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Generalizing differential geometry

e We know how to do lots of differential geometry in the vector
spaces R”. ..
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Generalizing differential geometry

We know how to do lots of differential geometry in the vector
spaces R”. ..

Can we extend this to more general spaces which look locally
like R" (e.g. a sphere)?

Most operations in linear algebra are performed on
vectors/linear transformations/etc which are expressed in
some coordinate system, but nature does not come equipped
with those. Can we define things in a way that is independent
of a choice of coordinates?

The general idea is to extend globally what we know locally.
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Differential
geometry

in R"



Derivation
Definition
The derivative f'(xp) of a function

f : UCR —- R

at xg € U is defined as

f —f
o) = lim 10D =fl0)
t—0
xo+teU
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Derivation

Definition
The derivative f'(xp) of a function

f : UCR —- R

at xg € U is defined as

f —f
o) = lim 10D =fl0)
t—0
xo+teU

Or equivalently,

f(xo+t) = f(xo)+Ff(x0) t+ |t e(t)
with
e:R—=R s.t. lime(t) =0
t—0
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Differentiation

Definition
The differential df, of a function f : R” — R™ at a point p € R"
is a linear map

df, : R" — RT”

such that, for v € R”,
flp+v) = f(p)+dfy(v)+|v]-e(v)

with e : R" — R s.t. lim|50¢(v) = 0.
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Differentiation

Definition
The differential df, of a function f : R” — R™ at a point p € R"
is a linear map

df, : R" — RT”

such that, for v € R”,
flp+v) = f(p)+dfy(v)+|v]-e(v)

with e : R" — R s.t. lim|50¢(v) = 0.

e Does not depend on || —||: all the norms are equivalent on R”".

e Uniquely defined: R"” is complete.

Notice that differentials might not exist, but | won't bother about
definition problems here.
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Basic properties

Proposition

e Given f : R" — R™ linear,
f(p+v)="f(p)+f(v)+|v]-0

so, df, = f.
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Basic properties

Proposition
e Given f : R" — R™ linear,
flp+v)=1f(p)+f(v)+|v[-0

so, df, = f.
e d(gof),=dgrp)odfy
° d(f_l)f(p) = (dfp)_l
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Basic properties

Proposition

e Given f : R" — R™ linear,
f(p+v)="f(p)+f(v)+|v]-0

so, df, = f.
e d(gof),=dgrp)odfy
U d(f_l)f(p) = (dfp)_l
e ctc.
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Vector spaces
Definition
A vector space V over a field k = R consists of

e an (additive) abelian group V:

(u+v)+w=u+(v+w)
O+v=v
v—v=20

v4+w=w+v
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Vector spaces

Definition

A vector space V over a field k = R consists of
e an (additive) abelian group V:
e an action of k over V:

a(v+w)=av+aw (a+ B)v =av + pBv
a(Bv) = (af)v lv=v
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Vector spaces

Definition

A vector space V over a field k = R consists of
e an (additive) abelian group V:
e an action of k over V:

alv+w)=av+aw (a+ B)v =av + pBv
a(fv) = (aB)v lv=v

Definition
A linear map f : V — W is a function satisfying

f(v+w)=~f(v)+f(w) f(av) = af(v)

We denote by V — W the set of linear maps between V and W.
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Differentiation

Definition
Given
f:R" — R™
its differential is
df : R"—=R"—oR™

(when it is defined on every point p € R").
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Linearity of differentiation

The linear space V —o W (pointwisely) inherits a structure of
vector space

f+g=ve—f(v)+g(v) af = v~ af(v)
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Linearity of differentiation

The linear space V —o W (pointwisely) inherits a structure of
vector space

f+g=ve—f(v)+g(v) af = v~ af(v)

Given p € R”, differentiation at p is linear over R"” — R":

d(f +g)p, = dfp+dg d(af), = adf,
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Differentials and partial derivation

The differential of f is

df : R" 5 R"—oR"
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Differentials and partial derivation
The differential of f is

df : R" 5 R"—oR"

e We have considered the differential at a point p € R"

df, = ve=df(p,v) : R"—R"
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Differentials and partial derivation

The differential of f is

df : R"—>R"—oR"

e We have considered the differential at a point p € R"
df, = ve=df(p,v) : R"—R"
e We can also consider partial derivative in direction v € R”

of = g": = pedf(p,v) : R"—=R™

10
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Differential in a basis

Proposition

Given a basis (ej)1<i<n of R, we have

df,(v) = df, (Zv,--e,-)
= Zv;'dfp(e;)

of
= Z vi - %(P)

In other words,

o = Z ax’

with x' : R™ — R the canonical i-th projection.
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The chain rule

Given x : R — R" and g : R" — R, the chain rule says
dlgox): = dgyz)odxe
which is a way to write the usual chain rule

df of dx'

dt iaxidt

12 /130



Manifolds
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Manifolds
Definition
An n-dimensional smooth manifold consists of
e a topological space X
e an open covering (Ui)ie of X: Ui, Ui = X

e charts p; : Ui — V; CR" (invertible and continuous) forming
an atlas: the transition functions

AN

vj = wiowiliVi—

are smooth.
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Manifolds
Definition
An n-dimensional smooth manifold consists of
e a topological space X
e an open covering (Ui)ie of X: Ui, Ui = X

e charts p; : Ui — V; CR" (invertible and continuous) forming
an atlas: the transition functions

AN

vj = wiowiliVi—

are smooth.

Example < o
The 1-sphere: |< @ ,|
x2+y?=1
4---E\I—/E--->
Y Vv v
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Manifolds
Definition
An n-dimensional smooth manifold consists of
e a topological space X
e an open covering (Ui)ie of X: Ui, Ui = X

e charts p; : Ui — V; CR" (invertible and continuous) forming
an atlas: the transition functions

AN

vj = wiowiliVi—

are smooth.

Example
Every finite-dimensional vector space V = R”".
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Manifolds
Definition
An n-dimensional smooth manifold consists of
e a topological space X
e an open covering (Ui)ie of X: Ui, Ui = X

e charts p; : Ui — V; CR" (invertible and continuous) forming
an atlas: the transition functions

AN

vj = wiowiliVi—
are smooth.
Remark

In the following, we will not bother about definition issues and
suppose that V; = R".
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Manifolds
Definition
An n-dimensional smooth manifold consists of
e a topological space X
e an open covering (Ui)ie of X: Ui, Ui = X

e charts p; : Ui — V; CR" (invertible and continuous) forming
an atlas: the transition functions

AN

vj = wiowiliVi—

are smooth.

Remark
There are many possible variations over the definition:

e we can replace “smooth” by other adjective such as
“differentiable”, "analytic”, etc.

e we can replace R by C and consider holomorphic transitions
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Compatible atlases

Two atlases on X are compatible when their union is still an atlas.
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Compatible atlases

Two atlases on X are compatible when their union is still an atlas.

e Compatibility is an equivalence relation.
e The union of an equivalence relation is a maximal atlas.

e An atlas is included in a unique maximal atlas.

In theory we can thus use the maximal atlas,
but smaller is simpler in practice.

