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A unifying framework

There are many flavors of rewriting systems:
▶ abstract rewriting systems
▶ string rewriting systems
▶ term rewriting systems
▶ graph rewriting systems
▶ …

Do they fit in some general pattern?
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The idea of dimension

The idea of dimension appears in many contexts:
▶ in topology: a manifold of dimension n is a topological space
which locally looks like Rn

▶ in algebraic topology: one consider points, paths,
homotopies between paths, homotopies between
homotopies, etc.

▶ in category theory: an n-category consists of collections of
k-cells for 0 ≤ k ≤ n

A

f

$$

g

::⇓ α B

What is a rewriting system of dimension n?
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Higher-dimensional rewriting systems

I will present higher-dimensional rewriting systems, fitting the
following specification:

string rewriting system
=

presentation of a monoid

We will see that

▶ previous cases will be recovered as particular cases,
▶ we get a nice inductive definition:

an (n+ 1)-rewriting system is given by rules
rewriting

rewriting paths in an n-dimensional rewriting system
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The intuition of dimension

Geometry Rewriting systems
0 · ·x

1 a // b // c //

2

x y z
g

f

3 ???

. . . . . . ???
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Historical perspective

Most of the work I will present here has been done by others.

▶ 1976: 2-computads
R. Street, Limits indexed by category-valued 2-functors

▶ 1990: n-computads
J. Power, An n-Categorical Pasting Theorem

▶ 1993: n-polygraphs
A. Burroni, Higher dimensional word problems with
applications to equational logic

▶ 2003: critical pairs in 3-dimensional rs
Y. Lafont, Towards an Algebraic Theory of Boolean Circuits

▶ many other people: Y. Guiraud, P. Malbos, F. Métayer, …
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Abstract rewriting systems

An abstract rewriting system consists of
▶ a set Σ0 of terms
▶ a set Σ1 ⊆ Σ0 × Σ0 of rules

We write
r : x → y

whenever r ∈ Σ0 with s(r) = x and t(r) = y.
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An abstract rewriting system consists of
▶ a set Σ0 of terms
▶ a set Σ1 of rules together with two functions s0, t0 : Σ1 → Σ0

We write
r : x → y

whenever r ∈ Σ0 with s(r) = x and t(r) = y.

When the rewriting system is terminating and confluent,
normal forms are in bijection with equivalence classes in

Σ0/
∗↔
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Abstract rewriting systems

An abstract rewriting system consists of
▶ a set Σ0 of terms
▶ a set Σ1 of rules together with two functions s0, t0 : Σ1 → Σ0

We write
r : x → y

whenever r ∈ Σ0 with s(r) = x and t(r) = y.

Notice that an abstract rewriting system is simply a graph!

Σ0 Σ1

s0oo

t0
oo
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1-dimensional rewriting systems

A 1-dimensional rewriting system is an ARS, i.e. a graph

Σ0 Σ1

s0oo

t0
oo

We say that it presents the set

Σ0/
∗↔
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What about string rewriting systems?
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String rewriting systems

A string rewriting system consists of
▶ a set Σ of letters
▶ a set R ⊆ Σ∗ × Σ∗ of rules

Given a rule
r : v → v′

a rewriting step is of the form

urw : uvw → uv′w

with u,w ∈ Σ∗.
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String rewriting systems

The relation ∗↔ is a congruence wrt concatenation:

u ∗↔ u′ and v ∗↔ v′ implies uv ∗↔ u′v′

we thus have a quotient monoid

Σ∗/
∗↔

We say that a rewriting system (Σ,R) is a presentation of a
monoid M whenever

M ∼= Σ∗/
∗↔

When the rewriting system is terminating and confluent, this
means that elements ofM are in bijection with normal forms in Σ∗.
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Building presentations

For instance, consider the additive monoid

N× (N/2N)

I claim that a presentation for this monoid is given by

Σ = {a,b} R = {ba→ ab,bb→ ε}
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a

bbb

}}||
||
||
||
|

!!B
BB

BB
BB

BB

b b

b

14 / 63



Building presentations

For instance, consider the additive monoid

N× (N/2N)

I claim that a presentation for this monoid is given by

Σ = {a,b} R = {ba→ ab,bb→ ε}

Critical pairs are joinable:

bba

}}||
||
||
||

""F
FF

FF
FF

F

a

CC
CC

CC
CC

C

CC
CC

CC
CC

C bab

∗
{{xx
xx
xx
xx
x

a

bbb

}}||
||
||
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|
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Building presentations

