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Generalizing differential geometry

• We know how to do lots of differential geometry in the vector
spaces Rn. . .

• Can we extend this to more general spaces which look locally
like Rn (e.g. a sphere)?

• Most operations in linear algebra are performed on
vectors/linear transformations/etc which are expressed in
some coordinate system, but nature does not come equipped
with those. Can we define things in a way that is independent
of a choice of coordinates?

• The general idea is to extend globally what we know locally.
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Differential
geometry
in Rn
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Derivation
Definition
The derivative f ′(x0) of a function

f : U ⊆ R → R

at x0 ∈ U is defined as

f ′(x0) = lim
t→0

x0+t∈U

f (x0 + t)− f (x0)

t

Or equivalently,

f (x0 + t) = f (x0) + f ′(x0) · t + |t| · ε(t)

with
ε : R→ R s.t. lim

t→0
ε(t) = 0
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Differentiation
Definition
The differential dfp of a function f : Rn → Rm at a point p ∈ Rn

is a linear map
dfp : Rn ( Rm

such that, for v ∈ Rn,

f (p + v) = f (p) + dfp(v) + ‖v‖ · ε(v)

with ε : Rn → R s.t. lim‖v‖→0 ε(v) = 0.

• Does not depend on ‖−‖: all the norms are equivalent on Rn.
• Uniquely defined: Rn is complete.

Notice that differentials might not exist, but I won’t bother about
definition problems here.
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Basic properties

Proposition

• Given f : Rn ( Rm linear,

f (p + v) = f (p) + f (v) + ‖v‖ · 0

so, dfp = f .

• d(g ◦ f )p = dgf (p) ◦ dfp
• d(f −1)f (p) = (dfp)−1

• etc.
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Vector spaces
Definition
A vector space V over a field k = R consists of

• an (additive) abelian group V :

(u + v) + w = u + (v + w)

0 + v = v
v − v = 0
v + w = w + v

• an action of k over V :

α(v + w) = αv + αw (α + β)v = αv + βv
α(βv) = (αβ)v 1v = v

Definition
A linear map f : V →W is a function satisfying

f (v + w) = f (v) + f (w) f (αv) = αf (v)

We denote by V (W the set of linear maps between V and W .
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Differentiation

Definition
Given

f : Rn → Rm

its differential is

df : Rn → Rn ( Rm

(when it is defined on every point p ∈ Rn).
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Linearity of differentiation

The linear space V (W (pointwisely) inherits a structure of
vector space

f + g = v 7→ f (v) + g(v) αf = v 7→ αf (v)

Given p ∈ Rn, differentiation at p is linear over Rn ( Rn:

d(f + g)p = dfp + dgp d(αf )p = α dfp

9 / 130



Linearity of differentiation

The linear space V (W (pointwisely) inherits a structure of
vector space

f + g = v 7→ f (v) + g(v) αf = v 7→ αf (v)

Given p ∈ Rn, differentiation at p is linear over Rn ( Rn:

d(f + g)p = dfp + dgp d(αf )p = α dfp

9 / 130



Differentials and partial derivation

The differential of f is

df : Rn → Rn ( Rm

• We have considered the differential at a point p ∈ Rn

dfp = v 7→ df (p, v) : Rn ( Rm

• We can also consider partial derivative in direction v ∈ Rn

∂v f =
∂f
∂v = p 7→ df (p, v) : Rn → Rm
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Differential in a basis

Proposition
Given a basis (ei )1≤i≤n of Rn, we have

dfp(v) = dfp
(∑

i
vi · ei

)
=

∑
i
vi · dfp(ei )

=
∑

i
vi ·

∂f
∂x i (p)

In other words,
dfp =

∑
i

∂f
∂x i (p) · dx i

with x i : Rn → R the canonical i-th projection.
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The chain rule

Given x : R→ Rn and g : Rn → R, the chain rule says

d(g ◦ x)t = dgx(t) ◦ dxt

which is a way to write the usual chain rule

df
dt =

∑
i

∂f
∂x i

dx i

dt
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Manifolds
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Manifolds
Definition
An n-dimensional smooth manifold consists of

• a topological space X
• an open covering (Ui )i∈I of X :

⋃
i∈I Ui = X

• charts ϕi : Ui → Vi ⊆ Rn (invertible and continuous) forming
an atlas: the transition functions

ϕij = ϕj ◦ ϕ−1
i : Vi → Vj

are smooth.
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are smooth.

Example
The 1-sphere:
x2 + y2 = 1
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Manifolds
Definition
An n-dimensional smooth manifold consists of

• a topological space X
• an open covering (Ui )i∈I of X :

⋃
i∈I Ui = X

• charts ϕi : Ui → Vi ⊆ Rn (invertible and continuous) forming
an atlas: the transition functions

ϕij = ϕj ◦ ϕ−1
i : Vi → Vj

are smooth.

Remark
There are many possible variations over the definition:

• we can replace “smooth” by other adjective such as
“differentiable”, “analytic”, etc.

• we can replace R by C and consider holomorphic transitions 14 / 130



Compatible atlases

Two atlases on X are compatible when their union is still an atlas.

• Compatibility is an equivalence relation.
• The union of an equivalence relation is a maximal atlas.
• An atlas is included in a unique maximal atlas.

In theory we can thus use the maximal atlas,
but smaller is simpler in practice.
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Morphisms

Definition
Given two m- and n-manifolds M = (X ,Ui , ϕi ) and
N = (Y ,Vi , ψi ), a morphism

f : M → N

is a function f : X → Y such that for every i , j the function fij is
smooth and satisfies

Rm fij // Rn

Ui

ϕi

OO

f
// Vj

ψj

OO
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The category of manifolds

• We can thus define a category of manifolds: Man.

• It has coproducts of manifolds of same dimension.
• It has cartesian products (of dim m + n)
• It is not cartesian closed (the hom-space would be an
infinite-dimensional manifold. . . )
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Smooth functions

We write
M∗ = Man(M,R)

for the set of smooth functions from M to R, i.e. functions

f : M → R

such that for every i , f ◦ ϕi is smooth.
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Tangent spaces
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Tangent spaces

A path is a smooth map γ : (−1, 1)→ M.