15
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Morphisms

Definition
Given two m- and n-manifolds M = (X, U;, ¢;) and
N = (Y, Vi,v;), a morphism

f : M—=N

is a function f : X — Y such that for every i,/ the function fj is

smooth and satisfies
Rm L Rn

i—VY

16
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The category of manifolds

e We can thus define a category of manifolds: Man.
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The category of manifolds

We can thus define a category of manifolds: Man.
It has coproducts of manifolds of same dimension.
It has cartesian products (of dim m + n)

It is not cartesian closed (the hom-space would be an
infinite-dimensional manifold. . .)

17 /130



Smooth functions

We write
M* = Man(M,R)

for the set of smooth functions from M to R, i.e. functions
f : M—=R

such that for every i, f o ¢; is smooth.
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Tangent spaces
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Tangent spaces

A path is a smooth map v : (-1,1) - M.
Definition
Fix a chart ¢ : U — R". We define an equivalence relation on

paths 7 : R — M such that v(0) = p by

v~ p whenever (po07)(0)=(pop)(0)

The tangent space T,M is the quotient of those paths (germs).
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Tangent spaces
A path is a smooth map v : (-1,1) - M.
Definition
Fix a chart ¢ : U — R". We define an equivalence relation on

paths 7 : R — M such that v(0) = p by

v~ p whenever (po07)(0)=(pop)(0)

The tangent space T,M is the quotient of those paths (germs).

Remark
This equivalence relation is independent of the chart.
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Tangent spaces as vector spaces

Proposition
Given a chart (U, ), the map T, : T,M — R" defined by

T.(v) = (pov)(0)

is an isomorphism.
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Tangent spaces as vector spaces

Proposition
Given a chart (U, ), the map T, : T,M — R" defined by

T.(v) = (pov)(0)

is an isomorphism.

This allows to transfer the structure of vector space of R" to T,

e.g.
Yytp = Tgl((T¢7)+(T¢P))

(and this does not depend on the choice of the chart).
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Tangent spaces
Actually, since it is enough to “test” linear morphisms
coordinatewise, we can define T,M as follows:

Definition
Fix a chart ¢ : U — R". We consider paths v : R — M such that
~v(0) = p and “copaths” g : M — R such that g(p) = 0. We define

g = XE2 ()

Two paths ~, p are equivalent when
Vg:M—=R,  (vlg)p = (rlg)s

Tp,M is the set (vector space) of equivalence classes of paths.
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Tangent spaces

Actually, since it is enough to “test” linear morphisms
coordinatewise, we can define T,M as follows:

Definition
Fix a chart ¢ : U — R". We consider paths v : R — M such that
~v(0) = p and “copaths” g : M — R such that g(p) = 0. We define

g = 2E2()

Two paths ~, p are equivalent when

Vg: M —R, (Vlg)p = (plg)p

Tp,M is the set (vector space) of equivalence classes of paths.

Remark
The dual notion on copaths gives rise to the notion of cotengent
vector space of covectors T, M.
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Differentials

Definition
Given a morphism f : M — N, we define its differential at p € M

d fp . Tp M —0 Tf(p) N

by
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Smooth functions
Recall that M* is the set of smooth functions f : M — R.
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Smooth functions
Recall that M* is the set of smooth functions f : M — R.

Given two such functions f, g € M*, we can
e add them: (f 4 g)(x) = f(x) + g(x)
e multiply them by a € R: (af)(x) = af(x)
o multiply them: (f - g)(x) = f(x) x g(x)
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Smooth functions
Recall that M* is the set of smooth functions f : M — R.

Given two such functions f, g € M*, we can
e add them: (f 4 g)(x) = f(x) + g(x)
e multiply them by a € R: (af)(x) = af(x)
o multiply them: (f - g)(x) = f(x) x g(x)

The two first equip the space with a structure of vector space,
which satisfies

(fg)h = f(gh) fg = gf
f(g+h)=fg+fh (f+g)h="fg+gh

which is called a (commutative) algebra.
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Algebras

Definition
An algebra is a vector space A together with a multiplication

— = . ARA — A
such that multiplication is associative

Va, b, c € A, (a-b)-c = a-(b-c)
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Properties of derivation

Given f : M — N, we have defined df, : T,M —o Tf‘(p)N.
Given v € T,M, we can also define 9, : M* — R by

o(f) = dfp(v) = (fov)(0)
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Properties of derivation

Given f : M — N, we have defined df, : T,M —o Tf‘(p)N.
Given v € T,M, we can also define 9, : M* — R by

O(f) = df(v) = (Fov)(0)
Proposition

Suppose given f,g : M*.

e Differentiation is linear:
o(f+g)=0,f+0dg o, (af) = ad, f
e [t satisfies the Leibnitz law: given v € T,M,

o(f-g) = O, -g(p)+f(p)-dvg

26
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Tangent space — via derivations

Actually, this can be taken as a definition,
by identifying v with 9, !
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Tangent space — via derivations
Actually, this can be taken as a definition,

by identifying v with 9,!

Definition
The tangent space T,M is the vector space whose elements are

v : M — R
such that
v(if+g) = v(f)+v(g)
v(ag) = av(f)
v(f-g) = v(f) glp)+f(p) v(g)

i.e. the space of derivations at p of the algebra M*.

27 /130



Tangent space — via derivations

With this definition it is easy to show that T,M is a vector space:

(v+w)(f) = v(f) +w(f)  (av)(f) = av(f)
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Tangent space — via derivations

With this definition it is easy to show that T,M is a vector space:

(v + w)(f) = v(f) + w(f) (av)(f) = av(f)

Given a chart ¢ : U — R" with p € U and a basis (x) of R",
the vectors J; defined by

_ O(fop™)

oi(f) = T o

form a basis for this vector space.
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Derivation as a functor

We have a functor
pMan — Vect

which sends
(M, x) to <M

and

f:(M,x)—(N,y) to df, : M — T,N

The chain rule is precisely the axiom of functoriality
wrt composition.
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Vector fields

Intuition: a vector field is given by a vector v, € T,M for each
point p € M, which varies continuously in p.

We'll use tangent bundles to define them.
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Tangent bundle

Definition
The tangent bundle is

™ = ][ TwM

Proposition

If M is an n-manifold, TM is canonically a 2n-manifold.
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Tangent bundle
Definition
The tangent bundle is
™ = ][ TwM

peM

Proposition
If M is an n-manifold, TM is canonically a 2n-manifold.

We write w: TM — M for the canonical projection

T = vel,M ~ p
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Vector fields
Definition
A vector field v is a section of the tangent bundle TM, i.e. a map

v : M —= TM

such that
Tov = idy

Vectors fields are denoted '( TM).
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Vector fields

Definition
A vector field v is a section of the tangent bundle TM, i.e. a map

v : M —= TM

such that
Tov = idy

Vectors fields are denoted '( TM).

This means that v(p) = (g, vq € T¢M) such that g = p.

Notice that the map v is required to be smooth!
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Vector fields — via derivations
Definition

A vector field is a function v : M* — M* such that

v(f +g) =v(f)+v(g)
v(af) = av(f)
v(f-g)=v(f)-g+f-v(g)

i.e. a derivation of the algebra M*.
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Vector fields — via derivations
Definition

A vector field is a function v : M* — M* such that

v(f +g) =v(f)+v(g)
v(af) = av(f)
v(f-g)=v(f)-g+f-v(g)

i.e. a derivation of the algebra M*.

