From Discrete Morse Theory to Combinatorial Topological Dynamics

Jonathan Barmak (part I) and Thomas Wanner (part II)

Universidad de Buenos Aires and George Mason University

GETCO - May 31, 2022
Classical Morse Theory
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.
Classical Morse Theory: maps \(f : M \to \mathbb{R} \) give topological information about the manifold \(M \) by understanding how the homotopy type of level sets \(M^a = \{ p \in M \mid f(p) \leq a \} \) changes as \(a \) increases.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.
Classical Morse Theory: maps $f : M \rightarrow \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.
Classical Morse Theory: maps $f : M \rightarrow \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M \mid f(p) \leq a \}$ changes as a increases.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$.
Classical Morse Theory: maps $f : M \rightarrow \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \rightarrow M$.

Critical points $=$ points where the gradient vanishes.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$.

Critical points = points where the gradient vanishes.

Index of a critical point = number of decreasing directions.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$.

Critical points $=$ points where the gradient vanishes.

Index of a critical point $=$ number of decreasing directions.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$.

Critical points = points where the gradient vanishes.

Index of a critical point = number of decreasing directions.
Classical Morse Theory: maps $f : M \rightarrow \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \rightarrow M$.

Critical points $=$ points where the gradient vanishes.

Index of a critical point $=$ number of decreasing directions.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$.

Critical points = points where the gradient vanishes.

Index of a critical point = number of decreasing directions.

Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.
Classical Morse Theory: maps \(f : M \to \mathbb{R} \) give topological information about the manifold \(M \) by understanding how the homotopy type of level sets \(M^a = \{ p \in M | f(p) \leq a \} \) changes as \(a \) increases.

The (opposite of the) gradient of \(f \) generates a dynamical system \(\phi : M \times \mathbb{R} \to M \).

Critical points = points where the gradient vanishes.

Index of a critical point = number of decreasing directions.

Thm: \(M \) is homotopy equivalent to a CW-complex with a \(k \)-cell for each critical point of index \(k \).
Classical Morse Theory: maps \(f : M \to \mathbb{R} \) give topological information about the manifold \(M \) by understanding how the homotopy type of level sets \(M^a = \{ p \in M | f(p) \leq a \} \) changes as \(a \) increases.

The (opposite of the) gradient of \(f \) generates a dynamical system \(\phi : M \times \mathbb{R} \to M \).

Critical points = points where the gradient vanishes.

Index of a critical point = number of decreasing directions.

Thm: \(M \) is homotopy equivalent to a CW-complex with a \(k \)-cell for each critical point of index \(k \).
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$.

Critical points = points where the gradient vanishes.

Index of a critical point = number of decreasing directions.

Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$.

Critical points $=$ points where the gradient vanishes.

Index of a critical point $=$ number of decreasing directions.

Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.
Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M by understanding how the homotopy type of level sets $M^a = \{ p \in M | f(p) \leq a \}$ changes as a increases.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$.

Critical points $=$ points where the gradient vanishes.

Index of a critical point $=$ number of decreasing directions.

Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.

Morse inequalities: If α_k is the number of critical points of index k, $\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \geq b_k(M) - b_{k-1}(M) + \ldots + (-1)^k b_0(M)$.
Discrete Morse Theory by R. Forman
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

K a simplicial complex. A map $f : S_K \rightarrow \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$,
\[\#\{\tau \subseteq \sigma | f(\tau) \geq f(\sigma)\} \leq 1 \text{ and } \#\{\tau \supseteq \sigma | f(\tau) \leq f(\sigma)\} \leq 1. \]
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

K a simplicial complex. A map $f : S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$,
\[\#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1 \] and
\[\#\{\tau \supseteq \sigma | f(\tau) \leq f(\sigma)\} \leq 1. \]
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

K a simplicial complex. A map $f : S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$,
\[
\#\{\tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma)\} \leq 1 \quad \text{and} \quad \#\{\tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma)\} \leq 1.
\]
Critical simplex $=$ both numbers above are 0.
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, \#\{\tau \subseteq \sigma | f(\tau) \geq f(\sigma)\} \leq 1 and \#\{\tau \supseteq \sigma | f(\tau) \leq f(\sigma)\} \leq 1. Critical simplex = both numbers above are 0. Index of a critical simplex = its dimension.
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

A simplicial complex K and a map $f : S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$,

$\#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1$ and $\#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1$.