For instance, consider the additive monoid

N× (N/2N)

I claim that a presentation for this monoid is given by

Σ = {a,b} R = {ba→ ab,bb→ ε}

The rewriting system is terminating…
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Building presentations

For instance, consider the additive monoid

N× (N/2N)

I claim that a presentation for this monoid is given by

Σ = {a,b} R = {ba→ ab,bb→ ε}

Normal forms are:

an and anb

and are in bijection with elements of N× (N/2N):

N× (N/2N) ∼= Σ∗/
∗↔R

14 / 63



Presentations of monoids

String rewriting systems are useful in order to build presentations
of monoids, from which
▶ we get a small (e.g. finite) description of the monoid
▶ we can perform computations (e.g. homology, etc.)

There are many other examples…

Sn ∼= ⟨σ1, . . . , σn | σiσi+1σi = σi+1σiσi+1, σ
2
i = 1, σiσj = σjσi⟩
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Presentations of categories

A monoid can be seen as a particular case of a category
with only one object.

⋆

m
��

n

qq

m+n

YY

How do we modify rewriting systems
in order to

present categories instead of monoids?
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Presentations of categories

A 2-dimensional rewriting system is a pair (Σ,Σ2) where

(

Σ

,Σ2)

=

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}

Σ2

Σ0 Σ∗
2

t∗0

▶ the “alphabet” Σ is now given by a graph and Σ∗ denotes
the free category on the graph:

▶ objects are Σ0: the objects of the graph
▶ morphisms are Σ∗

1: the paths in the graph

▶ the rules in Σ2 are pairs of paths with same source and target

s∗0 ◦ s1 = s∗0 ◦ t1 t∗0 ◦ s1 = t∗0 ◦ t1
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Recasting previous example

Consider the category with
▶ one object: ⋆
▶ N× (N/2N) as objects with addition as composition.

It admits the presentation with
▶ signature is the graph

⋆a
%%

b
yy

▶ rules are
⋆

a

��
⋆

b
66

a ((

⇓ α ⋆

⋆
b

FF

⋆
b

��
⋆

b
66

⇓ β ⋆
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An inductive definition

Notice that the “alphabet” for a 2-dimensional rewriting system is
a graph

Σ = Σ0 Σ1

s0oo

t0
oo

i.e. a 1-dimensional rewriting system.

Otherwise said, from a graph we can either
▶ take the quotient set

Σ̃ = Σ0/
∗↔

and get a presentation

▶ or generate a free category

Σ∗ = Σ0 Σ∗
1

s∗0oo

t∗0
oo

whose morphisms will be “terms” for the next level
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n-categories

A (n+ 1)-dimensional rewriting system presents
an n-category
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0-categories

A (n+ 1)-dimensional rewriting system presents
an n-category

0-category:

x· g◦f ·z ·u

·y ·v
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1-categories

A (n+ 1)-dimensional rewriting system presents
an n-category

1-category:

x·

f   @
@@

@@
@@

@
g◦f // ·z ·u

h
��

·y
g

??~~~~~~~~
·v

21 / 63



2-categories

A (n+ 1)-dimensional rewriting system presents
an n-category

2-category:

x·

f   @
@@

@@
@@

@
i //

α⇓

·z ·u
h
��

·y
g

??~~~~~~~~
·v

21 / 63



2-categories

A (n+ 1)-dimensional rewriting system presents
an n-category

There are two compositions in a 2-category:

▶ vertical:

α⇓

x

f

��g //

h

FFy

β⇓

⇝ x

f

%%

h

99β ◦ α ⇓ y

▶ horizontal:

x

f

��

g

AAα ⇓ y

h

��

i

BBβ ⇓ z ⇝ x

f⊗h

%%

g⊗i

99α⊗ β ⇓ z
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2-categories

A (n+ 1)-dimensional rewriting system presents
an n-category

The two compositions are compatible:

x

f

��
g

//α⇓
y h //

i

EEβ⇓ z = x

f

��

g

CC
α⇓ y

h

��

i

EEβ⇓ z = x f //

g

CCα⇓ y

h

��

i
//β⇓
z

i.e.
(idg ⊗ β) ◦ (α⊗ idh) = (α⊗ idi) ◦ (idf ⊗ β)
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n-categories