Proposition

Vector fields over M form an M*-module with

(v 4+ w)(f) = v(f) + w(f)
(g-v)(f) =g v(f)
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Pullback and push forward
A morphism ¢ : M — N induces
¢ a pullback function

defined by
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Pullback and push forward
A morphism ¢ : M — N induces
¢ a pullback function

o* o NF— M

defined by
¢*(f) = foo

e a pushforward function
(Z)* . TPM d T¢(p)N

defined by
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Pullback and push forward
A morphism ¢ : M — N induces
¢ a pullback function

ot N* = M*
defined by

¢*(f) = foo

e a pushforward function
0 . TPM — T¢(p)N

defined by

d«(v) = vogo"

Remark

Notice that functions are contravariant and vectors are covariant.
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Coordinates

The vector space R" is equipped with canonical coordinate
functions, which are the projections

x: R" o5 R
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Coordinates

The vector space R" is equipped with canonical coordinate
functions, which are the projections

x: R" o5 R

These induce coordinate functions p*x’ : U — R”, that we
(abusively) still denote x', called local coordinates.

TODO: Change of basis.....

35
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Writing conventions

In the following, we use Einstein summation convention: we
implicitly sum over repeated indices in a formula, e.g.

v = Vo
(with v/ = v(x")) means

v = Zv"a,-
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Writing conventions

In the following, we use Einstein summation convention: we
implicitly sum over repeated indices in a formula, e.g.

v = Vo
(with v/ = v(x")) means

v = Zv"a,-

Concerning the indices, we write
e x' for a contravariant quantities (coordinates, n-forms, etc.)
e 0; for a covariant quantities (vectors, etc.)

Notice that
v=1Vv'0; and w = w;jdx'

36

130



Differential
1-forms



Differential
Recall that given p € M and f : M — N, we have defined

df, © TpM  — TN
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Differential
Recall that given p € M and f : M — N, we have defined

df, « T,M —o Tf(p)N
In particular, given f € M* = M — R, we have

df, : T,M — R
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Differential
Recall that given p € M and f : M — N, we have defined

dfp, + TpM — TN
In particular, given f € M* = M — R, we have
df, : T,M — R
and these can be “collected together” into
df : I(TM) — M*

by
df(v)(p) = dfp(vp)
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Differential
Recall that given p € M and f : M — N, we have defined

dfp, + TpM — TN
In particular, given f € M* = M — R, we have
df, : T,M — R
and these can be “collected together” into
df : I(TM) — M*

by
df(v)(p) = dfp(vp)

This function can easily be shown to be linear over the module M*:

df (v + w) = df(v) + df(w) df (o) = adf(v)

38 /130



1-forms

Definition
A differential 1-form

w = (TM) — M*

is a map which is linear over M*.

39/130



1-forms
Definition
A differential 1-form
w = (TM) — M*
is a map which is linear over M*.

Notation
We write Q1(M) for the M*-module of differential forms.

39/130



1-forms

Definition
A differential 1-form

w = (TM) — M*
is a map which is linear over M*.

Notation
We write Q'(M) for the M*-module of differential forms.

Example
Given f € M*, its differential (or exterior derivative)

df = v p—=dfy(vp)

is a 1-form.
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Exterior derivative
Proposition
The exterior derivative d : M* — QY(M) is

e linear:

d(f + g) =df +dg
d(af) = adf

e a derivation:
d(f -g)=df -g+f-dg

Proposition
The dx’ form a basis of the M*-module of 1-forms over R":

df = Z (;9:' ~dx’

(or locally in a manifold).
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Cotengent vectors

Definition
A cotengent vector at p € M is an element of T,M — R.
We thus write T;M for the cotengent vectors at p.
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Cotengent vectors

Definition
A cotengent vector at p € M is an element of T,M — R.
We thus write T;M for the cotengent vectors at p.

Proposition
One can form the cotengent vector bundle

™M = [ Tim
peM

and 1-forms are its sections

QY(M) = T(T*M)
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TODO: cotengent vectors and 1-forms are contravariant
Derivative is natural: given f € M* and ¢ : M — N,

d(¢*f) = ¢*(df)

42 /130



(Co)tangent space as infinitesimals
Given p € M, consider the ideals

b = {feM |f(p)=0)

and
o= {Zfigi | fi,giel}
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(Co)tangent space as infinitesimals
Given p € M, consider the ideals

b = {feM|f(p)=0}
and

o= {Zfigi\fi,giEI}

Definition
The cotangent space at p can be defined by

M = I,/

and the tangent space is T,M = (T, M)*.
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(Co)tangent space as infinitesimals
Given p € M, consider the ideals

b = {feM|f(p)=0}
and

o= {Zfigi\fi,giEI}

Definition

The cotangent space at p can be defined by
M = I,/

and the tangent space is T,M = (T, M)*.

Proof.

A derivation D satisfies D(f) =0 for f € lg, ie. D: Ip/lg — R.

Conversely, given r € I,/12, D(f) = r((f — f(x)) + 12) is
derivation.

43 /130



Towards
Algebraic
Geometry
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Towards algebraic geometry
Given a manifold M, an open set U C M is also canonically a
manifold. We can thus consider the (ring of) smooth functions
U* = Man(U,R). The collection of all those form a (pre)sheaf:

Definition
A presheaf (X, O) is a functor O : O(X)°P — C from the category
of open sets in X and reversed inclusions to a category C.
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Towards algebraic geometry

Given a manifold M, an open set U C M is also canonically a
manifold. We can thus consider the (ring of) smooth functions
U* = Man(U,R). The collection of all those form a (pre)sheaf:

Definition
A presheaf (X, O) is a functor O : O(X)°P — C from the category
of open sets in X and reversed inclusions to a category C.

e Here, we have X = M, O(U) = U* and C = Rings.
e Given U C V, we have a restriction function

o) — 0()
and we write the image of f € V

fll) or fly

45

130



Sheaves
Definition
A sheaf is a presheaf such that, for every open covering (U;) of
any open U C X:

@ Locality. If f,g € O(U) satisfy

f’u,- = g’u-

i

for each U; then
f = g
@® Gluing. If there exists f; € O(U;) are such that
fi|U,-mUj = G‘U,muj

then there exists f € O(U) such that

fi = f’U,.

46
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Sheaves

In the case C has products, this is equivalent to

Definition
A sheaf is a presheaf such that for any covering U; of U the
diagram .
o) — H o) _, II_J[ o(U;in U;)
is an equalizer, where the arrows are products _|5,-' —|5§muj and

—| U respectivel
U,‘ﬂUj p Yy
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What can we recover from rings?

Proposition
The points of M are in bijection with the maximal ideals of the
algebra M*.

Proof.

To a point p, one can associate the ideal
b = {feM|f(p)=0}

which is maximal and conversely, every maximal ideal is of this
form!
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Germs

Definition
Given a point p and functions f, g : U — R with p € U, we define
an equivalence relation by

f~g when flv = gly

for some V C U with p € V. The equivalence class of a function
is its germ and the collection of all germs at p is the stalk at p.
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The tangent space

Definition
The cotangent space at p is Ip/lf, where [, is the maximal ideal
of the stalk Op p.
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The tangent space

Definition
The cotangent space at p is Ip/lg where [, is the maximal ideal
of the stalk Op p.