Definition
Fix a chart ϕ : U → Rn. We define an equivalence relation on
paths γ : R→ M such that γ(0) = p by

γ ∼ ρ whenever (ϕ ◦ γ)′(0) = (ϕ ◦ ρ)′(0)

The tangent space TpM is the quotient of those paths (germs).

Remark
This equivalence relation is independent of the chart.
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Tangent spaces as vector spaces

Proposition
Given a chart (U, ϕ), the map Tϕ : TpM → Rn defined by

Tϕ(γ) = (ϕ ◦ γ)′(0)

is an isomorphism.

This allows to transfer the structure of vector space of Rn to Tp,
e.g.

γ + ρ = T−1
ϕ ((Tϕγ) + (Tϕρ))

(and this does not depend on the choice of the chart).
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Tangent spaces
Actually, since it is enough to “test” linear morphisms
coordinatewise, we can define TpM as follows:

Definition
Fix a chart ϕ : U → Rn. We consider paths γ : R→ M such that
γ(0) = p and “copaths” g : M → R such that g(p) = 0. We define

〈γ|g〉p =
∂(g ◦ γ)

∂t (0)

Two paths γ, ρ are equivalent when

∀g : M → R, 〈γ|g〉p = 〈ρ|g〉p

TpM is the set (vector space) of equivalence classes of paths.

Remark
The dual notion on copaths gives rise to the notion of cotengent
vector space of covectors T ∗pM.
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Differentials

Definition
Given a morphism f : M → N, we define its differential at p ∈ M

dfp : TpM ( Tf (p)N

by
dfp(γ) = f ◦ γ

23 / 130



Smooth functions
Recall that M∗ is the set of smooth functions f : M → R.

Given two such functions f , g ∈ M∗, we can
• add them: (f + g)(x) = f (x) + g(x)

• multiply them by α ∈ R: (αf )(x) = αf (x)

• multiply them: (f · g)(x) = f (x)× g(x)

The two first equip the space with a structure of vector space,
which satisfies

(fg)h = f (gh) fg = gf
f (g + h) = fg + fh (f + g)h = fg + gh

which is called a (commutative) algebra.
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Algebras

Definition
An algebra is a vector space A together with a multiplication

− · − : A⊗ A ( A

such that multiplication is associative

∀a, b, c ∈ A, (a · b) · c = a · (b · c)

25 / 130



Properties of derivation
Given f : M → N, we have defined dfp : TpM ( Tf (p)N.
Given v ∈ TpM, we can also define ∂v : M∗ → R by

∂v (f ) = dfp(v) = (f ◦ v)′(0)

Proposition
Suppose given f , g : M∗.

• Differentiation is linear:

∂v (f + g) = ∂v f + ∂vg ∂v (αf ) = α∂v f

• It satisfies the Leibnitz law: given v ∈ TpM,

∂v (f · g) = ∂v f · g(p) + f (p) · ∂vg
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Tangent space – via derivations

Actually, this can be taken as a definition,
by identifying v with ∂v !

Definition
The tangent space TpM is the vector space whose elements are

v : M∗ ( R

such that

v(f + g) = v(f ) + v(g)

v(αg) = αv(f )

v(f · g) = v(f ) · g(p) + f (p) · v(g)

i.e. the space of derivations at p of the algebra M∗.
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Tangent space – via derivations

With this definition it is easy to show that TpM is a vector space:

(v + w)(f ) = v(f ) + w(f ) (αv)(f ) = αv(f )

Given a chart ϕ : U → Rn with p ∈ U and a basis (x i ) of Rn,
the vectors ∂i defined by

∂i (f ) =
∂(f ◦ ϕ−1)

∂x i

form a basis for this vector space.
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Derivation as a functor

We have a functor
pMan → Vect

which sends
(M, x) to TxM

and

f : (M, x)→ (N, y) to dfx : TxM ( TyN

The chain rule is precisely the axiom of functoriality
wrt composition.
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Vector fields

Intuition: a vector field is given by a vector vp ∈ TpM for each
point p ∈ M, which varies continuously in p.

We’ll use tangent bundles to define them.
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Tangent bundle

Definition
The tangent bundle is

TM =
∐

p∈M
TpM

Proposition
If M is an n-manifold, TM is canonically a 2n-manifold.

We write π : TM → M for the canonical projection

π = v ∈ TpM 7→ p

31 / 130



Tangent bundle

Definition
The tangent bundle is

TM =
∐

p∈M
TpM

Proposition
If M is an n-manifold, TM is canonically a 2n-manifold.

We write π : TM → M for the canonical projection

π = v ∈ TpM 7→ p

31 / 130



Vector fields

Definition
A vector field v is a section of the tangent bundle TM, i.e. a map

v : M → TM

such that
π ◦ v = idM

Vectors fields are denoted Γ(TM).

This means that v(p) = (q, vq ∈ TqM) such that q = p.

Notice that the map v is required to be smooth!
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Vector fields – via derivations
Definition
A vector field is a function v : M∗ → M∗ such that

v(f + g) = v(f ) + v(g)

v(αf ) = αv(f )

v(f · g) = v(f ) · g + f · v(g)

i.e. a derivation of the algebra M∗.

Proposition
Vector fields over M form an M∗-module with

(v + w)(f ) = v(f ) + w(f )

(g · v)(f ) = g · v(f )
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Pullback and push forward
A morphism φ : M → N induces

• a pullback function

φ∗ : N∗ → M∗

defined by
φ∗(f ) = f ◦ φ

• a pushforward function

φ∗ : TpM → Tφ(p)N

defined by
φ∗(v) = v ◦ φ∗

Remark
Notice that functions are contravariant and vectors are covariant.
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Coordinates

The vector space Rn is equipped with canonical coordinate
functions, which are the projections

x i : Rn → R

These induce coordinate functions ϕ∗x i : U → Rn, that we
(abusively) still denote x i , called local coordinates.

TODO: Change of basis.....
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Writing conventions
In the following, we use Einstein summation convention: we
implicitly sum over repeated indices in a formula, e.g.

v = v i∂i

(with v i = v(x i )) means

v =
∑

i
v i∂i

Concerning the indices, we write
• x i for a contravariant quantities (coordinates, n-forms, etc.)
• ∂i for a covariant quantities (vectors, etc.)