A (n+ 1)-dimensional rewriting system presents
an n-category

n-category:
▶ 0-cells
▶ 1-cells
▶ …
▶ n-cells

together with
▶ n ways of composing them
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Higher-dimensional rewriting systems

A 0-signature

Σ1 Σ2 Σ3

Σ0 Σ∗
1 Σ∗

2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example

signature

rules

x y

x a // y

b

��

22 / 63



Higher-dimensional rewriting systems

A 1-rewriting system

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}

Σ2 Σ3

Σ0 Σ∗
1 Σ∗

2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example

signature rules

x y
x a // y

b

��
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Σ2 Σ3

Σ0 Σ∗
1 Σ∗

2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
signature

terms rules

x a // y

b

��

x a // y b // y b // y

y b // y
b

��=
==

==
==

=

x

a
@@��������

a

22

r⇓

y

22 / 63



Higher-dimensional rewriting systems

A 1-signature generates a category

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}
i1
��

Σ2 Σ3

Σ0 Σ∗
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s∗0oo

t∗0
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Example
signature terms

rules

x a // y

b

�� x a // y b // y b // y

y b // y
b

��=
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==
==

=

x

a
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a

22

r⇓

y
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Higher-dimensional rewriting systems

A 2-rewriting system

Σ1
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~~}}
}}
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2
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Example
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b

�� x a // y b // y b // y

y b // y
b

��=
==

==
==

=

x

a
@@��������

a
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Higher-dimensional rewriting systems

A 2-signature = a 2-rewriting system

Σ1
s0
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~~}}
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Σ3

Σ0 Σ∗
1
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t∗0
oo Σ∗

2

such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1

Example
signature

rules

y b // y
b

��=
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==
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x

a
@@��������

a

22

r⇓ ⇓s

y

y b // y
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Higher-dimensional rewriting systems

A 2-signature generates a 2-category
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Example
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rules
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Higher-dimensional rewriting systems

A 3-rewriting system

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}
i1
��

Σ2
s1

~~}}
}}
}}
}}

t1~~}}
}}
}}
}}
i2
��

Σ3
s2

~~}}
}}
}}
}}

t2~~}}
}}
}}
}}

Σ0 Σ∗
1

s∗0oo

t∗0
oo Σ∗

2

s∗1oo

t∗1
oo

such that s∗1 ◦ s2 = s∗1 ◦ t2 and t∗1 ◦ s2 = t∗1 ◦ t2

Example
signature rules

y b // y
b

��=
==

==
==

=

x

a
@@��������

a

22

r⇓ ⇓s

y

y b // y
b

��=
==

==
==

=

x

a
@@��������

a

22
r⇓

α
⇛ ⇓s

y
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Higher-dimensional rewriting systems

Again, the general idea is that from an n-dimensional rewriting
system

Σ = (Σ0,Σ1, . . . ,Σn)

we can do the following.
▶ Σ generates a free n-category

Σ∗

▶ Σ presents an (n− 1) category

Σ∗

by identifying two (n− 1)-cells in Σ∗ which are related by an
n-cell

▶ we can define an (n+ 1)-dimensional rewriting system by
specifying a set of rules

Σn+1

together with their source and targets sn, tn : Σn+1 → Σ∗
n
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Previous example, again

For instance, consider again the presentation of N× (N/2N):
▶ Σ0 = {⋆}
▶ Σ1 = {a : ⋆ → ⋆ , b : ⋆ → ⋆}

▶ Σ2 =


⋆ a

��
⋆

b 22

a ,,

⇓ α ⋆

⋆ b

BB ,

⋆ b

��
⋆

b 22

⇓ β ⋆

⋆


It presents the category corresponding to N× (N/2N)

, and
generates a 2-category whose 2-cells are formal (vertical and
horizontal) composites of the above generators.

