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A unifying framework

There are many flavors of rewriting systems:

>

>

v

v

abstract rewriting systems
string rewriting systems
term rewriting systems
graph rewriting systems

Do they fit in some general pattern?



The idea of dimension

The idea of dimension appears in many contexts:

» in topology: a manifold of dimension n is a topological space
which locally looks like R”

» in algebraic topology: one consider points, paths,
homotopies between paths, homotopies between
homotopies, etc.

» in category theory: an n-category consists of collections of
k-cellsfor0 <k <n

What is a rewriting system of dimension n?



Higher-dimensional rewriting systems

| will present higher-dimensional rewriting systems, fitting the
following specification:

string rewriting system

presentation of a monoid
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Higher-dimensional rewriting systems

| will present higher-dimensional rewriting systems, fitting the
following specification:

(n + 1)-dimensional rewriting system

presentation of an n-category

We will see that
» previous cases will be recovered as particular cases,
» we get a nice inductive definition:
an (n + 1)-rewriting system is given by rules
rewriting
rewriting paths in an n-dimensional rewriting system



The intuition of dimension
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The intuition of dimension

Geometry Rewriting systems
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Historical perspective

Most of the work | will present here has been done by others.

» 1976: 2-computads
R. Street, Limits indexed by category-valued 2-functors

v

1990: n-computads
J. Power, An n-Categorical Pasting Theorem

v

1993: n-polygraphs
A. Burroni, Higher dimensional word problems with
applications to equational logic

2003: critical pairs in 3-dimensional rs
Y. Lafont, Towards an Algebraic Theory of Boolean Circuits

v

many other people: Y. Guiraud, P. Malbos, F. Métayer, ...

v
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Abstract rewriting systems

An abstract rewriting system consists of
» aset Xy of terms
» aset X1 C Xy x Xg of rules
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» aset Xy of rules together with two functions sg, ty : 31 — Yo

We write
r . x =y

whenever r € ¥y with s(r) = x and t(r) = y.
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Abstract rewriting systems

An abstract rewriting system consists of
» aset Xy of terms
» aset Xy of rules together with two functions sg, ty : 31 — Yo

We write
r . x =y

whenever r € ¥y with s(r) = x and t(r) = y.

When the rewriting system is terminating and confluent,
normal forms are in bijection with equivalence classes in

Yo/ &

63



Abstract rewriting systems

An abstract rewriting system consists of
» aset Xy of terms
» aset Xy of rules together with two functions sg, ty : 31 — Yo

We write
r . x =y

whenever r € ¥y with s(r) = x and t(r) = y.

Notice that an abstract rewriting system is simply a graph!

So
Yo=—— ¥4

to



1-dimensional rewriting systems

A 1-dimensional rewriting system is an ARS, i.e. a graph

So
Z:0 -~ Z:1

to



1-dimensional rewriting systems

A 1-dimensional rewriting system is an ARS, i.e. a graph

So
Z:0 - Z:1
to

We say that it presents the set

Yo/



What about string rewriting systems?
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String rewriting systems

A string rewriting system consists of
» aset X of letters
» aset R C ¥* x X* of rules
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String rewriting systems

A string rewriting system consists of
» aset X of letters
» aset R of rules together with s,t: R — X*

Given a rule
r v = v

a rewriting step is of the form

uw o ouvw —  w'w

with u,w € 3*.



String rewriting systems

The relation < is a congruence wrt concatenation:

* ) * ) ; ; X
us<u and vev implies uv < u'v
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The relation < is a congruence wrt concatenation:
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us<u and vev implies uv < u'v
we thus have a quotient monoid
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We say that a rewriting system (X, R) is a presentation of a
monoid M whenever

M = /&



String rewriting systems

The relation < is a congruence wrt concatenation:

/ /

* * . . * /!
us<u and vev implies uv < u'v
we thus have a quotient monoid

IR’

We say that a rewriting system (X, R) is a presentation of a
monoid M whenever

M = /&

When the rewriting system is terminating and confluent, this
means that elements of M are in bijection with normal forms in X*.
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For instance, consider the additive monoid
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Building presentations

For instance, consider the additive monoid
N x (N/2N)
| claim that a presentation for this monoid is given by
¥ ={a,b} R = {ba — ab,bb — ¢}

Critical pairs are joinable:

/N
N\

\
/

/\U



Building presentations

For instance, consider the additive monoid
N x (N/2N)
| claim that a presentation for this monoid is given by
Y ={a,b} R = {ba —ab,bb — ¢}

The rewriting system is terminating...