Definition
The tangent space is the sheaf of morphisms from Oy, into the
ring of dual numbers R[X]/X?.
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Differential
Forms
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The area of a parallelogram
What is the area of a parallelogram spanned by vectors u and v?

(a+c,b+d)
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The area of a parallelogram
What is the area of a parallelogram spanned by vectors u and v?

(a+c,b+d)

We should have:
e A(u,v) bilinear:

A(ur + uz,v) = A(ug, v) + A(uz, v) A(au, v) = aA(u, v)
e A(u,u)=0
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The area of a parallelogram
What is the area of a parallelogram spanned by vectors u and v?

(a+c,b+d)

We should have:
e A(u,v) bilinear:

A(ur + uz,v) = A(ug, v) + A(uz, v) A(au, v) = aA(u, v)

e A(u,u)=0
e and therefore A(u,v) = —A(v, u)

A(u+v, u+v) = A(u, u)+A(u, v)+A(v, u)+A(v, v) = A(u, v)+A(v, u)
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The area of a parallelogram

Up to a multiplicative constant, there is only one alternating linear
form:
A VeV — V

this is the determinant of 2 x 2 matrices!

A(u,v) = det([u,v])
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The area of a parallelogram

Up to a multiplicative constant, there is only one alternating linear

form:
A VeV — V

this is the determinant of 2 x 2 matrices!

A(u,v) = det([u,v])

So, the area of a parallelogram generated by v and v is

det(u, v) = det(ux! + tpx?, vix! 4 vox?)
= upvy det(xt, x1) 4 upva det(xt, x?) + wpvy det(x?, x1) + wava ¢

= (U1V2 — U2V2) det(xl,x2)
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The area of a parallelogram

Up to a multiplicative constant, there is only one alternating linear

form:
A VeV — V

this is the determinant of 2 x 2 matrices!

A(u,v) = det([u,v])

So, the area of a parallelogram generated by v and v is

det(u, v) = det(ux! + tpx?, vix! 4 vox?)
= upvy det(xt, x1) 4 upva det(xt, x?) + wpvy det(x?, x1) + wava ¢

= (U1V2 — U2V2) det(xl,x2)

(and this generalizes in higher dimensions)
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A basis for areas

A differential 1-form can be seen as a way to measure
(infinitesimal) distances:

dx : I(TM) — M — R
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A basis for areas

A differential 1-form can be seen as a way to measure
(infinitesimal) distances:

dx : I(TM) — M — R

In order to measure areas with 2-forms, we should therefore take
the pairs (dx’,dx/) as basis for 2-forms but quotiented by relations
imposing that

(dx',dx)) = —(dx/,dx")
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Change of variables in integration

In dimension 1, the fundamental theorem of calculus gives:

¢>(b)
/ f(x)dx / f(o(t))o
¢(a)
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Change of variables in integration

In dimension 1, the fundamental theorem of calculus gives:
¢>(b)
/ f(x)dx / f(o(t))o
o(a)

More generally, given U C R"” open and ¢ : U — R" injective and
differentiable with continuous partial derivatives:

/ fdx'...dx" = /(foap)|det(Dg0)|dx1...dX"
w(U) u

where Dy is the Jacobian of ¢: (Dy);j = 0ip;.
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Division in the ring of dual numbers

The ring of dual numbers is R[e]/<2.
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Division in the ring of dual numbers

The ring of dual numbers is R[e]/<2.

With ¢ # 0, we have

a+be  (a+ be)(c—de)
c+de  (c+de)(c— de)
ac + (bc — ad)e — dbe?
- 2 _ 4222
a bc—ad
+ ——c

c c?
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Exterior algebra

Definition
Given a vector space (or a module) V, its free algebra is

TV = (Ve
keN
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Exterior algebra

Definition
Given a vector space (or a module) V, its free algebra is
TV = (Ve
keN
Definition

The exterior algebra AV of V is

AV = TV/I

where [ is the two-sided ideal generated by x ® x with x € V.

Its tensor product is written A.
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Antisymmetry

Proposition
We have x Ax =0 and x Ny = —y A x.

Proof.
0= (x+y)A(x+y) = xAx+xAy+yAx+yAy = xAy+yAx. [
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Antisymmetry

Proposition
We have x Ax =0 and x Ny = —y A x.

Proof.
0= (x+y)A(x+y) = xAx+xAy+yAx+yAy = xAy+yAx. [

Remark
We could have defined AV = TV//I where [ is the two-sided ideal

generated by x Q y + y ® x.
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Antisymmetry

Proposition
We have x Ax =0 and x Ny = —y A x.

Proof.
0= (x+y)A(x+y) = xAx+xAy+yAx+yAy = xAy+yAx. [

Remark
We could have defined AV = TV//I where [ is the two-sided ideal
generated by x Q y + y ® x.

Proposition
Given a basis (e;) of V, a basis of AV is ej, Nej, ... A ej with
h<lp<...<li. IfdimV = n then

n!

. __on : ky _
dimAV =2 and dimA*V = K(n = k)]
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Grading

The exterior algebra is naturally graded as a quotient of the tensor
algebra by a homogeneous ideal:

AV = PAkv
keN

The elements of AKV are of the form
Vi AV AN Vv

with v; € V.
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Example

Example
Given R? with the canonical orthonormal basis x, y and two
vectors v and w, we have

VAW = (viex + vy y) A (Waex + wyy) = (vewy — vywy) X Ay
=det(u,v) x Ay

where the determinant computes the (signed) area of the
parallelogram spanned by v and w.
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Example

Example

Given R? with the canonical orthonormal basis x, y and two
vectors v and w, we have

VAW = (viex + vy y) A (Waex + wyy) = (vewy — vywy) X Ay

=det(u,v) x Ay

where the determinant computes the (signed) area of the
parallelogram spanned by v and w.

Example
Similarly in R® we have

VAW = (Vewy —Vy Wy ) XAy + (Vi Wy — Vo Wy ) XAZ+(vy W — v, wy ) yAZ

and
uANvAw=det(u,v,w) x ANy Az
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The special dimension 3
We have seen that

n!