Notice that
v = v i∂i and ω = ωi dx i
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Differential
1-forms
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Differential
Recall that given p ∈ M and f : M → N, we have defined

dfp : TpM ( Tf (p)N

In particular, given f ∈ M∗ = M → R, we have

dfp : TpM ( R

and these can be “collected together” into

df : Γ(TM) → M∗

by
df (v)(p) = dfp(vp)

This function can easily be shown to be linear over the module M∗:

df (v + w) = df (v) + df (w) df (αv) = α df (v)
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1-forms

Definition
A differential 1-form

ω : Γ(TM)( M∗

is a map which is linear over M∗.

Notation
We write Ω1(M) for the M∗-module of differential forms.

Example
Given f ∈ M∗, its differential (or exterior derivative)

df = v 7→ p 7→ dfp(vp)

is a 1-form.
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Exterior derivative
Proposition
The exterior derivative d : M∗ → Ω1(M) is

• linear:

d(f + g) = df + dg
d(αf ) = α df

• a derivation:
d(f · g) = df · g + f · dg

Proposition
The dx i form a basis of the M∗-module of 1-forms over Rn:

df =
∑

i

∂f
∂x i · dx

i

(or locally in a manifold). 40 / 130



Cotengent vectors

Definition
A cotengent vector at p ∈ M is an element of TpM ( R.
We thus write T ∗pM for the cotengent vectors at p.

Proposition
One can form the cotengent vector bundle

T ∗M =
∐

p∈M
T ∗pM

and 1-forms are its sections

Ω1(M) ∼= Γ(T ∗M)
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TODO: cotengent vectors and 1-forms are contravariant
Derivative is natural: given f ∈ M∗ and φ : M → N,

d(φ∗f ) = φ∗(df )
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(Co)tangent space as infinitesimals
Given p ∈ M, consider the ideals

Ip = {f ∈ M∗ | f (p) = 0}

and
I2p = {

∑
i
figi | fi , gi ∈ I}

Definition
The cotangent space at p can be defined by

T ∗pM = Ip/I2p

and the tangent space is TpM = (T ∗pM)∗.

Proof.
A derivation D satisfies D(f ) = 0 for f ∈ I2p , i.e. D : Ip/I2p → R.
Conversely, given r ∈ Ip/I2p , D(f ) = r((f − f (x)) + I2p ) is a
derivation.
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Towards
Algebraic
Geometry
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Towards algebraic geometry
Given a manifold M, an open set U ⊆ M is also canonically a
manifold. We can thus consider the (ring of) smooth functions
U∗ = Man(U,R). The collection of all those form a (pre)sheaf:

Definition
A presheaf (X ,O) is a functor O : O(X )op → C from the category
of open sets in X and reversed inclusions to a category C.

• Here, we have X = M, O(U) = U∗ and C = Rings.
• Given U ⊆ V , we have a restriction function

O(V ) → O(U)

and we write the image of f ∈ V

f |VU or f |U
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Sheaves
Definition
A sheaf is a presheaf such that, for every open covering (Ui ) of
any open U ⊆ X :

1 Locality. If f , g ∈ O(U) satisfy

f |Ui
= g |Ui

for each Ui then
f = g

2 Gluing. If there exists fi ∈ O(Ui ) are such that

fi |Ui∩Uj
= fj |Ui∩Uj

then there exists f ∈ O(U) such that

fi = f |Ui
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Sheaves

In the case C has products, this is equivalent to

Definition
A sheaf is a presheaf such that for any covering Ui of U the
diagram

O(U) −→
∏

i
O(Ui )

−→
−→

∏
i ,j

O(Ui ∩ Uj)

is an equalizer, where the arrows are products −|UUi
, −|Ui

Ui∩Uj
and

−|Uj
Ui∩Uj

respectively.
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What can we recover from rings?

Proposition
The points of M are in bijection with the maximal ideals of the
algebra M∗.

Proof.
To a point p, one can associate the ideal

Ip = {f ∈ M∗ | f (p) = 0}

which is maximal and conversely, every maximal ideal is of this
form!
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Germs

Definition
Given a point p and functions f , g : U → R with p ∈ U, we define
an equivalence relation by

f ∼ g when f |V = g |V

for some V ⊆ U with p ∈ V . The equivalence class of a function
is its germ and the collection of all germs at p is the stalk at p.
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The tangent space

Definition
The cotangent space at p is Ip/I2p where Ip is the maximal ideal
of the stalk OM,p.

Definition
The tangent space is the sheaf of morphisms from OM into the
ring of dual numbers R[X ]/X 2.
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Differential
Forms
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The area of a parallelogram
What is the area of a parallelogram spanned by vectors u and v?

ad−bc

(a,b)

(0,0)

(c,d)

(a+c,b+d)

We should have:
• A(u, v) bilinear:

A(u1 + u2, v) = A(u1, v) + A(u2, v) A(αu, v) = αA(u, v)

• A(u, u) = 0

• and therefore A(u, v) = −A(v , u)

A(u+v , u+v) = A(u, u)+A(u, v)+A(v , u)+A(v , v) = A(u, v)+A(v , u)
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The area of a parallelogram
Up to a multiplicative constant, there is only one alternating linear
form:

A : V ⊗ V ( V

this is the determinant of 2× 2 matrices!

A(u, v) = det([u, v ])

So, the area of a parallelogram generated by u and v is

det(u, v) = det(u1x1 + u2x2, v1x1 + v2x2)

= u1v1 det(x1, x1) + u1v2 det(x1, x2) + u2v1 det(x2, x1) + u2v2 det(x2, x2)

= (u1v2 − u2v2) det(x1, x2)

(and this generalizes in higher dimensions)
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A basis for areas

A differential 1-form can be seen as a way to measure
(infinitesimal) distances:

dx : Γ(TM) ( M → R

In order to measure areas with 2-forms, we should therefore take
the pairs (dx i , dx j) as basis for 2-forms but quotiented by relations
imposing that

(dx i , dx j) = −(dx j , dx i )
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Change of variables in integration

In dimension 1, the fundamental theorem of calculus gives:∫ φ(b)

φ(a)
f (x) dx =

∫ b

a
f (φ(t))φ′(t) dt

More generally, given U ⊆ Rn open and ϕ : U → Rn injective and
differentiable with continuous partial derivatives:∫

ϕ(U)
f dx1 . . . dxn =

∫
U

(f ◦ ϕ)| det(Dϕ)| dx1 . . . dxn

where Dϕ is the Jacobian of ϕ: (Dϕ)ij = ∂iϕj .
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Division in the ring of dual numbers

The ring of dual numbers is R[ε]/ε2.

