From Discrete Morse Theory to Combinatorial Topological Dynamics

Jonathan Barmak (part I) and Thomas Wanner (part II)

Universidad de Buenos Aires and George Mason University

GETCO - May 31, 2022

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Classical Morse Theory

<□> <@> < E> < E> E のQ@

Classical Morse Theory: maps $f : M \to \mathbb{R}$ give topological information about the manifold M

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

イロト 不得 とうせい かびとう 切

イロト 不得 とうせい かびとう 切

э

・ロト ・ 一下 ・ モト ・ モト

э

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$.

The (opposite of the) gradient of f generates a dynamical system $\phi : M \times \mathbb{R} \to M$. Critical points= points where the gradient vanishes.

・ロット (雪) (き) (き) (き)

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points= points where the gradient vanishes. Index of a critical point= number of decreasing directions.

・ロット (雪) (き) (き) (き)

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points= points where the gradient vanishes. Index of a critical point= number of decreasing directions.

・ロト ・ 雪 ト ・ ヨ ト ・ ヨ ト

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points= points where the gradient vanishes. Index of a critical point= number of decreasing directions.

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points= points where the gradient vanishes. Index of a critical point= number of decreasing directions.

▲□→ ▲□→ ▲□→ □

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points = points where the gradient vanishes. Index of a critical point= number of decreasing directions. Thm: *M* is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points = points where the gradient vanishes. Index of a critical point= number of decreasing directions. Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points = points where the gradient vanishes. Index of a critical point= number of decreasing directions. Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points = points where the gradient vanishes. Index of a critical point= number of decreasing directions. Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points = points where the gradient vanishes. Index of a critical point= number of decreasing directions. Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.

The (opposite of the) gradient of f generates a dynamical system $\phi: M \times \mathbb{R} \to M$. Critical points = points where the gradient vanishes. Index of a critical point= number of decreasing directions. Thm: M is homotopy equivalent to a CW-complex with a k-cell for each critical point of index k.

Morse inequalities: If α_k is the number of critical points of index k, $\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \ge b_k(M) - b_{k-1}(M) + \ldots + (-1)^k b_0(M)$.

Discrete Morse Theory by R. Forman

<ロ> <回> <回> <回> <三> <三> <三> <三> <三</p>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supsetneq \sigma | f(\tau) \le f(\sigma)\} \le 1$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supsetneq \sigma | f(\tau) \le f(\sigma)\} \le 1$.

(日)、

-

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supsetneq \sigma | f(\tau) \le f(\sigma)\} \le 1$. Critical simplex= both numbers above are 0.

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supsetneq \sigma | f(\tau) \le f(\sigma)\} \le 1$. Critical simplex= both numbers above are 0. Index of a critical simplex= its dimension.

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supsetneq \sigma | f(\tau) \le f(\sigma)\} \le 1$. Critical simplex= both numbers above are 0. Index of a critical simplex= its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supseteq \sigma | f(\tau) \le f(\sigma)\} \le 1$. Critical simplex= both numbers above are 0. Index of a critical simplex= its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supsetneq \sigma | f(\tau) \le f(\sigma)\} \le 1$. Critical simplex= both numbers above are 0. Index of a critical simplex= its dimension.

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

Morse inequalities: α_k the number of critical simplices of index k, $\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \ge b_k(M) - b_{k-1}(M) + \ldots + (-1)^k b_0(M).$

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supsetneq \sigma | f(\tau) \le f(\sigma)\} \le 1$. Critical simplex= both numbers above are 0. Index of a critical simplex= its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

Morse inequalities: α_k the number of critical simplices of index k, $\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \ge b_k(M) - b_{k-1}(M) + \ldots + (-1)^k b_0(M)$. Applications: Topological combinatorics

K a simplicial complex. A map $f: S_K \to \mathbb{R}$ is a discrete Morse function if for every $\sigma \in K$, $\sharp\{\tau \subsetneq \sigma | f(\tau) \ge f(\sigma)\} \le 1$ and $\sharp\{\tau \supsetneq \sigma | f(\tau) \le f(\sigma)\} \le 1$. Critical simplex= both numbers above are 0. Index of a critical simplex= its dimension.

