X^0 \xleftarrow{h_{0,1}} X^1 \xleftarrow{h_{1,2}} X^2 \xleftarrow{h_{2,3}} X^3 \xleftarrow{h_{3,4}} \ldots \xleftarrow{h_{n,n+1}} X^{n+1} \xleftarrow{h_{n+1,n+2}} \ldots
$$

Proposition

Let X be a finite space and $m \geq n$. Then $h_{n,m} : X^m \to X^n$ is a Vietoris-like map which induces the identity in homology.
Recall that given a finite space X^0 we may consider the following inverse sequence

$$X^0 \leftarrow h_{0,1} X^1 \leftarrow h_{1,2} X^2 \leftarrow h_{2,3} X^3 \leftarrow \cdots X^n \leftarrow h_{n,n+1} X^{n+1} \leftarrow h_{n+1,n+2} \cdots$$

Proposition

Let X be a finite space and $m \geq n$. Then $h_{n,m} : X^m \to X^n$ is a Vietoris-like map which induces the identity in homology.

Corollary

Let X be a finite space and $m \geq n$. Then $H_{m,n} : X^n \to X^m$, defined by $H(x) = h^{-1}(x)$, is a Vietoris-like multivalued map which induces the identity in homology.
Given a continuous map \(f : |K| \to |K| \), there is a natural inverse sequence induced by \(f \) (use simplicial approximation theorem).

\[
\begin{align*}
X^0 & \leftarrow f_{0,1} X^1 & f_{1,2} & f_{2,3} & X^3 & \cdots
\end{align*}
\]
Given a continuous map $f : |K| \to |K|$, there is a natural inverse sequence induced by f (use simplicial approximation theorem).

Therefore, we have

$$
\begin{array}{cccccc}
X^0 & \xleftarrow{f_{0,1}} & X^1 & \xleftarrow{f_{1,2}} & X^2 & \xleftarrow{f_{2,3}} & X^3 & \cdots \\
\end{array}
$$

Therefore, we have

$$
\begin{array}{cccccc}
X^0 & \xleftarrow{f_{0,1}} & X^1 & \xleftarrow{f_{1,2}} & X^2 & \xleftarrow{f_{2,3}} & X^3 & \cdots \\
\bullet & F_1 & \bullet & F_2 & \bullet & F_3 \\
X^0 & \xleftarrow{h_{0,1}} & X^1 & \xleftarrow{h_{1,2}} & X^2 & \xleftarrow{h_{2,3}} & X^3 & \cdots \\
\end{array}
$$

where $F_{n+1} = H_{n+1,n} \circ f_{n,n+1}$.
Proposition

If $\Lambda(f) \neq 0$, then there exists a point $x_{n+1} \in X^{n+1}$ such that $x_{n+1} \in F_{n+1}(x_{n+1})$ for every $n \in \mathbb{N}$.
Proposition

If $\Lambda(f) \neq 0$, then there exists a point $x_{n+1} \in X^{n+1}$ such that $x_{n+1} \in F_{n+1}(x_{n+1})$ for every $n \in \mathbb{N}$.

Theorem

If $f : |K| \to |K|$ is a continuous map, where K is a simplicial complex, then f has a fixed point if and only if there exist a finite approximative sequence for f, $(X^n, h_{n,n+1})$, a sequence $\{x_{n+1}\}_{n \in \mathbb{N}}$ and $m \in \mathbb{N}$ such that $x_{n+1} \in X^{n+1}$, $x_n = h_{n,n+1}(x_{n+1})$ for every $n \in \mathbb{N}$ and $x_{n+1} \in F_{n+1}(x_{n+1})$ for every $n + 1 \geq m$.
Example. Let $f : S^1 \to S^1$ be given by $f(x, y) = (x, -y)$.

Goal. Generalize these results to compact metric spaces using more geometrical constructions.
Example. Let \(f : S^1 \to S^1 \) be given by \(f(x, y) = (x, -y) \).

Goal. Generalize these results to compact metric spaces using more geometrical constructions.
Main Idea: Enclose Vietoris-like multivalued maps in a category to get other dynamical invariants.
Localization of finite spaces at Vietoris-like maps

Main Idea: Enclose Vietoris-like multivalued maps in a category to get other dynamical invariants.

Definition

Let X and Y be finite spaces. We say that $X \xleftarrow{p} Z \xrightarrow{q} Y$ is a span or a diagram if p is a Vietoris-like map.
Localization of finite spaces at Vietoris-like maps

Main Idea: Enclose Vietoris-like multivalued maps in a category to get other dynamical invariants.

Definition

Let X and Y be finite spaces. We say that $X \xleftarrow{p} Z \xrightarrow{q} Y$ is a span or a diagram if p is a Vietoris-like map.

Examples. Continuous maps and Vietoris-like multivalued maps.
 Localization of finite spaces at Vietoris-like maps

Main Idea: Enclose Vietoris-like multivalued maps in a category to get other dynamical invariants.

Definition

Let X and Y be finite spaces. We say that $X \xleftarrow{p} Z \xrightarrow{q} Y$ is a span or a diagram if p is a Vietoris-like map.

Examples. Continuous maps and Vietoris-like multivalued maps.

Steps

1. Define the composition of spans. Solution: pull-backs.
2. Define an equivalence relation between spans. Solution: define a new notion of homotopy that generalizes the usual notion of homotopy for single valued maps in the category of finite spaces.
Localization of finite spaces at Vietoris-like maps

Category of finite spaces
- Objects: finite topological T_0-spaces
- Morphisms: continuous maps

Homotopical category of finite spaces
- Objects: finite topological T_0-spaces
- Morphisms: homotopy classes of continuous maps

Localization of the category of finite topological spaces at the class of Vietoris-like maps
- Objects: finite topological T_0-spaces
- Morphisms: homotopy classes of spans
1. Let X and Y be finite models of S^n. In the usual category it is not possible to get that every integer number may be realized as the topological degree of a continuous map $f : X \to Y$.

2. In the localized category of finite spaces the above result is possible.

5. Chocano, P. J *Category of fractions and localization on finite spaces*
 In preparation.

6. E. Clader. *Inverse limits of finite topological spaces*. Homology,

7. M.C. McCord. *Singular homology and homotopy groups of finite
Thanks for your attention! Any questions?