With c 6= 0, we have

a + bε
c + dε =

(a + bε)(c − dε)

(c + dε)(c − dε)

=
ac + (bc − ad)ε− dbε2

c2 − d2ε2

=
a
c +

bc − ad
c2 ε
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Exterior algebra

Definition
Given a vector space (or a module) V , its free algebra is

TV =
⊕
k∈N

V⊗k

Definition
The exterior algebra ΛV of V is

ΛV = TV /I

where I is the two-sided ideal generated by x ⊗ x with x ∈ V .
Its tensor product is written ∧.
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Antisymmetry
Proposition
We have x ∧ x = 0 and x ∧ y = −y ∧ x.

Proof.
0 = (x+y)∧(x+y) = x∧x+x∧y+y∧x+y∧y = x∧y+y∧x .

Remark
We could have defined ΛV = TV /I where I is the two-sided ideal
generated by x ⊗ y + y ⊗ x .

Proposition
Given a basis (ei ) of V , a basis of ΛV is ei1 ∧ ei2 ∧ . . . ∧ eik with
i1 < i2 < . . . < ik . If dimV = n then

dimΛV = 2n and dimΛkV =
n!

k!(n − k)!
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Grading

The exterior algebra is naturally graded as a quotient of the tensor
algebra by a homogeneous ideal:

ΛV =
⊕
k∈N

ΛkV

The elements of ΛkV are of the form

v1 ∧ v2 ∧ . . . ∧ vk

with vi ∈ V .
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Example
Example
Given R2 with the canonical orthonormal basis x , y and two
vectors v and w , we have

v ∧ w = (vxx + vyy) ∧ (wxx + wyy) = (vxwy − vywx ) x ∧ y
= det(u, v) x ∧ y

where the determinant computes the (signed) area of the
parallelogram spanned by v and w .

Example
Similarly in R3 we have

v∧w = (vxwy−vywx ) x∧y+(vxwz−vzwx ) x∧z+(vywz−vzwy ) y∧z

and
u ∧ v ∧ w = det(u, v ,w) x ∧ y ∧ z
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The special dimension 3
We have seen that

dimΛkV =
n!

k!(n − k)!

When dimV = 3, we have dimΛ2V = dimV = 3, so that

Λ2V ∼= V

but there is no canonical isomorphism, which explains why the
“right-hand rule” can be replaced by the “left-hand rule”, i.e. there
is no particular reason to choose between the two isomorphisms

x ∧ y 7→ z y ∧ x 7→ z
x ∧ z 7→ y z ∧ x 7→ y
y ∧ x 7→ x z ∧ y 7→ x

Moreover, this does not generalize in other dimensions. . .
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p-forms
Definition
p-forms are defined as the exterior algebra of the M∗-module
Ω1(M):

Ω(M) = ΛΩ1(M) Ωk(M) = ΛkΩ1(M)
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p-forms are defined as the exterior algebra of the M∗-module
Ω1(M):

Ω(M) = ΛΩ1(M) Ωk(M) = ΛkΩ1(M)

A p-form ω can be assimilated to a function

Λk(TpM) ( R

i.e. an alternating multilinear map

ω : TpM × . . .× TpM → R

i.e.
ω(. . . , x , . . . , x , . . .) = 0

or
ω(. . . , x , . . . , y , . . .) = −ω(. . . , y , . . . , x , . . .)
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p-forms
Definition
p-forms are defined as the exterior algebra of the M∗-module
Ω1(M):

Ω(M) = ΛΩ1(M) Ωk(M) = ΛkΩ1(M)

We also have a definition as sections of the exterior power of the
cotengent bundle

Ωk(M) = Γ(ΛkT ∗pM)
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p-forms
Definition
p-forms are defined as the exterior algebra of the M∗-module
Ω1(M):

Ω(M) = ΛΩ1(M) Ωk(M) = ΛkΩ1(M)

Remark
Ω0(M) = M∗.
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Remark
A 2-form is the same as an antisymmetric matrix.
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Integration
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Pullback
Suppose given φ : M → N. We can define a pullback operation:

• on 0-forms:

φ∗ : Ω0N → Ω0M by φ∗(f ) = f ◦ φ

with f ∈ Ω0N

• on cotangent vectors:

φ∗ : T ∗pN → T ∗φ(p)M by φ∗(ω)(v) = ω(φ∗v)

with ω ∈ T ∗pN and v ∈ Tφ(p)M
• on 1-forms:

φ∗ : Ω1N → Ω1M by (φ∗ω)p = φ∗(ωφ(p))

with ω ∈ Ω1N
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φ∗ : T ∗pN → T ∗φ(p)M by φ∗(ω)(v) = ω(φ∗v)

with ω ∈ T ∗pN and v ∈ Tφ(p)M
• on 1-forms:
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Pullback

Proposition
Given φ : M → N there exists a unique pullback map

φ∗ : ΩN → ΩM

such that φ∗ agrees with the previous definition on Ω0M, on Ω1M
and such that

φ∗(αω) = αφ∗ω

φ∗(ω + µ) = φ∗ω + φ∗µ

φ∗(ω ∧ µ) = φ∗ω ∧ φ∗µ
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Integration on Rn

Given ω ∈ ΩnU with U ⊆ Rn open, we can define∫
U
ω =

∫
U
ω dx1 . . . dxn

In order to check whether this is independent of the choice of
basis, recall that∫

φ(U)
f dx1 . . . dxn =

∫
U

(f ◦ φ)| det(Dφ)| dx1 . . . dxn

Proposition
Given a diffeomorphism φ : U → V between two open subsets
of Rn such that det(Dφ) is of constant sign δ, then for every
n-form ω ∈ ΩnV , ∫

U
φ∗ω = δ

∫
V
ω
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Orientable manifolds

Given two basis xi and yi of TpM with yj = T i
j xi then

y1 ∧ . . . ∧ yn = (detT ) x1 ∧ . . . ∧ xn

Two such volume elements have the same orientation when
det(T ) > 0.