Thm: K is homotopy equivalent to a CW-complex with a k-cell for each critical simplex of index k.

Morse inequalities: α_k the number of critical simplices of index k, $\alpha_k - \alpha_{k-1} + \ldots + (-1)^k \alpha_0 \ge b_k(M) - b_{k-1}(M) + \ldots + (-1)^k b_0(M)$. Applications: Topological combinatorics, Topological Data Analysis, Biology, Computer Science, etc.

イロト イポト イヨト イヨト

э

▲日 ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● ● ● ●

For every
$$\sigma \in K$$
 we have that
 $I_{\sigma} = \sharp \{ \tau \subsetneq \sigma | f(\tau) \ge f(\sigma) \} \le 1,$
 $u_{\sigma} = \sharp \{ \tau \supseteq \sigma | f(\tau) \le f(\sigma) \} \le 1.$
Gradient vector field: is the map
 $V : \{ \sigma | I_{\sigma} = 0 \} \rightarrow \{ \sigma | u_{\sigma} = 0 \}$
which maps σ to τ if $\tau \supseteq \sigma$ and
 $f(\tau) \le f(\sigma)$. If no such τ exists,
 $V(\sigma) = \sigma$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

 $\sigma_i \neq \sigma_{i+1}$ for each *i*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each *i*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each *i*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each *i*.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each *i*. Morse complex: For each $p \ge 0$ let C_p be the free abelian group generated

by the critical *p*-simplices. Define ∂ : $C_{p+1} \rightarrow C_p$ by $\partial(\sigma) = \sum c_{\tau,\sigma} \tau$ where $c_{\tau,\sigma} = \sum_{\gamma \in \Gamma(\sigma,\tau)} m(\gamma), m(\gamma) = \pm 1$ de-

pending on orientations.

Gradient path: $\sigma_0 \prec \tau_0 \succ \sigma_1 \prec \tau_1 \succ \ldots \succ \sigma_n$ with $V(\sigma_i) = \tau_i$ and $\sigma_i \neq \sigma_{i+1}$ for each *i*.

Morse complex: For each $p \ge 0$ let C_p be the free abelian group generated by the critical *p*-simplices. Define ∂ : $C_{p+1} \rightarrow C_p$ by $\partial(\sigma) = \sum c_{\tau,\sigma} \tau$ where $c_{\tau,\sigma} = \sum_{\gamma \in \Gamma(\sigma,\tau)} m(\gamma), m(\gamma) = \pm 1$ de-

pending on orientations.

Example: $\mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z}$.

General definition of vector field in K: is map $V : A \to B$ for subsets $A, B \subseteq S_K$ such that i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$, ii) $A \cup B = S_K$, iii) $A \cap B = \text{Fix}(V)$.

General definition of vector field in K: is map $V : A \to B$ for subsets $A, B \subseteq S_K$ such that i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$, ii) $A \cup B = S_K$, iii) $A \cap B = \text{Fix}(V)$.

Problem: we would like to have a dynamical system with phase space S_K and with trajectories given by gradient paths.

General definition of vector field in K: is map $V : A \to B$ for subsets $A, B \subseteq S_K$ such that i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$, ii) $A \cup B = S_K$, iii) $A \cap B = \operatorname{Fix}(V)$.

Problem: we would like to have a dynamical system with phase space S_K and with trajectories given by gradient paths.

1. Continuous-time dynamical systems on finite sets are trivial. Discrete-time dynamical system generated by a map $S_K \rightarrow S_K$.

General definition of vector field in K: is map $V : A \to B$ for subsets $A, B \subseteq S_K$ such that i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$, ii) $A \cup B = S_K$, iii) $A \cap B = \operatorname{Fix}(V)$.

Problem: we would like to have a dynamical system with phase space S_K and with trajectories given by gradient paths.

1. Continuous-time dynamical systems on finite sets are trivial. Discrete-time dynamical system generated by a map $S_K \rightarrow S_K$.