Critical simplex $=$ both numbers above are 0.

Index of a critical simplex $=$ its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

K a simplicial complex. A map $f : S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1$ and $\#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1$. Critical simplex $=$ both numbers above are 0. Index of a critical simplex $=$ its dimension.
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

A simplicial complex K. A map $f : S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$,
\[\# \{ \tau \subsetneq \sigma | f(\tau) \geq f(\sigma) \} \leq 1 \] and
\[\# \{ \tau \supsetneq \sigma | f(\tau) \leq f(\sigma) \} \leq 1. \]

Critical simplex = both numbers above are 0.

Index of a critical simplex = its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

\[7 \ 8 \ 5 \ 6 \ 2 \ 2 \ 1 \ 3 \ 3 \ 2 \ 2 \ 0 \ 0 \]
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

Let K be a simplicial complex. A map $f : S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$,

$$\#\{\tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma)\} \leq 1 \text{ and } \#\{\tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma)\} \leq 1.$$

Critical simplex $=$ both numbers above are 0.
Index of a critical simplex $=$ its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

Morse inequalities: α_k the number of critical simplices of index k,

$$\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \geq b_k(M) - b_{k-1}(M) + \ldots + (-1)^k b_0(M).$$
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

A simplicial complex K is a simplicial complex. A map $f: S_K \rightarrow \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$,\
\[\#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1\] and\
\[\#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1.\]

Critical simplex = both numbers above are 0.

Index of a critical simplex = its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

Morse inequalities: α_k the number of critical simplices of index k,
\[\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \geq b_k(M) - b_{k-1}(M) + \ldots + (-1)^k b_0(M).\]

Applications: Topological combinatorics
Discrete Morse Theory by R. Forman: a combinatorial analogue of the classical theory.

Let K be a simplicial complex. A map $f : S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$,
\[
\#\{\tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma)\} \leq 1 \quad \text{and} \quad \#\{\tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma)\} \leq 1.
\]

Critical simplex $=$ both numbers above are 0.

Index of a critical simplex $=$ its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

Morse inequalities: α_k the number of critical simplices of index k, $\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \geq b_k(M) - b_{k-1}(M) + \ldots + (-1)^k b_0(M)$.

Applications: Topological combinatorics, Topological Data Analysis, Biology, Computer Science, etc.
For every $\sigma \in K$ we have that
\[
l_\sigma = \#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1,
\]
\[
u_\sigma = \#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1.
\]
For every $\sigma \in K$ we have that
\[l_\sigma = \#\{\tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma)\} \leq 1, \]
\[u_\sigma = \#\{\tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma)\} \leq 1. \]
Gradient vector field: is the map
\[V : \{\sigma \mid l_\sigma = 0\} \rightarrow \{\sigma \mid u_\sigma = 0\} \]
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[l_\sigma = \# \{ \tau \subseteq \sigma \mid f(\tau) \geq f(\sigma) \} \leq 1, \]
\[u_\sigma = \# \{ \tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma) \} \leq 1. \]
Gradient vector field: is the map
\[V : \{ \sigma \mid l_\sigma = 0 \} \to \{ \sigma \mid u_\sigma = 0 \} \]
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[l_\sigma = \#\{\tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma)\} \leq 1, \]
\[u_\sigma = \#\{\tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma)\} \leq 1. \]
Gradient vector field: is the map
\[V : \{\sigma \mid l_\sigma = 0\} \to \{\sigma \mid u_\sigma = 0\} \]
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[l_\sigma = \# \{ \tau \subsetneq \sigma | f(\tau) \geq f(\sigma) \} \leq 1, \]
\[u_\sigma = \# \{ \tau \supsetneq \sigma | f(\tau) \leq f(\sigma) \} \leq 1. \]