Building presentations

For instance, consider the additive monoid
N x (N/2N)
| claim that a presentation for this monoid is given by
¥ ={a,b} R = {ba — ab,bb — ¢}
Normal forms are:

n and a'b

a
and are in bijection with elements of N x (N/2N):

N x (N/2N) = ¥%/&p



Presentations of monoids

String rewriting systems are useful in order to build presentations
of monoids, from which

» we get a small (e.g. finite) description of the monoid
» we can perform computations (e.g. homology, etc.)



Presentations of monoids

String rewriting systems are useful in order to build presentations
of monoids, from which

» we get a small (e.g. finite) description of the monoid
» we can perform computations (e.g. homology, etc.)

There are many other examples...

2
Gn = (01,...,0n | 0101410; = 0j110/0j11, 0 = 1, 0j0; = 0jo))



Presentations of categories

A monoid can be seen as a particular case of a category

with only one object.
m n
S
@)

m—+n

How do we modify rewriting systems
in order to
present categories instead of monoids?
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Presentations of categories

A 2-dimensional rewriting system is a pair (3, 35) where

» the “alphabet” 3 is now given by a graph and ¥* denotes
the free category on the graph:
» Objects are ¥y: the objects of the graph
» morphisms are X3: the paths in the graph



Presentations of categories

A 2-dimensional rewriting system is a pair (3, 35) where

b Yo

o e
!
(2)22) = 382‘0 y t

OTET
0

» the “alphabet” 3 is now given by a graph and ¥* denotes
the free category on the graph:
» Objects are ¥y: the objects of the graph
» morphisms are X3: the paths in the graph

» the rulesin X5 are pairs of paths with same source and target

SpoS1 =850t fhosy =tyot



Recasting previous example

Consider the category with
» one object:
» N x (N/2N) as objects with addition as composition.
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Recasting previous example

Consider the category with
» one object:
» N x (N/2N) as objects with addition as composition.

It admits the presentation with
» signature is the graph
a C * 3 b

» rules are

* J o

N
VRO

18/63
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An inductive definition

Notice that the “alphabet” for a 2-dimensional rewriting system is
a graph
So
2 = ZO ff 21
0

i.e. a 1-dimensional rewriting system.
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An inductive definition

Notice that the “alphabet” for a 2-dimensional rewriting system is
a graph
So
2 = ZO f 21
to

i.e. a 1-dimensional rewriting system.

Otherwise said, from a graph we can either
» take the quotient set

s *

b)) = 20/<—>

and get a presentation
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An inductive definition

Notice that the “alphabet” for a 2-dimensional rewriting system is
a graph

So
2 = ZO f 21

to

i.e. a 1-dimensional rewriting system.

Otherwise said, from a graph we can either
» take the quotient set

s *

b)) = EO/<—>
and get a presentation
» Or generate a free category
So
o= Yo=I—_—_/_X¥}
t*

whose morphisms will be “terms” for the next level

20/63



n-categories

A (n + 1)-dimensional rewriting system presents
an n-category
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A (n + 1)-dimensional rewriting system presents
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O-category:



1-categories

A (n + 1)-dimensional rewriting system presents
an n-category

1-category:
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2-categories

A (n + 1)-dimensional rewriting system presents
an n-category

2-category:
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2-categories

A (n + 1)-dimensional rewriting system presents
an n-category

There are two oompositions in a 2-category:

DN

» vertical: x s Boal
\ 5 / \h/

h

» horizontal:
f h foh

7N TN T
X al ¥y Bl z o~  x avBly oz
i gRi
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2-categories

A (n + 1)-dimensional rewriting system presents
an n-category

The two compositions are compatible:

f f h h
SN 7NN ¢ 7 aN
BN N N N

i 9 i 9

(dg®B)o(a®@idy) = (a®id)o (idf® B)