2. More than one path through a simplex. Use a multivalued map $F:S_{\mathcal{K}}\multimap S_{\mathcal{K}}.$

General definition of vector field in K: is map $V : A \to B$ for subsets $A, B \subseteq S_K$ such that i) for every $\sigma \in A$, $V(\sigma) = \sigma$ or σ is a codimension 1 face of $V(\sigma)$, ii) $A \cup B = S_K$, iii) $A \cap B = \operatorname{Fix}(V)$.

Problem: we would like to have a dynamical system with phase space S_K and with trajectories given by gradient paths.

1. Continuous-time dynamical systems on finite sets are trivial. Discrete-time dynamical system generated by a map $S_K \rightarrow S_K$.

2. More than one path through a simplex. Use a multivalued map $F:S_{\mathcal{K}}\multimap S_{\mathcal{K}}.$

3. What is a topology in the finite set S_K ?

Finite topological spaces: what is an interesting topology on S_K ?

<□> <@> < E> < E> E のQ@

(日)、

-

Open sets=down-sets

Open sets=down-sets (in Dynamics opposite convention).

Open sets=down-sets (in Dynamics opposite convention). More generally, this gives a map

Finite posets \rightarrow Finite topological spaces.

Open sets=down-sets (in Dynamics opposite convention). More generally, this gives a map

Finite posets \rightarrow Finite topological spaces.

These finite spaces are T_0 (given two different points there is an open set containing only one).

Open sets=down-sets (in Dynamics opposite convention). More generally, this gives a map

Finite posets \rightarrow Finite topological spaces.

These finite spaces are T_0 (given two different points there is an open set containing only one). Conversely, if X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$.

Open sets=down-sets (in Dynamics opposite convention). More generally, this gives a map

Finite posets \rightarrow Finite topological spaces.

These finite spaces are T_0 (given two different points there is an open set containing only one). Conversely, if X is a finite T_0 space, we define for every $x \in X$, $U_x = \bigcap_{U \ni x} U$. Set $x \le y$ if $x \in U_y$. Then \le is a partial order in X.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We have a correspondence Finite posets \leftrightarrow Finite T_0 spaces.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

We have a correspondence Finite posets \leftrightarrow Finite T_0 spaces.

Prop: A map $f : X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving $(x \le x' \text{ implies } f(x) \le f(x'))$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We have a correspondence Finite posets \leftrightarrow Finite T_0 spaces.

Prop: A map $f : X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving $(x \le x' \text{ implies } f(x) \le f(x'))$. **Proof:** \Rightarrow) Suppose $x \le x'$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We have a correspondence Finite posets \leftrightarrow Finite T_0 spaces.

Prop: A map $f : X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving $(x \le x' \text{ implies } f(x) \le f(x'))$. **Proof:** \Rightarrow) Suppose $x \le x'$. Then $U_{f(x')} \subseteq Y$ is open and so is $f^{-1}(U_{f(x')})$.

We have a correspondence Finite posets \leftrightarrow Finite T_0 spaces.

Prop: A map $f: X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving $(x \le x' \text{ implies } f(x) \le f(x'))$. Proof: \Rightarrow) Suppose $x \le x'$. Then $U_{f(x')} \subseteq Y$ is open and so is $f^{-1}(U_{f(x')})$. Thus $x \in U_{x'} \subseteq f^{-1}(U_{f(x')})$.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二面 - 釣ぬ⊙

We have a correspondence Finite posets \leftrightarrow Finite T_0 spaces.

Prop: A map $f: X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving $(x \le x' \text{ implies } f(x) \le f(x'))$. **Proof:** \Rightarrow) Suppose $x \le x'$. Then $U_{f(x')} \subseteq Y$ is open and so is $f^{-1}(U_{f(x')})$. Thus $x \in U_{x'} \subseteq f^{-1}(U_{f(x')})$. Then $f(x) \in U_{f(x')}$, so $f(x) \le f(x')$.

We have a correspondence Finite posets \leftrightarrow Finite T_0 spaces.