Gradient vector field: is the map \(V : \{ \sigma | l_\sigma = 0 \} \to \{ \sigma | u_\sigma = 0 \} \)
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, \(V(\sigma) = \sigma \).
For every $\sigma \in K$ we have that
\[l_\sigma = \# \{ \tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma) \} \leq 1, \]
\[u_\sigma = \# \{ \tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma) \} \leq 1. \]
Gradient vector field: is the map
\[V : \{ \sigma \mid l_\sigma = 0 \} \to \{ \sigma \mid u_\sigma = 0 \} \]
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
$$l_\sigma = \#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1,$$
$$u_\sigma = \#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1.$$
Gradient vector field: is the map
$$V : \{\sigma | l_\sigma = 0\} \rightarrow \{\sigma | u_\sigma = 0\}$$
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[l_\sigma = \#\{\tau \subseteq \sigma \mid f(\tau) \geq f(\sigma)\} \leq 1, \]
\[u_\sigma = \#\{\tau \supseteq \sigma \mid f(\tau) \leq f(\sigma)\} \leq 1. \]
Gradient vector field: is the map
\[V : \{\sigma \mid l_\sigma = 0\} \rightarrow \{\sigma \mid u_\sigma = 0\} \]
which maps σ to τ if $\tau \supseteq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that

$$l_\sigma = \#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1,$$

$$u_\sigma = \#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1.$$

Gradient vector field: is the map

$$V : \{\sigma | l_\sigma = 0\} \to \{\sigma | u_\sigma = 0\}$$

which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.

For every $\sigma \in K$ we have that

$\begin{align*}
l_\sigma &= \#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1, \\
u_\sigma &= \#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1.
\end{align*}$

Gradient vector field: is the map $V : \{\sigma | l_\sigma = 0\} \to \{\sigma | u_\sigma = 0\}$ which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[l_\sigma = \# \{ \tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma) \} \leq 1, \]
\[u_\sigma = \# \{ \tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma) \} \leq 1. \]
Gradient vector field: is the map $V : \{ \sigma \mid l_\sigma = 0 \} \rightarrow \{ \sigma \mid u_\sigma = 0 \}$ which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[
l_\sigma = \#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1,
\]
\[
u_\sigma = \#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1.
\]
Gradient vector field: is the map
\[
V : \{\sigma | l_\sigma = 0\} \rightarrow \{\sigma | u_\sigma = 0\}
\]
which maps σ to τ if $\tau \supseteq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[l_\sigma = \#\{\tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma)\} \leq 1, \]
\[u_\sigma = \#\{\tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma)\} \leq 1. \]
Gradient vector field: is the map $V : \{\sigma \mid l_\sigma = 0\} \to \{\sigma \mid u_\sigma = 0\}$ which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[l_\sigma = \#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1, \]
\[u_\sigma = \#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1. \]
Gradient vector field: is the map
\[V : \{\sigma | l_\sigma = 0\} \rightarrow \{\sigma | u_\sigma = 0\} \]
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.
For every $\sigma \in K$ we have that
\[l_\sigma = \#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1, \]
\[u_\sigma = \#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1. \]

Gradient vector field: is the map $V : \{\sigma | l_\sigma = 0\} \to \{\sigma | u_\sigma = 0\}$ which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each i.
For every $\sigma \in K$ we have that
$$l_\sigma = \#\{\tau \subsetneq \sigma | f(\tau) \geq f(\sigma)\} \leq 1,$$
$$u_\sigma = \#\{\tau \supsetneq \sigma | f(\tau) \leq f(\sigma)\} \leq 1.$$
Gradient vector field: is the map
$$V : \{\sigma | l_\sigma = 0\} \rightarrow \{\sigma | u_\sigma = 0\}$$
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each i.
For every $\sigma \in K$ we have that $l_\sigma = \# \{ \tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma) \} \leq 1$, $u_\sigma = \# \{ \tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma) \} \leq 1$.