63



n-categories

A (n + 1)-dimensional rewriting system presents
an n-category

n-category:
» O-cells
> 1-cells
|
» n-cells
together with

» n ways of composing them



Example

Higher-dimensional rewriting systems

A O-signature

signature

X Y



Higher-dimensional rewriting systems

A 1-rewriting system

2
So
to
>0
Example
signature rules
b
X oy .



Example
signature

b
e
2\

X——=Y

Higher-dimensional rewriting systems

A 1-signature = a 1-rewriting system

21



Higher-dimensional rewriting systems

A 1-signature generates a category

21

So
i1
§ito

Sp =——
t*
0

Example
signature terms
b
M a b b

. Vb x y y y

X——=Y



Higher-dimensional rewriting systems

A 2-rewriting system

such that sfjos; =sjotiandtjos; =tjot

Example
signature terms rules

b a b
O xSy ey by /W\

X——=Y




Higher-dimensional rewriting systems

A 2-signature = a 2-rewriting system

such that sfjos; =sjotiandtjos; =tjot

Example
signature

b
y——=y

RN

ri s

S
a



Higher-dimensional rewriting systems

A 2-signature generates a 2-category

such that sfjos; =sjotiandtjos; =tjot

Example
signature

b
y——=y

e e N

ri s

S
a



Higher-dimensional rewriting systems

A 3-rewriting system

such that sj o sy =sj oty and tj oSy =t} oty

Example
signature rules
b b
y——=Yy —
a b a o b
e s = s



Higher-dimensional rewriting systems

Again, the general idea is that from an n-dimensional rewriting
system
Y = (Z0,21,...,%0)

we can do the following.
» 3 generates a free n-category

Z*



Higher-dimensional rewriting systems

Again, the general idea is that from an n-dimensional rewriting
system
Y = (Z0,21,...,%0)

we can do the following.
» 3 generates a free n-category

Z*
» X presents an (n — 1) category
¥
by identifying two (n — 1)-cells in 3* which are related by an
n-cell



Higher-dimensional rewriting systems

Again, the general idea is that from an n-dimensional rewriting
system
Y = (Z0,21,...,%0)
we can do the following.
» 3 generates a free n-category

Z*
» X presents an (n — 1) category
¥
by identifying two (n — 1)-cells in 3* which are related by an

n-cell
» we can define an (n + 1)-dimensional rewriting system by
specifying a set of rules
Zn—|—1
together with their source and targets sp, ty : 41 — 25



Previous example, again

For instance, consider again the presentation of N x (N/2N):
> B = {*}
» Yy ={a:*x—=*,b:x—x}

/\/\

\/\\/

It presents the category corresponding to N x (N/2N)
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Previous example, again

For instance, consider again the presentation of N x (N/2N):
> B = {*}
» Yy ={a:*x—=*,b:x—x}

/\/\

\/\\/

It presents the category corresponding to N x (N/2N), and
generates a 2-category whose 2-cells are formal (vertical and
horizontal) composites of the above generators.
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Previous example, again

For instance, consider again the presentation of N x (N/2N):
> B = {*}
» Yy ={a:*x—=*,b:x—x}

/\/\

\/\\/

It presents the category corresponding to N x (N/2N), and
generates a 2-category whose 2-cells are formal (vertical and
horizontal) composites of the above generators.

b a b b
22 = % ) %)
a b

63
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3-dimensional rewriting systems

Let’s have a look at some examples of
3-dimensional rewriting systems
presenting 2-categories

N IR Y5
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We will see that
» they generalize term rewriting systems
and (some) graph rewriting systems
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3-dimensional rewriting systems

Let’s have a look at some examples of
3-dimensional rewriting systems
presenting 2-categories

N IR Y5

We will see that
» they generalize term rewriting systems
and (some) graph rewriting systems
» the extra generality already brings in new problems:
a finite rs can have an infinite number of critical pairs



The 2-category A

For instance, consider the 2-category A with
» O-cells: {x}
» 1-cells: N

» a2-cell
m

ST TN

* If *

~_ 7

n

is an increasing function

f: {0,....m—-1}y — {0,...,n—1}

7 /63



The 2-category A

Vertical composition is the usual composition:



The 2-category A

Vertical composition is the usual composition:




The 2-category A

Composition of 1-cells is given by addition:



The 2-category A

Horizontal composition is given by putting side by side:

3 1
TN TN
* L x * g *
S~ ~
0 1 2 0
0 1 2 0\1



The 2-category A

Horizontal composition is given by putting side by side:

4

T

* lf®g *

\/



Presenting the 2-category A

>0

We define
> X = {+}



Presenting the 2-category A

21

We define
> X = {x}

’le *$*}



Presenting the 2-category A

We define
> X = {x}
. 21:{* L *},sotham;gN



Presenting the 2-category A

We define
> X = {x}
> 21:{* LI *},sothatEI%N



Presenting the 2-category A

21 b))