Σ2 =



b a

α

a b

,

b b

β


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PRESENTING
THE

SIMPLICIAL
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3-dimensional rewriting systems

Let’s have a look at some examples of
3-dimensional rewriting systems

presenting 2-categories

Σ1
s0

~~}}
}}
}}
}}

t0~~}}
}}
}}
}}
i1
��

Σ2
s1

~~}}
}}
}}
}}

t1~~}}
}}
}}
}}
i2
��

Σ3
s2

~~}}
}}
}}
}}

t2~~}}
}}
}}
}}

Σ0 Σ∗
1

s∗0oo

t∗0
oo Σ∗

2

s∗1oo

t∗1
oo

We will see that
▶ they generalize term rewriting systems
and (some) graph rewriting systems

▶ the extra generality already brings in new problems:
a finite rs can have an infinite number of critical pairs
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The 2-category ∆

For instance, consider the 2-category ∆ with
▶ 0-cells: {⋆}
▶ 1-cells: N
▶ a 2-cell

⋆

m

##

n

;;⇓ f ⋆

is an increasing function

f : {0, . . . ,m− 1} → {0, . . . , n− 1}
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The 2-category ∆

Vertical composition is the usual composition:

⋆

4

��

3

@@⇓ f ⋆ =

0 1

��
��
��
��

2

ppp
ppp

ppp
ppp

pp 3

��
��
��
��

0 1 2

⋆

3

��

5

??⇓ g ⋆ =

0

>>
>>

>>
>>

1 2

>>
>>

>>
>>

0 1 2 3 4
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4

""

3

<<⇓ g ◦ f ⋆ =

0

((
((
((
((
((
((
((
((
((
((
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1 2

��
��
��
��
��
��
��
��
��
��
��
��
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The 2-category ∆

Composition of 1-cells is given by addition:

⋆
4 // ⋆

3 // ⋆ ⇝ ⋆
7 // ⋆
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The 2-category ∆

Horizontal composition is given by putting side by side:

⋆

3

��

3

@@⇓ f ⋆ ⋆

1

��

2

??⇓ g ⋆

0 1

��
��
��
��

2

0 1 2

0

>>
>>

>>
>>

0 1
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The 2-category ∆

Horizontal composition is given by putting side by side:

⋆

4

&&

5

88⇓ f⊗ g ⋆

0 1

��
��
��
��

2 3

>>
>>

>>
>>

0 1 2 3 4

28 / 63



Presenting the 2-category ∆

Σ1 Σ2 Σ3

Σ0 Σ∗
1 Σ∗

2

We define
▶ Σ0 = {⋆}

▶ Σ1 =
{
⋆

1 // ⋆

}

, so that Σ∗
1
∼= N

▶ Σ2 =


⋆ 1

��
⋆

1 11

1

??⇓ µ ⋆ , ⋆

1

??⇓ η ⋆


▶ Σ3 =


⋆

1 // ⋆ 1

��⇓µ
⋆

1 11
⇓µ <<

1

44 ⋆

A
⇛

⋆
1 //

⇓µ ⇓µ
//

⋆ 1

��
⋆

1 11

1

44 ⋆ , . . .


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Presenting the 2-category ∆

▶ Σ2: the 2-generators are
⋆ 1

��
⋆

1 11

1

??⇓ µ ⋆ ⋆

1

??⇓ η ⋆

▶ Σ3: the rules are

⋆
1 // ⋆ 1

��⇓µ
⋆

1 11
⇓µ <<

1

44 ⋆

A
⇛

⋆
1 //

⇓µ ⇓µ
//

⋆ 1

��
⋆

1 11

1

44 ⋆

⋆ 1

��⇓µ
⋆

1

⇓η >>

1

44 ⋆
L
⇛

⋆

1

##

1

33= ⋆

⋆
⇓µ

1

⇓η
//⋆

1 11

1

44 ⋆
R
⇛

⋆

1

##

1

33= ⋆
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Presenting the 2-category ∆

▶ Σ2: the 2-generators are

1 1
µ

1

η

1
▶ Σ3: the rules are

µ
µ

A
⇛ µ

µ

η
µ

L
⇛

η
µ

R
⇛

30 / 63



Presenting the 2-category ∆

The system is easily shown to be terminating
and the five critical pairs are confluent:

µ
µ

µ

µ
µ

µ

η
µ

µ

η
µ

µ
η η

µ
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µ
µ

µ

�
�

_*4
µ

µ
µ

_*4
µ

µ
µ

�
�

µ µ
µ

_*4
µ

µ
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Presenting the 2-category ∆

Normal forms are horizontal composites of right combs:

µ
µ µ

µ µ
µ η µ

and are obviously in bijection with increasing functions:

0 1

��
��
��
��

2

ppp
ppp

ppp
ppp

pp 3

jjjj
jjjj

jjjj
jjjj

jjjj
j 4

ggggg
ggggg

ggggg
ggggg

ggggg
gg 5 6

��
��
��
��

7

ppp
ppp

ppp
ppp

pp 8

jjjj
jjjj

jjjj
jjjj

jjjj
j

0 1 2
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The theory for monoids

∆ is thus the theory for monoids!