Gradient vector field: is the map $V : \{ \sigma \mid l_\sigma = 0 \} \to \{ \sigma \mid u_\sigma = 0 \}$ which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each i.
For every $\sigma \in K$ we have that
\[l_\sigma = \#\{\tau \subsetneq \sigma \mid f(\tau) \geq f(\sigma)\} \leq 1, \]
\[u_\sigma = \#\{\tau \supsetneq \sigma \mid f(\tau) \leq f(\sigma)\} \leq 1. \]

Gradient vector field: is the map
\[V : \{\sigma \mid l_\sigma = 0\} \rightarrow \{\sigma \mid u_\sigma = 0\} \]
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists,
$V(\sigma) = \sigma$.

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each i.

\[\]
For every $\sigma \in K$ we have that
\[l_\sigma = \#\{ \tau \subsetneq \sigma | f(\tau) \geq f(\sigma) \} \leq 1, \]
\[u_\sigma = \#\{ \tau \supsetneq \sigma | f(\tau) \leq f(\sigma) \} \leq 1. \]
Gradient vector field: is the map $V : \{ \sigma | l_\sigma = 0 \} \rightarrow \{ \sigma | u_\sigma = 0 \}$ which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each i.

Morse complex: For each $p \geq 0$ let C_p be the free abelian group generated by the critical p-simplices. Define $\partial : C_{p+1} \rightarrow C_p$ by $\partial(\sigma) = \sum c_{\tau,\sigma} \tau$ where $c_{\tau,\sigma} = \sum_{\gamma \in \Gamma(\sigma,\tau)} m(\gamma)$, $m(\gamma) = \pm 1$ depending on orientations.
For every $\sigma \in K$ we have that
\[l_\sigma = \# \{ \tau \subsetneq \sigma | f(\tau) \geq f(\sigma) \} \leq 1, \]
\[u_\sigma = \# \{ \tau \supsetneq \sigma | f(\tau) \leq f(\sigma) \} \leq 1. \]
Gradient vector field: is the map
\[V : \{ \sigma | l_\sigma = 0 \} \to \{ \sigma | u_\sigma = 0 \} \]
which maps σ to τ if $\tau \supsetneq \sigma$ and $f(\tau) \leq f(\sigma)$. If no such τ exists, $V(\sigma) = \sigma$.

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each i.

Morse complex: For each $p \geq 0$ let
C_p be the free abelian group generated by the critical p-simplices. Define $\partial : C_{p+1} \to C_p$ by $\partial(\sigma) = \sum c_{\tau,\sigma} \tau$ where
$c_{\tau,\sigma} = \sum_{\gamma \in \Gamma(\sigma, \tau)} m(\gamma)$, $m(\gamma) = \pm 1$ depending on orientations.

Example: $\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$.
General definition of vector field in K: is map $V : A \to B$ for subsets $A, B \subseteq S_K$ such that
i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$,
ii) $A \cup B = S_K$,
iii) $A \cap B = \text{Fix}(V)$.
General definition of vector field in K: is map $V : A \rightarrow B$ for subsets $A, B \subseteq S_K$ such that

i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$,

ii) $A \cup B = S_K$,

iii) $A \cap B = \text{Fix}(V)$.

Problem: we would like to have a dynamical system with phase space S_K and with trajectories given by gradient paths.
General definition of vector field in K: is map $V : A \to B$ for subsets $A, B \subseteq S_K$ such that
i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$,
ii) $A \cup B = S_K$,
iii) $A \cap B = \text{Fix}(V)$.

Problem: we would like to have a dynamical system with phase space S_K and with trajectories given by gradient paths.

1. Continuous-time dynamical systems on finite sets are trivial. Discrete-time dynamical system generated by a map $S_K \to S_K$.
General definition of vector field in K: is map $V : A \to B$ for subsets $A, B \subseteq S_K$ such that
i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$,
ii) $A \cup B = S_K$,
iii) $A \cap B = \text{Fix}(V)$.

Problem: we would like to have a dynamical system with phase space S_K and with trajectories given by gradient paths.

1. Continuous-time dynamical systems on finite sets are trivial. Discrete-time dynamical system generated by a map $S_K \to S_K$.