We define
> X = {x}
> 21:{* LI *},sothatEI%N



Presenting the 2-category A

P b)) 23

We define
> X = {x}
> 21:{* LI *},sothatEI%N

> 2= *\u_lu/”*, \/




Presenting the 2-category A

> Yo: the 2-generators are

1 1
/’*\ //’\\
I 1
» Y3: the rules are
1 *41>* 1 A 1 *—1>* 1
Yu Uu\ = Yo
*= ok *
1

*\_,/7* * *
1

1 *\1 R

LS Ty,

30/63



Presenting the 2-category A

> Yo: the 2-generators are
1

C@

1 1

W
@ags
\®

» Y3: the rules are

Y=




Presenting the 2-category A

The system is easily shown to be terminating
and the five critical pairs are confluent:

D
D,
D)

R



Presenting the 2-category A

The system is easily shown to be terminating
and the five critical pairs are confluent:




Presenting the 2-category A

Normal forms are horizontal composites of right combs:

and are obviously in bijection with increasing functions:

1 2 3 4

=", &7



The theory for monoids

A is thus the theory for monoids!

L

([/SS

e
@Qg;
"

(we come back to this in a second)



Towards term rewriting systems

Notice that the previous presentation encodes the term rewriting
system on the signature with

» m of arity 2
» e ofarity 0
and three rules

m(m(x,y),z) — m(x,m(y,z)) m(e,x) —-x  m(x,e) —»x



Towards term rewriting systems

Notice that the previous presentation encodes the term rewriting
system on the signature with

» m of arity 2
» e ofarity 0
and three rules

m(m(x,y),z) — m(x,m(y,z)) m(e,x) —-x  m(x,e) —»x

It is easy to see that rewriting systems operating on terms which
are linear can be directly seen as a 2-dimensional rewriting
system.

What about the general case?



Towards term rewriting systems

We can also notice that our framework is more general than term
rewriting systems since it allows for operations with “coarities”
different from one:

b a b b

o/



The theory for monoids

Consider the category Set:
» it is a cartesian category:
it has products A x B and a terminal object 1,




The theory for monoids

Consider the category Set:
» it is a cartesian category:
it has products A x B and a terminal object 1,
» it can thus be seen as a 2-category:
» O-cells: x
» 1-cells: sets
» 2-cells: functions




The theory for monoids

Consider the category Set:
» it is a cartesian category:
it has products A x B and a terminal object 1,
» it can thus be seen as a 2-category:
O-cells:
1-cells: sets
2-cells: functions
vertical composition: usual composition

vV vy vy

A A
* B—> % ~ * Jgof

*
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The theory for monoids

Consider the category Set:
» it is a cartesian category:
it has products A x B and a terminal object 1,
» it can thus be seen as a 2-category:
O-cells:
1-cells: sets
2-cells: functions
horizontal composition: cartesian product

vV vy vy

AxB
/\/\
* * g * ~ * Jfxg
\/\/

A'xB'
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The theory for monoids

Consider the category Set:
» it is a cartesian category:
it has products A x B and a terminal object 1,
» it can thus be seen as a 2-category:
» O-cells: x
» 1-cells: sets
» 2-cells: functions

A 2-functor F: A — Set is characterized by
> F(x) =%
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> F(x) =%
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Consider the category Set:
» it is a cartesian category:
it has products A x B and a terminal object 1,
» it can thus be seen as a 2-category:
» O-cells: x
» 1-cells: sets
» 2-cells: functions

A 2-functor F: A — Set is characterized by
> F(x) =%
» F(1)=A
Flu) :AxA—=AandF(n):1—=A
such that
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The theory for monoids

Consider the category Set:
» it is a cartesian category:
it has products A x B and a terminal object 1,
» it can thus be seen as a 2-category:
» O-cells: x
» 1-cells: sets
» 2-cells: functions

A 2-functor F: A — Set is characterized by
> F(x) =%
» F(1)=A
Flu) :AxA—=AandF(n):1—=A
such that

v

v

po(uxida) = po(ida x ) po(nxida) =ida = po(ida xn)

v

defining F is thus the same as defining a monoid in Set




The theory for monoids

More generally, given a 2-category C, the following are the same:
» a2-functor A — C
» a monoid in C