Kl(n— k)]
When dim V = 3, we have dim A2V = dim V = 3, so that

dimAKV =

A VARE-SE Vi

but there is no canonical isomorphism, which explains why the
“right-hand rule” can be replaced by the “left-hand rule”, i.e. there
is no particular reason to choose between the two isomorphisms

XNy —2z YAX—z
XNz—y ZAX =y
YAX— X ZANYy— X

Moreover, this does not generalize in other dimensions. . .
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p-forms

Definition
p-forms are defined as the exterior algebra of the M*-module
QY(M):

QM) = AQY(M)  QK(M) = A*QY(M)
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p-forms
Definition
p-forms are defined as the exterior algebra of the M*-module
QY(M):
QM) = AQY(M)  QK(M) = A*QY(M)
A p-form w can be assimilated to a function
AN(T,M) — R

i.e. an alternating multilinear map

w : TMx...xT,M — R

or
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p-forms

Definition
p-forms are defined as the exterior algebra of the M*-module
QY(M):

QM) = AQY(M)  QK(M) = A*QY(M)

We also have a definition as sections of the exterior power of the
cotengent bundle

QM) = T(AT;M)
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p-forms

Definition
p-forms are defined as the exterior algebra of the M*-module
QY(M):

QM) = AQY(M)  QK(M) = A*QY(M)

Remark
QM) = M.
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Remark
A 2-form is the same as an antisymmetric matrix.
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Integration
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Pullback
Suppose given ¢ : M — N. We can define a pullback operation:

e on O-forms:
o* QN - QM by  @f(F)=foo

with f € QON
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Pullback

Suppose given ¢ : M — N. We can define a pullback operation:

e on O-forms:
o* QN - QM by  @f(F)=foo

with f € QON

e on cotangent vectors:
¢ ToN = Ty M by " (w)(v) = w(d«v)

with w € T,’;N and v € T¢(p)/\/l
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Pullback

Suppose given ¢ : M — N. We can define a pullback operation:

e on O-forms:
o* QN - QM by  @f(F)=foo

with f € QON

e on cotangent vectors:
¢ ToN = Ty M by " (w)(v) = w(d«v)

with w € T,’;N and v € T¢(p)/\/l

e on 1-forms:
QAN QM by (¢W)p = ¢ (We(p)

with w € QIN
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Pullback

Proposition
Given ¢ : M — N there exists a unique pullback map

o . QN — QM

such that ¢* agrees with the previous definition on Q°M, on Q' M
and such that

P(aw) = «ap'w
P (wtp) = Pwtopu
S = Fwng
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Integration on R”
Given w € Q"U with U C R" open, we can define

/w = /wdxl...dx"
U U

67 /130



Integration on R”
Given w € Q"U with U C R" open, we can define

/w = /wdxl...dx"
U U

In order to check whether this is independent of the choice of

basis, recall that
/ Fdxl...dx" = /(fo¢)|det(Dq§)|dx1...dx"
(V) U
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Integration on R”
Given w € Q"U with U C R" open, we can define

/w = /wdxl...dx"
U U

In order to check whether this is independent of the choice of
basis, recall that

/ Fdxl...dx" = /(foq5)|det(Dq§)|dx1...dx"
o(U) U

Proposition
Given a diffeomorphism ¢ : U — V between two open subsets
of R" such that det(D¢) is of constant sign §, then for every

n-formw € Q"V,
/(;S*w:é/ w
U 14
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Orientable manifolds
Given two basis x; and y; of T,M with y; = zj,- then
ViAo Ay, = (detT)xiA...Ax,

Two such volume elements have the same orientation when
det(T) > 0.
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Orientable manifolds

Given two basis x; and y; of T,M with y; = zj,- then
ViAo Ay, = (detT)xiA...Ax,

Two such volume elements have the same orientation when
det(T) > 0.

Definition
A volume form on an n-manifold M is an n-form which is nowhere
zero. A manifold is orientable when it admits a volume form.
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Orientable manifolds
Given two basis x; and y; of T,M with y; = zj,- then
ViAo Ay, = (detT)xiA...Ax,

Two such volume elements have the same orientation when
det(T) > 0.

Definition
A volume form on an n-manifold M is an n-form which is nowhere
zero. A manifold is orientable when it admits a volume form.

Remark
For instance the Mobius strip is not orientable.
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Integration on a manifold
We write Q2 M for the n-forms with compact support.

We can define integration by “splitting over charts™:
Proposition

Given a smooth oriented n-manifold M there exits a unique linear
/ L QM) — R
M

such that if suppw C U with (U, ¢) positively oriented chart then

/Mw = L(U)(wl)*w
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Integration on a manifold

In the case where w does not have compact support, we have to
suppose that M is paracompact and Hausdorff. In this case, it
admits partitions of unity:

Definition

A partition of unity is a collection of functions f; € M* such that
@ f; is zero outside U;
@® for every point pe M, >, fi(p) =1

© for every point p € M there is an open neighborhood on
which finitely many f; are nonzero.
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Integration on a manifold

In the case where w does not have compact support, we have to
suppose that M is paracompact and Hausdorff. In this case, it
admits partitions of unity:
Definition
A partition of unity is a collection of functions f; € M* such that
@ f; is zero outside U;
@® for every point pe M, >, fi(p) =1
© for every point p € M there is an open neighborhood on
which finitely many f; are nonzero.

We thus have

w:Zf,-w

70 /130



Integration on a manifold

Since w = ) ; fiw, we define

Juo =

where by definition

| = [ et
U o(U7)

with (U;, i) a positively oriented chart.
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Integration on a manifold

Since w = ) ; fiw, we define

Juo =

where by definition

| = [ et
U o(U7)

with (U;, i) a positively oriented chart.

Proposition
This does not depend on the choice of the partition of unity.
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Derivation

72 /130



Exterior derivative

Definition
The exterior derivative

d: QK(M) = QL (m)

is defined by
® d: Q°(M) — QY(M) is the usual differential

® d is linear
(the QK(M) are real vector spaces)

© d(wAp)=doApu+ (—1)kwAdy
for w € QK(M) and p € Q(M)
@ d(dw) = 0 for w € Q(M)
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On R3

In]R3,given
w = wydx+w,dy+w,dz

for w_ € Q°M = M*, we have

dw = d(wy dx + w, dy + w, dz)
= dwy Adx +wx Addx +dw, Ady +w, Addy +dw, Adz +w, Ad
= dwyx N dx + dwy, Ady + dw, A dz
= (Oxwx dx + Oywy dy + O, widz) Adx + ...
= Oxwx dx N dx + Oywyx dy Adx + Ozwxdz Adx + ...
= —Oywyx dx Ady + O,wyxdz Adx + ...
= (Oxwy — Oywy) dx A dy + (Oyw; — O,wy ) dy Adz + (O,wx — Oxwy)

~V xuw
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On R3

In R3, given
w = wydxAdy+wy,dy Adz + wydz Adx
we have similarly

dw = dwyxy, Adx Ady +dwy, Ady Adz + dwz Adz Adx
= Oywyxy dz ANdx Ady + Oxwy, dx Ady Adz 4 Oywz dy Adz A dx
= (Oxwyz + Oywz + Ozwyy ) dx Ady Adz

~V- w

75 /130



On R3
An easy computation shows that
e d: QR") — QY(R") is the gradient
V = f = 9ifdx
o d: QYR3) — Q2(R3) is the curl
VXx—-— = w O;wjdxi/\dxj
o d:Q2(R3) — Q3(R3) is the divergence

V.- = w = (O1was + dwisz + d3w12)

with w = wis dx! Adx2 + wiz dx! A dx3 + was dx2 A dx3.
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In local coordinates

Given a multiset | = (i1,...,ik) in {1,..., k}, with i <... <y,
the exterior derivative of the k-form

w = fdx = i dxm AL AdxXE
is
n .
dw = D 9fdx A x
i=1

and this extends to general k-forms

w = Zf,dxl
I
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Riemannian manifolds
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Riemannian manifolds

Definition
A Riemannian metric is a bilinear map

g : VV-—oR

which is symmetric and positive-definite:
g(v,v) > 0 with equality only if v =10
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Riemannian manifolds

Definition
A semi-Riemannian metric is a bilinear map

g : VV-—oR

which is symmetric and nondegenerate:
if g(v,w) =0 for every w € V then v = 0.
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Riemannian manifolds

Definition
A semi-Riemannian metric is a bilinear map

g : VV-—oR

which is symmetric and nondegenerate:
if g(v,w) =0 for every w € V then v = 0.