Definition
A volume form on an n-manifold M is an n-form which is nowhere
zero. A manifold is orientable when it admits a volume form.

Remark
For instance the Möbius strip is not orientable.
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Integration on a manifold

We write Ωn
cM for the n-forms with compact support.

We can define integration by “splitting over charts”:

Proposition
Given a smooth oriented n-manifold M there exits a unique linear∫

M
: Ωn

c (M) ( R

such that if suppω ⊆ U with (U, ϕ) positively oriented chart then∫
M
ω =

∫
ϕ(U)

(ϕ−1)∗ω
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Integration on a manifold

In the case where ω does not have compact support, we have to
suppose that M is paracompact and Hausdorff. In this case, it
admits partitions of unity:

Definition
A partition of unity is a collection of functions fi ∈ M∗ such that

1 fi is zero outside Ui

2 for every point p ∈ M,
∑

i fi (p) = 1
3 for every point p ∈ M there is an open neighborhood on

which finitely many fi are nonzero.

We thus have
ω =

∑
i
fiω
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Integration on a manifold

Since ω =
∑

i fiω, we define∫
M
ω =

∑
i

∫
Ui
fiω

where by definition∫
Ui
fiω =

∫
ϕ(U∗

i )
(ϕ−1

i )∗fiω

with (Ui , ϕi ) a positively oriented chart.

Proposition
This does not depend on the choice of the partition of unity.
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Derivation
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Exterior derivative

Definition
The exterior derivative

d : Ωk(M)→ Ωk+1(M)

is defined by
1 d : Ω0(M)→ Ω1(M) is the usual differential
2 d is linear

(the Ωk(M) are real vector spaces)
3 d(ω ∧ µ) = dω ∧ µ+ (−1)kω ∧ dµ

for ω ∈ Ωk(M) and µ ∈ Ω(M)

4 d(dω) = 0 for ω ∈ Ω(M)
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On R3

In R3, given
ω = ωx dx + ωy dy + ωz dz

for ω_ ∈ Ω0M = M∗, we have

dω = d(ωx dx + ωy dy + ωz dz)

= dωx ∧ dx + ωx ∧ d dx + dωy ∧ dy + ωy ∧ d dy + dωz ∧ dz + ωz ∧ d dz
= dωx ∧ dx + dωy ∧ dy + dωz ∧ dz
= (∂xωx dx + ∂yωx dy + ∂zωx dz) ∧ dx + . . .

= ∂xωx dx ∧ dx + ∂yωx dy ∧ dx + ∂zωx dz ∧ dx + . . .

= −∂yωx dx ∧ dy + ∂zωx dz ∧ dx + . . .

= (∂xωy − ∂yωx ) dx ∧ dy + (∂yωz − ∂zωy ) dy ∧ dz + (∂zωx − ∂xωz) dz ∧ dx
≈ ∇× ω
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On R3

In R3, given

ω = ωxy dx ∧ dy + ωyz dy ∧ dz + ωzx dz ∧ dx

we have similarly

dω = dωxy ∧ dx ∧ dy + dωyz ∧ dy ∧ dz + dωzx ∧ dz ∧ dx
= ∂zωxy dz ∧ dx ∧ dy + ∂xωyz dx ∧ dy ∧ dz + ∂yωzx dy ∧ dz ∧ dx
= (∂xωyz + ∂yωzx + ∂zωxy ) dx ∧ dy ∧ dz
≈ ∇ · ω
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On R3

An easy computation shows that
• d : Ω0(Rn)→ Ω1(Rn) is the gradient

∇ = f 7→ ∂i f dx i

• d : Ω1(R3)→ Ω2(R3) is the curl

∇×− = ω 7→ ∂iωj dx i ∧ dx j

• d : Ω2(R3)→ Ω3(R3) is the divergence

∇ · − = ω 7→ (∂1ω23 + ∂2ω13 + ∂3ω12)

with ω = ω12 dx1 ∧ dx2 + ω13 dx1 ∧ dx3 + ω23 dx2 ∧ dx3.
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In local coordinates

Given a multiset I = (i1, . . . , ik) in {1, . . . , k}, with i1 ≤ . . . ≤ ik ,
the exterior derivative of the k-form

ω = fI dx I = fi1,...,ik dx i1 ∧ . . . ∧ dx ik

is
dω =

n∑
i=1

∂i fI dx i ∧ x I

and this extends to general k-forms

ω =
∑

I
fI dx I
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Riemannian manifolds
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Riemannian manifolds
Definition
A Riemannian metric is a bilinear map

g : V ⊗ V ( R

which is symmetric and positive-definite:
g(v , v) ≥ 0 with equality only if v = 0

Definition
A semi-Riemannian manifold M is such that each TpM is
equipped with such a metric gp which “varies smoothly with p”,
i.e. for every vector fields v ,w ∈ Γ(TM), the function
p 7→ gp(vp,wp) is a smooth function M → R.

(i.e. we have a smooth section of the positive definite quadratic
forms on the tangent bundle).
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Metric spaces

Definition
The length of a curve γ : [0, 1]→ M is

L(γ) =

∫ 1

0
‖γ′(t)‖ dt =

∫ 1

0

√
gγ(t)(γ′(t), γ′(t)) dt

Every (connected) Riemannian manifold is thus a metric space with

d(x , y) = inf{γ : [0, 1]→ M | γ(0) = x , γ(1) = y}
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Volume form
Locally, the components of the metric are

gij = g(∂i , ∂j)

Proposition
Given a Riemanian manifold one can define a volume form by

vol =
√
| det(gij)| dx1 ∧ . . . ∧ dxn

This allows us to define, for any f ∈ M∗:∫
M
f =

∫
M
f vol
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Hodge star operator
Remark
Since gp is nondegenerate, gp(vp,−) : TpM → T ∗pM is a bijection.