µ
µ

A
⇛ µ

µ

η
µ

L
⇛

η
µ

R
⇛

(we come back to this in a second)
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Towards term rewriting systems

Notice that the previous presentation encodes the term rewriting
system on the signature with
▶ m of arity 2
▶ e of arity 0

and three rules

m(m(x, y), z) → m(x,m(y, z)) m(e, x) → x m(x, e) → x

It is easy to see that rewriting systems operating on terms which
are linear can be directly seen as a 2-dimensional rewriting
system.

What about the general case?
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Towards term rewriting systems

We can also notice that our framework is more general than term
rewriting systems since it allows for operations with “coarities”
different from one:

b a

α

a b

b b

β
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The theory for monoids

Consider the category Set:
▶ it is a cartesian category:
it has products A× B and a terminal object 1,

▶ it can thus be seen as a 2-category:
▶ 0-cells: ⋆
▶ 1-cells: sets
▶ 2-cells: functions

▶ horizontal composition: cartesian product

A 2-functor F : ∆ → Set is characterized by

▶ F(⋆) = ⋆

▶ F(1) = A
▶ F(µ) : A× A→ A and F(η) : 1 → A
▶ such that

µ◦(µ×idA) = µ◦(idA×µ) µ◦(η×idA) = idA = µ◦(idA×η)

▶ defining F is thus the same as defining a monoid in Set
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The theory for monoids

More generally, given a 2-category C, the following are the same:
▶ a 2-functor ∆ → C
▶ a monoid in C

For instance, the category Cat of categories and functors is
cartesian and can thus be considered as a 2-category:

2-functor ∆ → Cat
=

monoid in Cat
=

strict monoidal category
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Monoidal categories

A monoidal category (C,⊗, I, α, λ, ρ) consists of
▶ a category C
▶ a functor

⊗ : C × C → C
▶ an object I ∈ C
▶ invertible natural transformations

αA,B,C : (A⊗ B)⊗ C→ A⊗ (B⊗ C)
λA : I⊗ A→ A ρA : I⊗ A→ A

▶ such that two diagrams commute:

It is strict when α, λ and ρ are identity natural transformations.
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The theory of 2-monoids

If we consider the 3-category Cat2 with
▶ 0-cells: {⋆}
▶ 1-cells: categories
▶ 2-cells: functors
▶ 3-cells: invertible natural transformations

it is easy to adapt previous work in order to find a 4-rewriting
system Σ such that

functors Σ
∗ → Cat2 ∼= monoidal categories

Namely,
▶ Σ0 = {⋆}
▶ Σ1 = {1}
▶ Σ2 = {µ, η}
▶ Σ3 = {A, L,R}
▶ Σ4 = {the two axioms of monoidal categories}

This means that a formula can be seen as a 2-cell in Σ∗:

I⊗ ((A⊗ I)⊗ B) ⇝
η

µ
η µ

µ

and a natural transformation as a 3-cell in Σ∗.
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Can we use rewriting theory
to show something interesting?
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Mac Lane’s coherence theorem

Theorem (Mac Lane)
Every diagram built from the morphisms

αA,B,C λA ρA α−1
A,B,C λ−1

A ρ−1
A

by composing and tensoring commutes in a monoidal category.

(A⊗ I)⊗ (B⊗ I) //

��

. . .

��
. . . // I⊗ (A⊗ B)
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Classical tools in rewriting theory

Suppose given a terminating (string / term / …) rewriting system
in which critical pairs can be joined

Lemma (Newman)
The rewriting system is confluent:

•
||yyy
yy

""E
EEE

E

•
}}{{
{{

•
!!C

CC
C

•

•

•

• •

•

where tiles are either independent rewritings or critical pairs in
context.
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Classical tools in rewriting theory

Suppose given a terminating (string / term / …) rewriting system
in which critical pairs can be joined

Lemma
In particular, if we have t̂ ∗↔ u ∗↔ t̂ where t̂ is in normal form,

u

@G ??