Definition

A semi-Riemannian manifold M is such that each T,M is
equipped with such a metric g, which “varies smoothly with p",
i.e. for every vector fields v, w € I'(TM), the function

p — 8p(Vp, Wp) is a smooth function M — R.

(i.e. we have a smooth section of the positive definite quadratic
forms on the tangent bundle).
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Metric spaces

Definition
The length of a curve v: [0,1] = M is

[rolse = [ Jew@@ma

80 /130



Metric spaces

Definition
The length of a curve v: [0,1] = M is

[rolse = [ Jew@@ma

Every (connected) Riemannian manifold is thus a metric space with

dix,y) = inf{y:[0,1] = M |~(0) =x,7(1) =y}
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Volume form

Locally, the components of the metric are

gi = £(0i,0)

Proposition

Given a Riemanian manifold one can define a volume form by

vol = y/|det(gy)ldx* A... Adx"

This allows us to define, for any f € M*:

/f:/fvol
M M
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Hodge star operator

Remark
Since g, is nondegenerate, gy(vp, —) : TpoM — TS M is a bijection.

This allows one to transfer stuff such as the inner product to
1-forms.
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Hodge star operator

Remark
Since g, is nondegenerate, gy(vp, —) : TpoM — TS M is a bijection.

This allows one to transfer stuff such as the inner product to
1-forms.

Orientation allows us to generalize the right-hand rule as follows:
Definition
The Hodge star operator on an oriented n-manifold M

*x QM) = Q" k(M)
is the unique M*-linear map such that for w, i € QK(M)

WAR = {w,p)vol
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Maxwell equations
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Maxwell equations
The Maxwell equations

V-B = 0
. OB
V><E+a— = 0
ot
V-E = p
. OE .
B-"— = j
V % o Jj
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Maxwell equations
The Maxwell equations

V-B = 0
~ 0B
E 4+ — =
V x E+ T 0
V-E = p
. OE -
B—— = |
V x P Jj
become, with £ € Q(M) and B € Q*(M) and M =R x S,
dsB = 0
0:B+dsE = 0
*SdS *S E = P
—OtE +*xsds*xs B = J
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Maxwell equations

E is the electric field

B is the magnetic field

p is the charge density
f is the electric current density
V = (01,02,0%3)

the divergence measures flux

V-F = O1F1+0F+03F3 = lim //
V{3 Js(v) IV\
e the curl measures rotation
V x IE = (82"_3—83,:2,81,:3—83/‘_1,(91/:2—82/:1)

lim ?{ F- dri
= i
A—={*}JA |A|
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Lorenzian metrics

For spacetime M =R x S, we want a Lorentzian metric of
signature (n — 1,1), i.e. something like

-1 0 0 O

_ 0 1 00

(gj) = 0 0 1 0
0 0 01

A vector v is
e spacelike if v-v >0
e timelike if v-v <0
e lightlike if v-v =10
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Maxwell equations
By writing the electromagnetic field

F = B+ EAdt
that is
0 —-E —-E -E
E, 0 B, -B,

E, -B, 0 B
E, B, —B. 0

N
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Maxwell equations

By writing the electromagnetic field

F = B+EAdt
and
J = j—pdt
we arrive at
dFF = 0

*xdxF =
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Integration
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Closed an exact forms

e A differential form w such that dw = 0 is closed

o A differential form w € Q**1(M) for which there exists
p € QK(M) such that du = w is exact

So, d®> = 0 can be phrased: exact forms are closed.
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Integrating 1-forms
When is a 1-form exact?
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Integrating 1-forms
When is a 1-form exact?

Given w € Q}(M) and a (piecewise) smooth path v : [0, T] — S,

we can integrate w along ~ by

[o = [r@ma = [Twoome
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Integrating 1-forms
When is a 1-form exact?

Given w € Q}(M) and a (piecewise) smooth path v : [0, T] — S,

we can integrate w along ~ by
T T )
[o = [ v = [ wpEond
v 0 0

Given p € M, we can (try to) define f € M* = QO(M)

wq) = Lw

for some path v : p ~~ g, so that

dpy = w
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Integrating 1-forms

In order for the definition u(q) = fvw to work we have to suppose
that M is simply connected!

Proposition
Given a homotopy s between paths ~o and 1,

]
- /0 w0 (1A(1)) dt

does not depend on s when dw = 0.
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Integrating 1-forms

Proposition
Given a homotopy s between paths ~o and 1,

]
Lo— /0 w0 (1A(1)) dt

does not depend on s when dw = 0.

Proof.

Up to splitting v, we can suppose that we are working in a chart.

In local coordinates we have

wr (1) = wilys(£)Dee(t)
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Integrating 1-forms

Proposition
Given a homotopy s between paths ~o and 1,

]
Lo— A w0 (1A(1)) dt

does not depend on s when dw = 0.

Proof. _
0uls = [ OO0} e

- / [95i(7s(£))De7E(£) + wils(£)) D507 1)) dt
= /[85(,0,-(75(1'))81:7;(1') — Orwi(7s(t)) S’Ys( )]dt
= /8jwi('ys(t))[8s’7£3t’7£ - 6t7£357£] dt

= [(@w)y0erian dt
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The Poincaré Lemma

We have just shown that the integral only depends on the
endpoints of v : p ~» g, which always exists.

Theorem

When M is simply connected, every closed 1-form w (i.e. dw =0)
is exact: w = du with

for some path v : p ~ q from some fixed point p.

92 /130



The Poincaré Lemma

For instance, in the Maxwell equations we have

. OB
VxE—i—a— = 0
ot

When the second term vanishes (under magneto-static conditions),
we have

and therefore there exists a scalar function V such that
E = -VV

called the electric potential.
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A counter-example
When M is not simply connected, this fails to be true.

Consider M = R?\ {(0,0)} and with 7 a loop around the unit
circle (once) in counterclockwise orientation. Take

xdy — ydx

w =
x2 4+ y?

This 1-form is closed (dw = 0) and

[ywzw#Oz/idw

where id is a constant loop.

(In order to show this, use polar coordinates by change of basis.)
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Formulation with loops

Definition
A manifold is contractible if every loop based at a point p is
homotopic to the constant loop at p.

Proposition
A 1-form w is exact iff fw w = 0 for every loop ~.

Proof.