The theory for monoids

More generally, given a 2-category C, the following are the same:
» a2-functor A — C
» a monoid in C

For instance, the category Cat of categories and functors is
cartesian and can thus be considered as a 2-category:

2-functor A — Cat

monoid in Cat

strict monoidal category



Monoidal categories

A monoidal category (C, ®,/,«, \, p) consists of
» a category C
» a functor
® : CxC — C
» an object/ € C
» invertible natural transformations
appc: (A®B)®C AR (B®C)
Ml RA—=A pail®A —=A

38



Monoidal categories

A monoidal category (C, ®,/,«, \, p) consists of
» a category C
» a functor
® : CxC — C
» an object/ € C
» invertible natural transformations
appc: (A®B)®C AR (B®C)
Ml RA—=A pail®A —=A

» such that two diagrams commute:

(AeB)eC) @D —— AR BRC)®D——A® (B C)®D)

| |

A®B)®(C®D) A®(B®(C®D))
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Monoidal categories

A monoidal category (C, ®,/,«, \, p) consists of
» a category C
» a functor
® : CxC — C

» an object/ € C
» invertible natural transformations
appc: (A®B)®C AR (B®C)
Ml RA—=A pail®A —=A

» such that two diagrams commute:

QA B

Al eB A®(leB)

M‘%

A®B




Monoidal categories

A monoidal category (C, ®,/,«, \, p) consists of
» a category C
» a functor
® : CxC — C

v

an object/ € C
invertible natural transformations
QABC : (A®B) RC—-A® (B@C)
Ml RA—=A pail®A —=A

v

v

such that two diagrams commute:

Aol ®B AL A® (I®B)
A®B

It is strict when «, A and p are identity natural transformations.

38



The theory of 2-monoids

If we consider the 3-category Cat;, with
O-cells: {x}

1-cells: categories

2-cells: functors

3-cells: invertible natural transformations

v

v vy



The theory of 2-monoids

If we consider the 3-category Cat;, with

» O-cells: {x}

» 1-cells: categories

» 2-cells: functors

» 3-cells: invertible natural transformations
it is easy to adapt previous work in order to find a 4-rewriting
system X such that

functors =" — Cat, = monoidal categories



The theory of 2-monoids

If we consider the 3-category Cat;, with

» O-cells: {x}

» 1-cells: categories

» 2-cells: functors

» 3-cells: invertible natural transformations
it is easy to adapt previous work in order to find a 4-rewriting
system X such that

functors =" — Cat, = monoidal categories

Namely,
> Yo = {x}
> X ={1}
> Yo = {%77}
» 33 ={A,L,R}
» 3, = {the two axioms of monoidal categories}



The theory of 2-monoids

functors ¥ — Cat, = monoidal categories

Namely,
> Yo = {x}
> 3= {1}
> X = {H)U}
» 35 ={A,L,R}

v

¥4 = {the two axioms of monoidal categories}

This means that a formula can be seen as a 2-cell in X*:

@0

I (Al ®B) ~ D s
&

and a natural transformation as a 3-cell in X*.



Can we use rewriting theory
to show something interesting?



Mac Lane’s coherence theorem

Theorem (Mac Lane)
Every diagram built from the morphisms

—1 —1 —1
apB.C A PA Yo Ay Pa

by composing and tensoring commutes in a monoidal category.

Ao BI)

l® (A®B)

41/63



Classical tools in rewriting theory

Suppose given a terminating (string / term / ...) rewriting system
in which critical pairs can be joined

Lemma (Newman)
The rewriting system is confluent:

./.\.
v \

where tiles are either independent rewritings or critical pairs in
context.
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Suppose given a terminating (string / term / ...) rewriting system
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Classical tools in rewriting theory

Suppose given a terminating (string / term / ...) rewriting system
in which critical pairs can be joined

Lemma (Church-Rosser)
Two terms which are convertible (t < u) can be joined:

VANVN
N4
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where tiles are either independent rewritings or critical pairs in
context.



Classical tools in rewriting theory

Suppose given a terminating (string / term / ...) rewriting system
in which critical pairs can be joined

Lemma
In particular, if we have t & u S t where tis in normal form,

u

it can be paved with tiles corresponding to either independent
rewritings or critical pairs in context.