��
��
��
�

��?
??

??
??

?
CD__

??
??

??
?

����
��
��
��

∗ ∗

t̂

it can be paved with tiles corresponding to either independent
rewritings or critical pairs in context.
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A variant of the theory for 2-monoids

Now, consider the following 4-rewriting system
▶ Σ0 = {⋆}
▶ Σ1 = {1}
▶ Σ2 = {µ, η}
▶ Σ3 = {A, L,R}
▶ Σ4 = {one rule for each of the five critical pairs for monoids}

functor Σ
∗ → Cat
=

monoidal category satisfying three more axioms

we have shown that (Σ0, . . . ,Σ3) is terminating and confluent
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▶ Σ0 = {⋆}
▶ Σ1 = {1}
▶ Σ2 = {µ, η}
▶ Σ3 = {A, L,R}
▶ Σ4 = {one rule for each of the five critical pairs for monoids}

A diagram
(A⊗ I)⊗ (B⊗ I) //

��

. . .

��
. . . // I⊗ (A⊗ B)

corresponds to a pair of 3-cells in Σ∗ in which cells can be used in
both directions.
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Removing superfluous axioms

We have almost shown Mac Lane coherence theorem excepting
that we have five 4-cells instead of two.
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Removing superfluous axioms

We have almost shown Mac Lane coherence theorem excepting
that we have five 4-cells instead of two.

For instance, why is the following 4-cell superfluous?

η
µ

µ

9�$
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�������
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Removing superfluous axioms

We have almost shown Mac Lane coherence theorem excepting
that we have five 4-cells instead of two.

Consider the following critical triple:

and Γ is therefore superfluous!
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Tietze transformations
Theorem (Tietze)
Consider two string rewriting systems (Σ,R) and (Σ′,R′). They
present the same monoid, i.e.

Σ∗/
∗↔R ≡ Σ′∗/

∗↔R′

if and only if we can obtain one from the other by the following
transformations and their inverses

1. adding a superfluous generator

(Σ,R) ⇝ (Σ ⊎ a,R ⊎ {a→ u})

with u ∈ Σ∗

2. adding a superfluous relation

(Σ,R) ⇝ (Σ,R ⊎ {u→ v})

such that u ∗↔R v.
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Tietze transformations

Theorem (Tietze)
Two presentations of the same monoid differ by

1. adding/removing superfluous generators

2. adding/removing superfluous relations

We can thus

▶ investigate Tietze transformations for higher-dimensional
rewriting systems
(Gaussent, Guiraud, Malbos)

▶ refine Knuth-Bendix completion algorithm
▶ keep track of coherence cells during the completion
▶ use the fact that we can add not only superfluous relations
but also generators

(Guiraud, Malbos, Mimram)
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PRESENTING
THE

CATEGORY
OF

BIJECTIONS

(or not)
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Presenting the 2-category Bij

Another very interesting example was studied by Lafont.

Consider the 2-category Bij defined similarly as ∆:
▶ 0-cells: {⋆}
▶ 1-cells: N
▶ 2-cells: bijective functions

f : {0, . . . ,m− 1} → {0, . . . , n− 1}

48 / 63



Presenting the 2-category Bij

Another very interesting example was studied by Lafont.

Consider the 2-category Bij defined similarly as ∆:
▶ 0-cells: {⋆}
▶ 1-cells: N
▶ 2-cells: bijective functions

f : {0, . . . ,m− 1} → {0, . . . , n− 1}

48 / 63



Presenting the 2-category Bij

Since we know that bijections can be expressed as products of
transpositions, it can be expected that the 2-category Bij admits
the following presentation:
▶ Σ0 = {⋆}

▶ Σ1 = {1 : ⋆ → ⋆}

▶ Σ2 =



1 1

γ

1 1



▶ Σ3 =


γ

γ

γ

⇛
γ

γ

γ

,
γ

γ
⇛


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Presenting the 2-category Bij

The rules

γ

γ

γ

⇛
γ

γ

γ

γ

γ
⇛

induce confluent critical pairs:

γ

γ

γ
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Presenting the 2-category Bij

The rules

γ

γ

γ

⇛
γ

γ

γ

γ

γ
⇛

induce an infinite number of critical pairs:
...

γ

γ

γ φ

γ

γ

... 50 / 63



A family of critical pairs

...