Use Green's theorem which states that

/w = //(a,-wj— jwi) dx’ dx/
¥ 0 Jo
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Towards Stokes' theorem

Recall

e the fundamental theorem of calculus

b
/a Fx)dx = f(b)—f(a)

96 /130



Towards Stokes' theorem

Recall

e the fundamental theorem of calculus
b
/ Fx)dx = F(b)— F(a)
a

e Stokes' theorem: given a surface S in R3 with 9S = ~,

JoxFyi = /7/?
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Towards Stokes' theorem

Recall

e the fundamental theorem of calculus
b
/ Fx)dx = F(b)— F(a)
a

e Stokes' theorem: given a surface S in R3 with 9S = ~,

JoxFyi = /7/?

e Gauss' theorem: given a volume R in R3,

/v-ﬁ - /ﬁ-ﬁ
R OR
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Manifolds with boundaries

Definition
A half-space H is

H" = {x(x)>0]xecR"}

where 7 : R” — R is a non-zero linear map (typically the
projection on xp).
Its boundary is
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Manifolds with boundaries

Definition
A half-space H is

H" = {x(x)>0]xecR"}

where 7 : R” — R is a non-zero linear map (typically the
projection on xp).
Its boundary is

Definition
An n-manifold with boundary is a manifold with charts

Qi : U,'—> H"

and smooth transition maps.
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Manifolds with boundaries

Definition
A half-space H is

where 7 : R" — R i pically the
projection on xp).
Its boundary is

Definition
An n-manifold with boundary is a manifold with charts

(o) : U,' — H"

and smooth transition maps.
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Boundary

The boundary of such an n-manifold M is
OM = {xeM]|3i,xeU and ¢i(x)ecoH"}

and is canonically an (n — 1)-manifold.
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Stokes' theorem

Theorem
Given a compact oriented n-manifold M with boundary and an

(n—1)-form w,
/ dv = / w
M oM
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DeRham cohomology

Given a manifold M we have constructed a cochain complex
3 2 1 0
LEemEam & om & o

of vector spaces:
dod = 0

which implies
imd*  C  kerd*t!

(exact forms are closed).
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DeRham cohomology
Given a manifold M we have constructed a cochain complex
Ll e amd om o

of vector spaces:
dod = 0

which implies
imd*  C  kerd*t!

(exact forms are closed).

Definition
We define the DeRham cohomology groups by

HY = kerd*1/imd*
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HOM
We have HOM = kerd!. Given f € H°M, we have locally
df = 9ifdx’ = 0

so f is constant on connected components.
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HOM
We have HOM = kerd!. Given f € H°M, we have locally

df 9ifdx' = 0

so f is constant on connected components.

A basis of HOM is thus the f; € M*, with i indexing connected
components of M, such that

fi(p)

1 if p in the i-th connected component
0 otherwise
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HOM
We have HOM = kerd!. Given f € H°M, we have locally

df 9ifdx' = 0

so f is constant on connected components.

A basis of HOM is thus the f; € M*, with i indexing connected
components of M, such that

fi(p)

1 if p in the i-th connected component
0 otherwise

In other words
H'M =~ R€

where ¢ is the number of connected components of M.
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Consider w € imd! C Q'M: we have
w = df

for some f € M*.
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Consider w € imd! C Q'M: we have
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S S oS
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Consider w € imd! C Q'M: we have
w = df

for some f € M*.
Given a circle S in M, we have by Stoke's theorem

/w:/df: fo= 0
S S oS

because 9S is empty.
We have seen that if S is a circle around a hole then we can find w
such that [gw # 0, so H'M is not empty.
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H'M
Consider w € imd! C Q'M: we have
w = df

for some f € M*.
Given a circle S in M, we have by Stoke's theorem

/w:/df: fo= 0
S S oS

because 9S is empty.
We have seen that if S is a circle around a hole then we can find w
such that [gw # 0, so H'M is not empty.

HM counts the “number of holes” in M.
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Connections

The idea of a connection is to relate nearby tangent spaces in
order to
e parallel transport:
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Connections

The idea of a connection is to relate nearby tangent spaces in
order to

e parallel transport:

e define the derivative of a vector field: the formula

Dow = lim M
a=p  |lqg—pl

does not make sense because w(q) € T¢M and w(p) € T,M.

However, we will manage if we can parallel transport w(q)
into T,M.
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Bundles

Definition
A bundle
ES M
is a manifold E equipped with a projection to M. The fiber over
pe Mis
E, = f{veE|n(v)=p)
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Bundles

Definition
A bundle
EL M

is a manifold E equipped with a projection to M. The fiber over
pe Mis

E, = f{veE|n(v)=p)

For instance, the trivial bundle with standard fiber F is
M x F

equipped with the first projection.
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Bundles

Definition
A bundle
ES M
is a manifold E equipped with a projection to M. The fiber over
pe Mis
E, = f{veE|n(v)=p)

Given a submanifold U C M, we can define the restriction bundle

El, = = YU) = {veE|n(v)eU}
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Bundles

Definition
A bundle
ES M
is a manifold E equipped with a projection to M. The fiber over
pe Mis
E, = f{veE|n(v)=p)

A bundle is locally trivial with standard fiber F when each point
p € M has a neighborhood U and a bundle isomorphism

¢ : E|y, - UxF
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Vector bundles

Definition
A vector bundle is a bundle such that

@ cach fiber is a vector space
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Vector bundles

Definition
A vector bundle is a bundle such that
@ each fiber is a vector space

® and each point p € M has a neighborhood U and a bundle
morphism
¢ : El|y, — UxR"

such that for every p € U,
elp,—) + E — R”

is a linear isomorphism.
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Vector bundles
Common operations on vector spaces extend fiberwise on bundles:

(E)p=E; (E®F)p=E®F, etc.
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Vector bundles

Common operations on vector spaces extend fiberwise on bundles:

(E)p=E; (E®F)p=E®F, etc.

We write [ E for the manifold of sections of a bundle:
s:M— E with mos=idy

which forms a module over M*.
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Vector bundles

Common operations on vector spaces extend fiberwise on bundles:

(E)p=E; (E®F)p=E®F, etc.

We write [ E for the manifold of sections of a bundle:
s:M— E with mos=idy

which forms a module over M*.

A basis of sections is a family (e;) such that each s € I'E writes
uniquely as

A vector bundle with a basis is isomorphic to a trivial bundle, so
we generally consider basis only locally.
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Connections
Definition
A connection is a bilinear map

vV ¢ ITTM®IE — TE

which is
@ M*-linear in the first variable:

Vaw = fV,w
® Leibnitz in the second variable:
Vo(fw) = df(v)w+vV,w

V., w is called the covariant derivative of w in direction v.
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Parallel transport

Definition
A vector field v is parallel if Vv =0 (i.e. for every w, V,,v = 0).
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Parallel transport

Definition
A vector field v is parallel if Vv =0 (i.e. for every w, V,,v = 0).

These often don't exist because parallel transport depend on paths:

Definition
Given a path v : p~ g and v, € T,M, a vector field v € [ TM is
the parallel transport of v, along - if

0 v(p) =v

@ Vi)v(y(t)) =0 for every t
i.e. v is parallel wrt the pullback connection on the pullbac
llel h [lback h lIback
bundle ~* TM)

110 /130



Connections in a basis

If we write locally the vector potential A:

D o€ = 9<j €i

111 /130



Connections in a basis

If we write locally the vector potential A:
Do ej = Ljei
we have, given a section s € I'E,

Dys = Dygy,s
kaaks
= vkDy, (s'er)
= vk ((8k5i) e + Aj,;is’.ej)
= K (Bksi + Afg-sj) e

(Dxs)" = 8k5i+Af<J-sj
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An End(E)-valued 1-form

A connection is a linear map
vV  ITTM®IE — TE
so locally, is described by a section A of
TUe B[y Ely = TUR(E|y— Ely)
with coordinates
A = Ljdxk®xj®x,~

called the vector potential.
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An End(E)-valued 1-form

A connection is a linear map
vV  ITTM®IE — TE
so locally, is described by a section A of
TUe B[y Ely = TUR(E|y— Ely)
with coordinates
A = Ljdxk®xj®x,~
called the vector potential.