This allows one to transfer stuff such as the inner product to
1-forms.

Orientation allows us to generalize the right-hand rule as follows:
Definition
The Hodge star operator on an oriented n-manifold M

? : Ωk(M)→ Ωn−k(M)

is the unique M∗-linear map such that for ω, µ ∈ Ωk(M)

ω ∧ ?µ = 〈ω, µ〉 vol
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Maxwell equations
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Maxwell equations
The Maxwell equations

∇ · ~B = 0

∇× ~E +
∂~B
∂t = 0

∇ · ~E = ρ

∇× ~B − ∂~E
∂r = ~j

become, with E ∈ Ω1(M) and B ∈ Ω2(M) and M = R× S,
dSB = 0

∂tB + dSE = 0
?S dS ?S E = ρ

−∂tE + ?SdS ?S B = j
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Maxwell equations
• ~E is the electric field
• ~B is the magnetic field
• ρ is the charge density
• ~j is the electric current density
• ∇ = (∂1, ∂2, ∂3)

• the divergence measures flux

∇· ~F = ∂1F1 +∂2F2 +∂3F3 = lim
V→{∗}

∫∫
S(V )

~F · ~n
|V | dS

• the curl measures rotation

∇× ~F = (∂2F3 − ∂3F2, ∂1F3 − ∂3F1, ∂1F2 − ∂2F1)

= lim
A→{∗}

∮
A

(
~F · d~ri
|A|

)
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Lorenzian metrics

For spacetime M = R× S, we want a Lorentzian metric of
signature (n − 1, 1), i.e. something like

(gij) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


A vector v is

• spacelike if v · v > 0
• timelike if v · v < 0
• lightlike if v · v = 0
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Maxwell equations
By writing the electromagnetic field

F = B + E ∧ dt

that is

F =


0 −Ex −Ey −Ez
Ex 0 Bz −By
Ey −Bz 0 Bx
Ez By −Bx 0



and
J = j − ρ dt

we arrive at

dF = 0
? d ? F = J
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Integration
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Closed an exact forms

• A differential form ω such that dω = 0 is closed
• A differential form ω ∈ Ωk+1(M) for which there exists
µ ∈ Ωk(M) such that dµ = ω is exact

So, d2 = 0 can be phrased: exact forms are closed.
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Integrating 1-forms
When is a 1-form exact?

Given ω ∈ Ω1(M) and a (piecewise) smooth path γ : [0,T ]→ S,
we can integrate ω along γ by∫

γ
ω =

∫ T

0
γ∗(ω)(t) dt =

∫ T

0
ωγ(t)(γ

′(t)) dt

Given p ∈ M, we can (try to) define f ∈ M∗ = Ω0(M)

µ(q) =

∫
γ
ω

for some path γ : p  q, so that

dµ = ω
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Integrating 1-forms
In order for the definition µ(q) =

∫
γ ω to work we have to suppose

that M is simply connected!
Proposition
Given a homotopy γs between paths γ0 and γ1,

Is =

∫ T

0
ωγs(t)(γ

′
s(t)) dt

does not depend on s when dω = 0.

Proof.
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Integrating 1-forms
Proposition
Given a homotopy γs between paths γ0 and γ1,

Is =

∫ T

0
ωγs(t)(γ

′
s(t)) dt

does not depend on s when dω = 0.

Proof.
Up to splitting γ, we can suppose that we are working in a chart.
In local coordinates we have

ωγs(t)(γ
′
s(t)) = ωi (γs(t))∂tγ

i
s(t)
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Integrating 1-forms
Proposition
Given a homotopy γs between paths γ0 and γ1,

Is =

∫ T

0
ωγs(t)(γ

′
s(t)) dt

does not depend on s when dω = 0.

Proof.
∂s Is =

∫
∂s [ωi (γs(t))∂tγ

i
s(t)] dt

=

∫
[∂sωi (γs(t))∂tγ

i
s(t) + ωi (γs(t))∂s∂tγ

i
s(t)] dt

=

∫
[∂sωi (γs(t))∂tγ

i
s(t)− ∂tωi (γs(t))∂sγ

i
s(t)] dt

=

∫
∂jωi (γs(t))[∂sγ

j
s∂tγ

i
s − ∂tγ

j
s∂sγ

i
s ] dt

=

∫
(dω)ij∂sγ

i∂tγ
j dt
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The Poincaré Lemma

We have just shown that the integral only depends on the
endpoints of γ : p  q, which always exists.

Theorem
When M is simply connected, every closed 1-form ω (i.e. dω = 0)
is exact: ω = dµ with

µ(q) =

∫
γ
ω

for some path γ : p  q from some fixed point p.
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The Poincaré Lemma

For instance, in the Maxwell equations we have

∇× ~E +
∂~B
∂t = 0

When the second term vanishes (under magneto-static conditions),
we have

d~E = ∇× ~E = 0

and therefore there exists a scalar function V such that

~E = −∇V

called the electric potential.
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A counter-example

When M is not simply connected, this fails to be true.

Consider M = R2 \ {(0, 0)} and with γ a loop around the unit
circle (once) in counterclockwise orientation. Take

ω =
x dy − y dx
x2 + y2

This 1-form is closed (dω = 0) and∫
γ
ω = π 6= 0 =

∫
id
ω

where id is a constant loop.

(In order to show this, use polar coordinates by change of basis.)
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Formulation with loops

Definition
A manifold is contractible if every loop based at a point p is
homotopic to the constant loop at p.

Proposition
A 1-form ω is exact iff

∮
γ ω = 0 for every loop γ.