Prop: A map $f: X \to Y$ between finite T_0 spaces is continuous if and only if it is order-preserving $(x \le x' \text{ implies } f(x) \le f(x'))$. Proof: \Rightarrow) Suppose $x \le x'$. Then $U_{f(x')} \subseteq Y$ is open and so is $f^{-1}(U_{f(x')})$. Thus $x \in U_{x'} \subseteq f^{-1}(U_{f(x')})$. Then $f(x) \in U_{f(x')}$, so $f(x) \le f(x')$. \Leftarrow) Exercise. Closed sets=up-sets.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 오 ()

Closed sets=up-sets. Locally closed= intersection of an open and a closed subset = intervals of the poset.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Connectivity: The Sierpiński space

Connectivity: The Sierpiński space \int_{b}^{a} is path-connected, $\gamma(t) = b$ for t < 1, $\gamma(1) = a$ is continuous.

Connectivity: The Sierpiński space \int_{b}^{a} is path-connected, $\gamma(t) = b$ for t < 1, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected.

Connectivity: The Sierpiński space \int_{b}^{a} is path-connected, $\gamma(t) = b$ for t < 1, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Connectivity: The Sierpiński space \int_{b}^{a} is path-connected, $\gamma(t) = b$ for t < 1, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Thm: Two continuous maps $f, g: X \to Y$ between finite spaces are homotopic iff there is a sequence $f = f_0 \le f_1 \ge f_2 \le \dots = f_n = g$, where $h \le h'$ means $h(x) \le h'(x)$ for every $x \in X$.

Connectivity: The Sierpiński space \int_{b}^{a} is path-connected, $\gamma(t) = b$ for t < 1, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Thm: Two continuous maps $f, g: X \to Y$ between finite spaces are homotopic iff there is a sequence $f = f_0 \leq f_1 \geq f_2 \leq \ldots f_n = g$, where $h \leq h'$ means $h(x) \leq h'(x)$ for every $x \in X$. Proof: By the exponential law, there is a homotopy $H: X \times [0,1] \to Y$ from f to g iff there is a path $\gamma: [0,1] \to Y^X$ from f to g.

Connectivity: The Sierpiński space \int_{b}^{a} is path-connected, $\gamma(t) = b$ for t < 1, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Thm: Two continuous maps $f, g: X \to Y$ between finite spaces are homotopic iff there is a sequence $f = f_0 \leq f_1 \geq f_2 \leq \ldots f_n = g$, where $h \leq h'$ means $h(x) \leq h'(x)$ for every $x \in X$. Proof: By the exponential law, there is a homotopy $H: X \times [0,1] \to Y$ from f to g iff there is a path $\gamma: [0,1] \to Y^X$ from f to g. The order associated to the compact-open topology in Y^X is the pointwise-order defined above.

Connectivity: The Sierpiński space \int_{b}^{a} is path-connected, $\gamma(t) = b$ for t < 1, $\gamma(1) = a$ is continuous. Thus, if the Hasse diagram is connected as an undirected graph, the topological space is path-connected. The converse holds.

Thm: Two continuous maps $f, g: X \to Y$ between finite spaces are homotopic iff there is a sequence $f = f_0 \leq f_1 \geq f_2 \leq \ldots f_n = g$, where $h \leq h'$ means $h(x) \leq h'(x)$ for every $x \in X$. Proof: By the exponential law, there is a homotopy $H: X \times [0,1] \to Y$ from f to g iff there is a path $\gamma: [0,1] \to Y^X$ from f to g. The order associated to the compact-open topology in Y^X is the pointwise-order defined above. So there is a path from f to g iff they are in the same component of the Hasse diagram.

<□ > < @ > < E > < E > E のQ @

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

If X is a finite T_0 space, $\mathcal{K}(X)$ denotes its order complex.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

If X is a finite T_0 space, $\mathcal{K}(X)$ denotes its order complex.

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

If X is a finite T_0 space, $\mathcal{K}(X)$ denotes its order complex.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Do finite spaces have interesting homotopy features (non-trivial homotopy groups, homology)?

Thm (McCord): If K is a simplicial complex, K and $\mathcal{X}(K)$ have the same homotopy and homology groups.

If X is a finite T_0 space, $\mathcal{K}(X)$ denotes its order complex.

b

Thm (McCord): X and $\mathcal{K}(X)$ have the same homotopy and homology groups.