We can thus write

(Vus) = v(s)) + (A(v)s)
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The flat connection

Given a choice of local trivialization of E, the standard flat
connection is
Vi = v(s)e
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The flat connection

Given a choice of local trivialization of E, the standard flat
connection is
Vi = v(s)e

Proposition
Any connection V can be written as

vV = V'+A
for some potential A€ T(T*M @ (E — E)), i.e.

Vs = V% +AW)s
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Torsion and curvature

Definition
The torsion of V is

T(v,w) = V,w—Vyuv—|v,w]
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Torsion and curvature

Definition
The torsion of V is

T(v,w) = V,w—Vyuv—|v,w]
Definition
The curvature of V is

Rujv(W) = VUVVW — VVVUW — V[UN]W
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Levi-Civita connection

Theorem
Given a Riemannian manifold (M, g), there exists a unique
connection which is

@ an isometry:
Vg = 0

@® torsion-free: for any v,w € T'TM, T(v,w) =0, i.e.

va - VWV = [V, W]
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Differential
M-calculus
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Syntax

Terms are built from the syntax
t = x | tt | Mt | at | t+t | O | Dt-t

with x a variable and az € R (or any fixed rig such as N).
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Syntax

Terms are built from the syntax
t = x | tt | Mt | at | t+t | O | Dt-t

with x a variable and az € R (or any fixed rig such as N).

So, we have added linear combination of terms, but more
importantly
Dt-u

which is the derivative of (function) t wrt its argument, and will
satisfy
D(Ax.t)-u = Ax.(Oxt-u)
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Intuitions

The partial derivative Oyt - u is the sum of all possible replacement

of one occurrence of x in u by t:

D(Ax.x(xy))-u = Ax.0x(x(xy))-u
= Ax.u(xy) + Ax.x(uy)
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Structural congruence
We consider them up to structural congruence:
e (-conversion

e terms form an R-module:
(s+t)+u=s+(t+u), a(ft) = (ap)t, ...
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Structural congruence
We consider them up to structural congruence:
e (-conversion

e terms form an R-module:
(s+t)+u=s+(t+u), a(ft) = (ap)t, ...
and

<Zaktk>u = zk:ocktku

K
)\X.Zaktk = Zak (/\X-tk)
K k
D(st) = D(s)t
D(Dt-u)-v = D(Dt-v)-u
D (Z aktk> : (Z B/W) = > B (Dtx - uy)
K / K
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Linearity

Notice that we are linear in function only:

(Z Oéktk> u = Zaktku
k k

Otherwise, we would not be coherent with §-reduction:
(Mxx)(s+t) — (s+t)(s+t) = ss+st+ts+tt

vs
(Ax.xx)s + (Ax.xx)t  —>  ss+tt
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Partial derivative

g

u = Zak (Oxty) - u
K
Ox-u = u
Oxy-u = 0
Ox(st)-u = (Oxs-u)t+ (Ds-(0xt-u))t
Ox(A\y.t)-u = Ay.(0xt-u)
Ox((Dt-u)-v) = D(0t-v)+Dt-(dcu-v)
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Reduction

e [(-reduction:
(Ax.s)t  —  s[t/x]

e differential reduction:
D(Ax.t)-u —  Ax.((0xs) - u)

i.e. we substitute only one linear occurrence of x (and take
the sum over all possibilities)
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Reduction

e [(-reduction:
(Ax.s)t  —  s[t/x]

e differential reduction:
D(Ax.t)-u —  Ax.((0xs) - u)

i.e. we substitute only one linear occurrence of x (and take
the sum over all possibilities)

Theorem

The reduction is confluent and differential A-calculus is a
conservative extension of A-calculus (we did not quotient pure
A-terms wrt reduction).
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Derivative wrt i-th variable

The original article by Eherhard and Reigner defines D;,
differentiation with the i-th argument.

The generalization does not bring major problems:
Do = D

and
DiJrl(AX.t) U = )\X.(D,‘f . U)

provided x & FV(u).

(+ lots of details. . .)

123 /130



The Taylor formula

Terms can be generalized to countable sums of terms,
i.e. formal series > 72 o aukt.
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The Taylor formula

Terms can be generalized to countable sums of terms,
i.e. formal series > 72 o aukt.

When we substitute x by v in t, we substitute it a fixed number
n € N of times (the number of occurrences of x):

Theorem

tu—>ZD"tu0
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Free algebras

Definition
The free algebra !V generated by a vector space V is

v = Pve
k
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Free algebras

Definition
The free algebra !V generated by a vector space V is

v = Pve

k

By definition, we have a bijection (TODO: make this more clear....)

A—-B = l|A—-oB
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Free algebras

Definition
The free algebra !V generated by a vector space V is

v = Pve

k

By definition, we have a bijection (TODO: make this more clear....)
A—-B =~ |A—-B
So, the differential of a function
f : l1A—B
should be of type
df : 1A—A—-oB = A A—B
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Differential
Semantics
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The power of analogy

diff. geom. ‘ comp. sci.
manifold program (cfg)

vector field | choice (in branchings)
1-form semantics

closed 1-form local confluence
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Graphs as manifolds

Definition

A manifold M is a graph with V' as vertices, E as edges,

s,t: E — V as source and target maps, possibly with some
higher-dimensional cells (such as a precubical set, a polygraph,
etc.) and morphisms are graph morphisms (or maybe categorical
morphisms 7).

128 /130



Graphs as manifolds

Definition

A manifold M is a graph with V' as vertices, E as edges,

s,t: E — V as source and target maps, possibly with some
higher-dimensional cells (such as a precubical set, a polygraph,
etc.) and morphisms are graph morphisms (or maybe categorical
morphisms 7).

Starting from this we get the following.
e The tangent bundleiss: E — V.
e The tangent space at x € V is the set

M = {ecE]|s(e)=x}

e A vector field consists of a choice of edge originating at every
vertex.
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The state space

Definition
The state space R is a (higher) category.
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The state space

Definition
The state space R is a (higher) category.

Example

e We can take R the category of possible memories and memory
operations as morphisms. For instance, given a set V of
values and a number k of memory cells, R is the simply
connected groupoid on V¥ (7).

e We can take R the category whose objects are elements of R
and the only morphism f : x — y is y — x.

e Can we think of “non-trivial” examples?
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Differential forms

We suppose fixed a set S of states (typically the possible states
for the memory of the computer). This will replace R as “negation
object”.

Definition

The dual of a set X is

X*

1

X—=S5
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Differential forms

We suppose fixed a set S of states (typically the possible states
for the memory of the computer). This will replace R as “negation
object”.

Definition

The dual of a set X is

X*

1

X—=S5

e A function f : M* is

130 /130