Proof.
Use Green’s theorem which states that∫

γ
ω =

∫ ε

0

∫ ε

0
(∂iωj − ∂jωi ) dx i dx j
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Towards Stokes’ theorem

Recall
• the fundamental theorem of calculus∫ b

a
f ′(x) dx = f (b)− f (a)

• Stokes’ theorem: given a surface S in R3 with ∂S = γ,∫
S

(∇× ~F ) · ~n =

∫
γ

~F

• Gauss’ theorem: given a volume R in R3,∫
R
∇ · ~F =

∫
∂R
~F · ~n
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Manifolds with boundaries
Definition
A half-space H is

Hn = {π(x) ≥ 0 | x ∈ Rn}

where π : Rn ( R is a non-zero linear map (typically the
projection on xn).
Its boundary is

∂Hn = ker π ∼= Rn−1

Definition
An n-manifold with boundary is a manifold with charts

ϕi : Ui → Hn

and smooth transition maps.

97 / 130



Manifolds with boundaries
Definition
A half-space H is

Hn = {π(x) ≥ 0 | x ∈ Rn}

where π : Rn ( R is a non-zero linear map (typically the
projection on xn).
Its boundary is

∂Hn = ker π ∼= Rn−1

Definition
An n-manifold with boundary is a manifold with charts

ϕi : Ui → Hn

and smooth transition maps. 97 / 130



Manifolds with boundaries
Definition
A half-space H is

Hn = {π(x) ≥ 0 | x ∈ Rn}

where π : Rn ( R is a non-zero linear map (typically the
projection on xn).
Its boundary is

∂Hn = ker π ∼= Rn−1

Definition
An n-manifold with boundary is a manifold with charts

ϕi : Ui → Hn

and smooth transition maps. 97 / 130



Boundary

The boundary of such an n-manifold M is

∂M = {x ∈ M | ∃i , x ∈ Ui and ϕi (x) ∈ ∂Hn}

and is canonically an (n − 1)-manifold.
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Stokes’ theorem

Theorem
Given a compact oriented n-manifold M with boundary and an
(n − 1)-form ω, ∫

M
dω =

∫
∂M

ω
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DeRham cohomology
Given a manifold M we have constructed a cochain complex

. . .
d3
←− Ω2M d2

←− Ω1M d1
←− Ω0M d0

←− 0

of vector spaces:
d ◦ d = 0

which implies
im dk ⊆ ker dk+1

(exact forms are closed).

Definition
We define the DeRham cohomology groups by

Hk = ker dk+1/ im dk
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H0M
We have H0M = ker d1. Given f ∈ H0M, we have locally

df = ∂i f dx i = 0

so f is constant on connected components.

A basis of H0M is thus the fi ∈ M∗, with i indexing connected
components of M, such that

fi (p) =

{
1 if p in the i-th connected component
0 otherwise

In other words
H0M ∼= Rc

where c is the number of connected components of M.
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where c is the number of connected components of M.
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H1M
Consider ω ∈ im d1 ⊆ Ω1M: we have

ω = df

for some f ∈ M∗.

Given a circle S in M, we have by Stoke’s theorem∫
S
ω =

∫
S
df =

∫
∂S

f = 0

because ∂S is empty.
We have seen that if S is a circle around a hole then we can find ω
such that

∫
S ω 6= 0, so H1M is not empty.

H1M counts the “number of holes” in M.
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Frobenius Algebras
&

Topological Quantum
Field Theories
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Connections
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Connections
The idea of a connection is to relate nearby tangent spaces in
order to

• parallel transport:

• define the derivative of a vector field: the formula

Dvw = lim
q→p

w(q)− w(p)

‖q − p‖
does not make sense because w(q) ∈ TqM and w(p) ∈ TpM.
However, we will manage if we can parallel transport w(q)
into TpM.
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Bundles

Definition
A bundle

E π−→ M

is a manifold E equipped with a projection to M. The fiber over
p ∈ M is

Ep = {v ∈ E | π(v) = p}
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Bundles

Definition
A bundle

E π−→ M

is a manifold E equipped with a projection to M. The fiber over
p ∈ M is

Ep = {v ∈ E | π(v) = p}

For instance, the trivial bundle with standard fiber F is

M × F

equipped with the first projection.

106 / 130



Bundles

Definition
A bundle

E π−→ M

is a manifold E equipped with a projection to M. The fiber over
p ∈ M is

Ep = {v ∈ E | π(v) = p}

Given a submanifold U ⊆ M, we can define the restriction bundle

E |U = π−1(U) = {v ∈ E | π(v) ∈ U}
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Bundles

Definition
A bundle

E π−→ M

is a manifold E equipped with a projection to M. The fiber over
p ∈ M is

Ep = {v ∈ E | π(v) = p}

A bundle is locally trivial with standard fiber F when each point
p ∈ M has a neighborhood U and a bundle isomorphism

ϕ : E |U → U × F
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Vector bundles

Definition
A vector bundle is a bundle such that

1 each fiber is a vector space

2 and each point p ∈ M has a neighborhood U and a bundle
morphism

ϕ : E |U → U × Rn

such that for every p ∈ U,

ϕ(p,−) : Ep ( Rn

is a linear isomorphism.
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Definition
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Vector bundles
Common operations on vector spaces extend fiberwise on bundles:

(E ∗)p = E ∗p (E ⊗ F )p = Ep ⊗ Fp etc.

We write ΓE for the manifold of sections of a bundle:

s : M → E with π ◦ s = idM

which forms a module over M∗.

A basis of sections is a family (ei ) such that each s ∈ ΓE writes
uniquely as

s = s iei

A vector bundle with a basis is isomorphic to a trivial bundle, so
we generally consider basis only locally.
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Connections

Definition
A connection is a bilinear map

∇ : ΓTM ⊗ ΓE ( ΓE

which is
1 M∗-linear in the first variable:

∇fvw = f∇vw

2 Leibnitz in the second variable:

∇v (fw) = df (v)w + v∇vw

∇vw is called the covariant derivative of w in direction v .

109 / 130



Parallel transport

Definition
A vector field v is parallel if ∇v = 0 (i.e. for every w , ∇wv = 0).