γ

γ

γ

φ

γ

γ

...

...

γ

γ

γ φ

γ

γ

...

ks +3

...

γ

γ

φ

γ

γ

γ

...

And we cannot reduce further with a generic ϕ!
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Showing confluence

Confluence can however be shown as follows.

1. A 2-cell ϕ is in canonical form when it is either an identity or
of the form

...
φ′

... ...
γ

γ

... ...

2. By induction (on the number of generators), every
morphism ϕ rewrites to a morphism in canonical form.

3. For morphisms in canonical form the families of critical pairs
are confluent.
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γ

γ

γ

φ

γ

γ

...
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γ
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γ
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γ

γ
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γ φ
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γ

γ

γ
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Computing critical pairs

Even though there can be an infinite number of critical pairs, I
constructed a unification algorithm which is able to compute
them all by generalizing the notion of diagram we consider.

...

γ

γ

γ φ

γ

γ

...
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LAWVERE
THEORIES

(or not)
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Categories from terms

Suppose given a signature for terms

S = {m : 2, e : 0}

We can form a category S∗

▶ objects: N
▶ morphisms m→ n are
n-uples of terms with variables in x1, . . . , xm

⟨ m(m(x1, x1), x2) , e , x2 ⟩ : 2 → 3

▶ composition is given by substitution:

5
⟨t1,t2⟩ // 2

⟨u1,u2,u3⟩ // 3

x

with σ = [t1/x1, t2/x2]
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⟨ m(m(x1, x1), x2) , e , x2 ⟩ : 2 → 3

▶ composition is given by substitution:

5
⟨t1,t2⟩ //

⟨u1[σ],u2[σ],u3[σ]⟩

662
⟨u1,u2,u3⟩ // 3

x

with σ = [t1/x1, t2/x2]
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Lawvere theories

The category S∗ is easily shown to be a Lawvere theory:
▶ a cartesian category,
▶ whose objects are integers,
▶ and product is given on objects by addition.

A term rewriting system
(S,R)

thus presents the Lawvere theory

S∗/
∗↔R

A Lawvere theory can be seen as
a 2-category with only one 0-cell
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Encoding term rewriting systems

Theorem (Burroni)
Given a term rewriting system (S,R), the 3-rewriting system Σ
defined by
▶ Σ0 = {⋆}
▶ Σ1 = {1}
▶ Σ2 = R ⊎ {δ : 2 → 1, ε : 0 → 1, γ : 2 → 2}
▶ Σ3 = S ⊎ {(δ, ε, γ) is a natural commutative comonoid}

presents the same Lawvere theory.

A term rewriting system
=

a linear term rewriting system
+

explicit duplication, erasure and swapping of variables
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An example: commutative monoids

Consider the term rewriting system for commutative monoids

m(m(x, y), z) → m(x,m(y, z))

m(e, x) → x

m(x, e) → x

m(x, y) → m(y, x)

It is not terminating!
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An example: commutative monoids

Consider the 3-rewriting system for commutative monoids

m ◦ (m⊗ id1) → m ◦ (id1 ⊗m)

m ◦ (η ⊗ id1) → id1
m ◦ (id1 ⊗ η) → id1

m ◦ γ → m
...

We get much more rules and critical pairs
but the rewriting system is terminating

and can be completed
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An example: commutative monoids

From this it can be shown that the term rewriting system for
commutative monoids presents the Lawvere theory whose
▶ objects are integers
▶ morphisms

M : m → n

are (m× n)-matrices with coefficients in N

⟨ m(m(x1, x1), x2) , e , x2 ⟩ : 2 → 3

⟨m(x1,m(x1, x2)) , e , m(e, x2)⟩

⇝
(
2 0 0
1 0 1

)
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The morale

Explicit handling of symmetries can be fruitful!

(e.g. a convergent presentation of
the theory of Frobenius algebras)
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CONCLUSION
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Conclusion

▶ rewriting theory generalizes to higher dimensions
▶ classical tools too
▶ it turns out to be powerful to

▶ better understand algebraic structures (i.e. present them)
▶ address coherence issues
▶ it also has applications in algebraic topology:
in order to have a structure up to homotopy, one has
(roughly) to find a convergent presentation and explicitly
describe all the critical n-uples

▶ it also brings finer understanding on traditional rewriting
(Knuth-Bendix)

63 / 63