A variant of the theory for 2-monoids

Now, consider the following 4-rewriting system

> Yo ={x}

> X = {1}

> Yo = {u,n}

» Y3 ={A,L,R}

» ¥, = {one rule for each of the five critical pairs for monoids}

functor & — Cat

monoidal category satisfying three more axioms

we have shown that (X, ..., X3) Iis terminating and confluent
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A variant of the theory for 2-monoids

Now, consider the following 4-rewriting system

> Yo = {+}

> X = {1}

> Yo = {%77}

» 33 ={A,L,R}

» 3, = {one rule for each of the five critical pairs for monoids}

Consider a pair of 3-cells in X*

ét

u
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where h : t — t is a 3-cell going to the normal form of ¢
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Now, consider the following 4-rewriting system
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> X = {1}
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» 3, = {one rule for each of the five critical pairs for monoids}
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A variant of the theory for 2-monoids

Now, consider the following 4-rewriting system

> Yo = {+}

> X ={1}

> Yo = {pn}

» 33 ={A,LR}

» 3, = {one rule for each of the five critical pairs for monoids}

Consider a pair of 3-cells in X*

g

Vet

| = |

t t t
h h—1

by Church-Rosser lemma it can be filled by 4-cells



A variant of the theory for 2-monoids

Now, consider the following 4-rewriting system

>

vV v vyY

Yo = {»}

¥ = {1}

Yo = {u,n}
Y3 ={A,L,R}

¥4 = {one rule for each of the five critical pairs for monoids}

Consider a pair of 3-cells in X*

=

It can be filled by 4-cells!
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that we have five 4-cells instead of two.
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We have almost shown Mac Lane coherence theorem excepting
that we have five 4-cells instead of two.

For instance, why is the following 4-cell superfluous?
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Removing superfluous axioms

We have almost shown Mac Lane coherence theorem excepting
that we have five 4-cells instead of two.

Consider the following critical triple:
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Removing superfluous axioms

We have almost shown Mac Lane coherence theorem excepting
that we have five 4-cells instead of two.

Consider the following critical triple:
\

and I is therefore superfluous!



, Tietze transformations
Theorem (Tietze)

Consider two string rewriting systems (X, R) and (X',R’). They
present the same monoid, i.e.

Y Sr = Y Sp

if and only if we can obtain one from the other by the following
transformations and their inverses

1. adding a superfluous generator
(3,R) ~ (Xwa,Ry{a —u})

with u € ¥*
2. adding a superfluous relation

(3,R) ~ (X,Ru{u—v})

such that u &g v.



Tietze transformations
Theorem (Tietze)
Two presentations of the same monoid differ by

1. adding/removing superfluous generators
2. adding/removing superfluous relations

We can thus

46/63
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Theorem (Tietze)

Two presentations of the same monoid differ by
1. adding/removing superfluous generators
2. adding/removing superfluous relations

We can thus
» investigate Tietze transformations for higher-dimensional
rewriting systems
(Gaussent, Guiraud, Malbos)
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Tietze transformations

Theorem (Tietze)

Two presentations of the same monoid differ by
1. adding/removing superfluous generators
2. adding/removing superfluous relations

We can thus

» investigate Tietze transformations for higher-dimensional
rewriting systems
(Gaussent, Guiraud, Malbos)

» refine Knuth-Bendix completion algorithm

» keep track of coherence cells during the completion
» use the fact that we can add not only superfluous relations
but also generators

(Guiraud, Malbos, Mimram)

46/63
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Presenting the 2-category Bij

Another very interesting example was studied by Lafont.



Presenting the 2-category Bij

Another very interesting example was studied by Lafont.

Consider the 2-category Bij defined similarly as A:
» O-cells: {*}
» 1-cells: N
» 2-cells: bijective functions

f: {0,....m—-1} — {0,...,n—1}
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Since we know that bijections can be expressed as products of
transpositions, it can be expected that the 2-category Bij admits
the following presentation:

> X = {*}
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Presenting the 2-category Bij

Since we know that bijections can be expressed as products of
transpositions, it can be expected that the 2-category Bij admits

the following presentation:
> X = {*}

> 3 ={1:%— %}

>22

1
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Presenting the 2-category Bij

Since we know that bijections can be expressed as products of
transpositions, it can be expected that the 2-category Bij admits
the following presentation:

> X = {*}

> Y ={1l:x—*}

>22_

' W@ 9.