2. More than one path through a simplex. Use a multivalued map $F : S_K \rightrightarrows S_K$.
General definition of vector field in K: is map $V : A \rightarrow B$ for subsets $A, B \subseteq S_K$ such that
i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$,
ii) $A \cup B = S_K$,
iii) $A \cap B = \text{Fix}(V)$.

Problem: we would like to have a dynamical system with phase space S_K and with trajectories given by gradient paths.

1. Continuous-time dynamical systems on finite sets are trivial. Discrete-time dynamical system generated by a map $S_K \rightarrow S_K$.
2. More than one path through a simplex. Use a multivalued map $F : S_K \rightrightarrows S_K$.
3. What is a topology in the finite set S_K?
Finite topological spaces: what is an interesting topology on S_K?
Finite topological spaces: what is an interesting topology on S_K?

Face poset: $\mathcal{X}(K)$ is the poset of simplices of K.
Finite topological spaces: what is an interesting topology on S_K?
Face poset: $\mathcal{X}(K)$ is the poset of simplices of K.

Open sets = down-sets
Finite topological spaces: what is an interesting topology on S_K? Face poset: $\mathcal{X}(K)$ is the poset of simplices of K.

Open sets $=$ down-sets (in Dynamics opposite convention).
Finite topological spaces: what is an interesting topology on S_K?
Face poset: $\mathcal{X}(K)$ is the poset of simplices of K.

Open sets = down-sets (in Dynamics opposite convention). More generally, this gives a map

Finite posets \rightarrow Finite topological spaces.
Finite topological spaces: what is an interesting topology on S_K?

Face poset: $\mathcal{X}(K)$ is the poset of simplices of K.

Open sets $=$ down-sets (in Dynamics opposite convention). More generally, this gives a map

$$\text{Finite posets} \rightarrow \text{Finite topological spaces}.$$

These finite spaces are T_0 (given two different points there is an open set containing only one).
Finite topological spaces: what is an interesting topology on S_K?

Face poset: $\mathcal{X}(K)$ is the poset of simplices of K.

Open sets = down-sets (in Dynamics opposite convention). More generally, this gives a map

$$\text{Finite posets } \rightarrow \text{ Finite topological spaces.}$$

These finite spaces are T_0 (given two different points there is an open set containing only one).

Conversely, if X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$.
Finite topological spaces: what is an interesting topology on S_K?

Face poset: $\mathcal{X}(K)$ is the poset of simplices of K.

Open sets = down-sets (in Dynamics opposite convention). More generally, this gives a map

$$\text{Finite posets} \rightarrow \text{Finite topological spaces}.$$

These finite spaces are T_0 (given two different points there is an open set containing only one).

Conversely, if X is a finite T_0 space, we define for every $x \in X$,

$$U_x = \bigcap_{U \ni x} U.$$

Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

\quad
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.系

\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) {a};
 \node (b) at (-1,-1) {b};
 \node (c) at (-1,-2) {c};
 \node (d) at (0,-2) {d};

 \draw (a) -- (b);
 \draw (a) -- (c);
 \draw (a) -- (d);
\end{tikzpicture}
\end{center}
If \(X \) is a finite \(T_0 \) space, we define for every \(x \in X \), \(U_x = \bigcap_{U \ni x} U \).

Set \(x \leq y \) if \(x \in U_y \). Then \(\leq \) is a partial order in \(X \).
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

![Diagram](image-url)
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

We have a correspondence \textbf{Finite posets} \leftrightarrow \textbf{Finite T_0 spaces}.
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

We have a correspondence \textit{Finite posets} \leftrightarrow \textit{Finite T_0 spaces}.

\textbf{Prop}: A map $f : X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving ($x \leq x'$ implies $f(x) \leq f(x')$).
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

We have a correspondence $\text{Finite posets} \leftrightarrow \text{Finite } T_0 \text{ spaces}$.

Prop: A map $f : X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving ($x \leq x'$ implies $f(x) \leq f(x')$).

Proof: \Rightarrow Suppose $x \leq x'$.