These often don’t exist because parallel transport depend on paths:

Definition
Given a path γ : p  q and vp ∈ TpM, a vector field v ∈ ΓTM is
the parallel transport of vp along γ if

1 v(p) = vp

2 ∇γ̇(t)v(γ(t)) = 0 for every t
(i.e. v is parallel wrt the pullback connection on the pullback
bundle γ∗TM)
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Connections in a basis
If we write locally the vector potential A:

D∂k ej = Ai
kjei

we have, given a section s ∈ ΓE ,

Dv s = Dvk∂k s
= vkD∂k s
= vkD∂k (s iei )

= vk
((
∂ks i

)
ei + Aj

kis
iej
)

= vk
(
∂ks i + Ai

kjs j
)
ei

i.e.
(Dks)i = ∂ks i + Ai

kjs j
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An End(E )-valued 1-form
A connection is a linear map

∇ : ΓTM ⊗ ΓE ( ΓE

so locally, is described by a section A of

T ∗U ⊗ E ∗|U ⊗ E |U ∼= T ∗U ⊗ (E |U ( E |U)

with coordinates

A = Ai
kj dxk ⊗ x j ⊗ xi

called the vector potential.

We can thus write

(∇v s)i = v(s i ) + (A(v)s)i
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The flat connection

Given a choice of local trivialization of E , the standard flat
connection is

∇0
v s = v(s i )ei

Proposition
Any connection ∇ can be written as

∇ = ∇0 + A

for some potential A ∈ Γ(T ∗M ⊗ (E ( E )), i.e.

∇v s = ∇0
v s + A(v)s
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Torsion and curvature

Definition
The torsion of ∇ is

T (v ,w) = ∇vw −∇wv − [v ,w ]

Definition
The curvature of ∇ is

Ru,v (w) = ∇u∇vw −∇v∇uw −∇[u,v ]w
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Levi-Civita connection

Theorem
Given a Riemannian manifold (M, g), there exists a unique
connection which is

1 an isometry:
∇g = 0

2 torsion-free: for any v ,w ∈ ΓTM, T (v ,w) = 0, i.e.

∇vw −∇wv = [v ,w ]
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Differential
λ-calculus
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Syntax

Terms are built from the syntax

t ::= x | tt | λx .t | αt | t + t | 0 | Dt · t

with x a variable and α ∈ R (or any fixed rig such as N).

So, we have added linear combination of terms, but more
importantly

Dt · u

which is the derivative of (function) t wrt its argument, and will
satisfy

D(λx .t) · u = λx . (∂x t · u)
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Intuitions

The partial derivative ∂x t · u is the sum of all possible replacement
of one occurrence of x in u by t:

D (λx .x(xy)) · u = λx .∂x (x(xy)) · u
= λx .u(xy) + λx .x(uy)

118 / 130



Structural congruence
We consider them up to structural congruence:

• α-conversion
• terms form an R-module:

(s + t) + u = s + (t + u), α(βt) = (αβ)t, . . .

and (∑
k
αktk

)
u =

∑
k
αktku

λx .
∑

k
αktk =

∑
k
αk (λx .tk)

D(st) = D(s)t
D(Dt · u) · v = D(Dt · v) · u

D
(∑

k
αktk

)
·
(∑

l
βlul

)
=

∑
k,l
αkβl (Dtk · ul )
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Linearity

Notice that we are linear in function only:(∑
k
αktk

)
u =

∑
k
αktku

Otherwise, we would not be coherent with β-reduction:

(λx .xx)(s + t) −→ (s + t)(s + t) = ss + st + ts + tt

vs
(λx .xx)s + (λx .xx)t −→ ss + tt

120 / 130



Partial derivative

∂x

(∑
k
αktk

)
· u =

∑
k
αk (∂x tk) · u

∂xx · u = u
∂xy · u = 0

∂x (st) · u = (∂x s · u) t + (Ds · (∂x t · u)) t
∂x (λy .t) · u = λy . (∂x t · u)

∂x ((Dt · u) · v) = D (∂x t · v) + Dt · (∂xu · v)
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Reduction

• β-reduction:
(λx .s) t −→ s[t/x ]

• differential reduction:

D (λx .t) · u −→ λx . ((∂x s) · u)

i.e. we substitute only one linear occurrence of x (and take
the sum over all possibilities)

Theorem
The reduction is confluent and differential λ-calculus is a
conservative extension of λ-calculus (we did not quotient pure
λ-terms wrt reduction).
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Derivative wrt i-th variable

The original article by Eherhard and Reigner defines Di ,
differentiation with the i-th argument.

The generalization does not bring major problems:

D0 = D

and
Di+1(λx .t) · u = λx .(Di t · u)

provided x 6∈ FV(u).

(+ lots of details. . . )
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The Taylor formula

Terms can be generalized to countable sums of terms,
i.e. formal series

∑∞
k=0 αktk .

When we substitute x by u in t, we substitute it a fixed number
n ∈ N of times (the number of occurrences of x):

Theorem

tu →
∞∑

n=0

1
n!

(Dnt · un)0
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Free algebras
Definition
The free algebra !V generated by a vector space V is

!V =
⊕

k
V⊗k

By definition, we have a bijection (TODO: make this more clear....)

A→ B ∼= !A( B

So, the differential of a function

f : !A( B

should be of type

df : !A( A( B ∼= !A⊗ A( B
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Differential
Semantics
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The power of analogy

diff. geom. comp. sci.
manifold program (cfg)

vector field choice (in branchings)
1-form semantics

closed 1-form local confluence
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Graphs as manifolds

Definition
A manifold M is a graph with V as vertices, E as edges,
s, t : E → V as source and target maps, possibly with some
higher-dimensional cells (such as a precubical set, a polygraph,
etc.) and morphisms are graph morphisms (or maybe categorical
morphisms ?).

Starting from this we get the following.
• The tangent bundle is s : E → V .
• The tangent space at x ∈ V is the set

TxM = {e ∈ E | s(e) = x}

• A vector field consists of a choice of edge originating at every
vertex.
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The state space

Definition
The state space R is a (higher) category.

Example

• We can take R the category of possible memories and memory
operations as morphisms. For instance, given a set V of
values and a number k of memory cells, R is the simply
connected groupoid on V k (?).

• We can take R the category whose objects are elements of R
and the only morphism f : x → y is y − x .

• Can we think of “non-trivial” examples?
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Differential forms

We suppose fixed a set S of states (typically the possible states
for the memory of the computer). This will replace R as “negation
object”.

Definition
The dual of a set X is

X ∗ ∼= X → S

• A function f : M∗ is
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