1 1
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The rules

induce confluent critical pairs:
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Presenting the 2-category Bij

induce an infinite number of critical pairs:

zgﬁ

The rules
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A family of critical pairs

And we cannot reduce further with a generic ¢!




Showing confluence

Confluence can however be shown as follows.
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morphism ¢ rewrites to a morphism in canonical form.



Showing confluence

Confluence can however be shown as follows.

1. A 2-cell ¢ is in canonical form when it is either an identity or
of the form
| |

2. By induction (on the number of generators), every
morphism ¢ rewrites to a morphism in canonical form.

3. For morphisms in canonical form the families of critical pairs
are confluent.
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Computing critical pairs

Even though there can be an infinite number of critical pairs, |
constructed a unification algorithm which is able to compute
them all by generalizing the notion of diagram we consider.
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Even though there can be an infinite number of critical pairs, |
constructed a unification algorithm which is able to compute
them all by generalizing the notion of diagram we consider.
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Categories from terms

Suppose given a signature for terms
S={m:2,e:0}

We can form a category S*
» objects: N
» morphisms m — n are
n-uples of terms with variables in x1, ..., Xmn

( mm(x1,x1),X2) , € , X2 ) : 2 — 3
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Categories from terms

Suppose given a signature for terms
S={m:2,e:0}

We can form a category S*

» objects: N
» morphisms m — n are
n-uples of terms with variables in x1, ..., Xmn
( mm(x1,x1),X2) , € , X2 ) : 2 - 3

» composition is given by substitution:

(t1,t2) (u1,u2,u3)

S 2 3

\._,,/

(ur[o)uz[o]uslo])

with o = [ty /x1, ta/X2]




Lawvere theories

The category S* is easily shown to be a Lawvere theory:
» a cartesian category,
» whose objects are integers,
» and product is given on objects by addition.
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Lawvere theories

The category S* is easily shown to be a Lawvere theory:
» a cartesian category,
» whose objects are integers,
» and product is given on objects by addition.

A term rewriting system
(S;R)

thus presents the Lawvere theory

SRS

A Lawvere theory can be seen as
a 2-category with only one O-cell



Encoding term rewriting systems

Theorem (Burroni)

Given a term rewriting system (S, R), the 3-rewriting system ¥
defined by

> Yo = {x}

> X ={1}

» Yo=RwW{d:2—=1,6:0—1,7v:2—2}

» 33 =SW{(d,e,7) is a natural commutative comonoid}
presents the same Lawvere theory.

A term rewriting system

a linear term rewriting system
+
explicit duplication, erasure and swapping of variables

58/63



An example: commutative monoids

Consider the term rewriting system for commutative monoids

m(m(x,

%S
S8 x N

3
=

L4

m(x,m(y,z))
X
X

m(y;x)



An example: commutative monoids

Consider the term rewriting system for commutative monoids

mmx.y).z) = mem(y,z))
m(e,x) — X
m(x,e) — X
mx,y) —  m(y,x)

It is not terminating!



An example: commutative monoids

Consider the 3-rewriting system for commutative monoids

mo(m®id;) — mo(idi®@m)
mo (n®idy) — idg
mo (idy®n) — idg

mo~y — m

We get much more rules and critical pairs
but the rewriting system is terminating
and can be completed



An example: commutative monoids

From this it can be shown that the term rewriting system for
commutative monoids presents the Lawvere theory whose

» objects are integers

» morphisms
M : m — n

are (m x n)-matrices with coefficients in N

(m(m(x1,x1),X2) , €, X2 ) :+ 2—3 <2 0



An example: commutative monoids

From this it can be shown that the term rewriting system for
commutative monoids presents the Lawvere theory whose

» objects are integers
» morphisms
M : m — n

are (m x n)-matrices with coefficients in N

(m(m(x1,x1),X2) , €, Xa) : 2—3 <2 0
{m(x1,m(x1,x2)) , €, m(e,x2))



The morale

Explicit handling of symmetries can be fruitful!

(e.g. a convergent presentation of
the theory of Frobenius algebras)



CONCLUSION
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Conclusion

rewriting theory generalizes to higher dimensions
classical tools too
it turns out to be powerful to
» better understand algebraic structures (i.e. present them)
» address coherence issues
» it also has applications in algebraic topology:
in order to have a structure up to homotopy, one has

(roughly) to find a convergent presentation and explicitly
describe all the critical n-uples

it also brings finer understanding on traditional rewriting
(Knuth-Bendix)