If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

We have a correspondence $\text{Finite posets} \leftrightarrow \text{Finite } T_0 \text{ spaces}$.

Prop: A map $f : X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving ($x \leq x'$ implies $f(x) \leq f(x')$).

Proof: \Rightarrow) Suppose $x \leq x'$. Then $U_{f(x')} \subseteq Y$ is open and so is $f^{-1}(U_{f(x')})$.

\[a \quad \quad b \quad \quad d \]
\[\quad c \quad \quad \]
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

We have a correspondence Finite posets \leftrightarrow Finite T_0 spaces.

Prop: A map $f : X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving ($x \leq x'$ implies $f(x) \leq f(x')$).

Proof: \Rightarrow Suppose $x \leq x'$. Then $U_{f(x')} \subseteq Y$ is open and so is $f^{-1}(U_{f(x')})$. Thus $x \in U_{x'} \subseteq f^{-1}(U_{f(x')})$.
If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

We have a correspondence \textit{Finite posets} \leftrightarrow \textit{Finite T_0 spaces}.

\textbf{Prop:} A map $f : X \rightarrow Y$ between finite T_0 spaces is continuous if and only if it is order-preserving ($x \leq x'$ implies $f(x) \leq f(x')$).

\textbf{Proof:} \Rightarrow) Suppose $x \leq x'$. Then $U_{f(x')} \subseteq Y$ is open and so is $f^{-1}(U_{f(x')})$. Thus $x \in U_{x'} \subseteq f^{-1}(U_{f(x')})$. Then $f(x) \in U_{f(x')}$, so $f(x) \leq f(x')$.

\textbf{Proof:} \Leftarrow) Suppose $f(x) \leq f(x')$. Then $U_{f(x)} \subseteq Y$ is open and so is $f^{-1}(U_{f(x)})$. Thus $x \in U_{x} \subseteq f^{-1}(U_{f(x)})$. Then $f(x) \in U_{f(x)}$, so $f(x) \leq f(x')$.

If X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \leq y$ if $x \in U_y$. Then \leq is a partial order in X.

We have a correspondence **Finite posets \leftrightarrow Finite T_0 spaces**.

Prop: A map $f : X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving ($x \leq x'$ implies $f(x) \leq f(x')$).

Proof: \Rightarrow) Suppose $x \leq x'$. Then $U_{f(x')} \subseteq Y$ is open and so is $f^{-1}(U_{f(x')})$. Thus $x \in U_{x'} \subseteq f^{-1}(U_{f(x')})$. Then $f(x) \in U_{f(x')}$, so $f(x) \leq f(x')$. \Leftarrow) Exercise.
Closed sets = up-sets.
Closed sets = up-sets. Locally closed = intersection of an open and a closed subset = intervals of the poset.
Closed sets = up-sets. Locally closed = intersection of an open and a closed subset = intervals of the poset. If X is a space, the *mouth* of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.
Closed sets=up-sets. Locally closed= intersection of an open and a closed subset = intervals of the poset. If X is a space, the *mouth* of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.

Connectivity: The Sierpiński space
Closed sets=up-sets. Locally closed= intersection of an open and a closed subset = intervals of the poset. If X is a space, the *mouth* of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.

Connectivity: The Sierpiński space \bullet^a_b is path-connected, $\gamma(t) = b$ for $t < 1$, $\gamma(1) = a$ is continuous.
Closed sets = up-sets. Locally closed = intersection of an open and a closed subset = intervals of the poset. If X is a space, the mouth of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.

Connectivity: The Sierpiński space $\begin{array}{c} \text{a} \\ \text{b} \end{array}$ is path-connected, $\gamma(t) = b$ for $t < 1$, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected.
Closed sets = up-sets. Locally closed = intersection of an open and a closed subset = intervals of the poset. If X is a space, the *mouth* of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.

Connectivity: The Sierpiński space $\begin{array}{c}
\begin{array}{c}
\bullet \quad a \\
\downarrow \\
\bullet \quad b
\end{array}
\end{array}$ is path-connected, $\gamma(t) = b$ for $t < 1$, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.
Closed sets = up-sets. Locally closed = intersection of an open and a closed subset = intervals of the poset. If X is a space, the *mouth* of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.

Connectivity: The Sierpiński space is path-connected, $\gamma(t) = b$ for $t < 1$, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Thm: Two continuous maps $f, g : X \to Y$ between finite spaces are homotopic iff there is a sequence $f = f_0 \leq f_1 \geq f_2 \leq \ldots f_n = g$, where $h \leq h'$ means $h(x) \leq h'(x)$ for every $x \in X$.
Closed sets=up-sets. Locally closed= intersection of an open and a closed subset = intervals of the poset. If X is a space, the mouth of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.

Connectivity: The Sierpiński space is path-connected, $\gamma(t) = b$ for $t < 1$, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Thm: Two continuous maps $f, g : X \to Y$ between finite spaces are homotopic iff there is a sequence $f = f_0 \leq f_1 \geq f_2 \leq \ldots f_n = g$, where $h \leq h'$ means $h(x) \leq h'(x)$ for every $x \in X$.

Proof: By the exponential law, there is a homotopy $H : X \times [0, 1] \to Y$ from f to g iff there is a path $\gamma : [0, 1] \to Y^X$ from f to g.
Closed sets=up-sets. Locally closed= intersection of an open and a closed subset = intervals of the poset. If X is a space, the mouth of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.

Connectivity: The Sierpiński space $b \xrightarrow{a}$ is path-connected, $\gamma(t) = b$ for $t < 1$, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Thm: Two continuous maps $f, g : X \to Y$ between finite spaces are homotopic iff there is a sequence $f = f_0 \leq f_1 \geq f_2 \leq \ldots f_n = g$, where $h \leq h'$ means $h(x) \leq h'(x)$ for every $x \in X$.
Proof: By the exponential law, there is a homotopy $H : X \times [0,1] \to Y$ from f to g iff there is a path $\gamma : [0,1] \to Y^X$ from f to g. The order associated to the compact-open topology in Y^X is the pointwise-order defined above.
Closed sets = up-sets. Locally closed = intersection of an open and a closed subset = intervals of the poset. If X is a space, the *mouth* of a subset $A \subseteq X$ is $mo(A) = \overline{A} \setminus A$. A is locally closed iff $mo(A)$ is closed.

Connectivity: The Sierpiński space is path-connected, $\gamma(t) = b$ for $t < 1$, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Thm: Two continuous maps $f, g : X \to Y$ between finite spaces are homotopic iff there is a sequence $f = f_0 \leq f_1 \geq f_2 \leq \ldots f_n = g$, where $h \leq h'$ means $h(x) \leq h'(x)$ for every $x \in X$.

Proof: By the exponential law, there is a homotopy $H : X \times [0, 1] \to Y$ from f to g iff there is a path $\gamma : [0, 1] \to Y^X$ from f to g. The order associated to the compact-open topology in Y^X is the pointwise-order defined above. So there is a path from f to g iff they are in the same component of the Hasse diagram.
Thm (Stong): There is an algorithm that decides homotopy equivalence.
Thm (Stong): There is an algorithm that decides homotopy equivalence.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?
Thm (Stong): There is an algorithm that decides homotopy equivalence.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.
Thm (Stong): There is an algorithm that decides homotopy equivalence.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.
Thm (Stong): There is an algorithm that decides homotopy equivalence.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

If X is a finite T_0 space, $\mathcal{K}(X)$ denotes its order complex.
Thm (Stong): There is an algorithm that decides homotopy equivalence.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

If X is a finite T_0 space, $\mathcal{K}(X)$ denotes its order complex.
Thm (Stong): There is an algorithm that decides homotopy equivalence.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

If X is a finite T_0 space, $\mathcal{K}(X)$ denotes its order complex.
Thm (Stong): There is an algorithm that decides homotopy equivalence.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

If X is a finite T_0 space, $\mathcal{K}(X)$ denotes its order complex.

Thm (McCord): X and $\mathcal{K}(X)$ have the same homotopy and homology groups.