
Notes about Filters

Samuel Mimram

December 6, 2012

1 Filters and ultrafilters

Definition 1. A filter F on a poset (L,≤) is a subset of L which is upward-
closed and downward-directed (= is a filter-base):

1. for every A ∈ F and B ∈ L such that A ≤ B, we have B ∈ F

2. F is not empty

3. for every A,B ∈ F there exists C ∈ F such that C ≤ A and C ≤ B

A filter F is proper when there exists A ∈ L such that A 6∈ F .

Remark 2. When L is a lattice, typically when L = P(U), F is a filter iff

1. for every A ∈ F and B ∈ L, A ∨B ∈ F

2. > ∈ F

3. for every A,B ∈ F , A ∧B ∈ F

Definition 3. A filter is prime if its complement is an ideal. An ultrafilter
is a filter is a maximal proper filter.

Remark 4. In L = P(U), a filter F is an ultrafilter iff for every A ⊆ U either
A ∈ F or U \A ∈ F . Alternatively, a set ultrafilter is F ⊆ L such that

∀A ∈ L, A ∈ F ⇔ ∀B1, . . . , Bn ∈ F,A ∩B1 ∩ . . . ∩Bn 6= ∅

Equivalently, for every partition X = X1 ] . . . ]Xn of X, there exists exactly
one i such that Xi ∈ F .1

Remark 5. In a distributive lattice, every ultrafilter is prime. In a boolean
algebra, every prime filter is an ultrafilter.

In the following, we will be mostly interested in set ultrafilters.

Definition 6. Given a set X and x ∈ X, the principal ultrafilter on X gen-
erated by x is the set Px = {F ⊆ X | x ∈ F}.

1For other characterizations along this line, see this n-café post.
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Lemma 7. An ultrafilter containing a finite set is principal.

Proposition 8 (Ultrafilter lemma). Suppose that A = (Ai)i∈I is a collection
of subsets of X. We say that A has the finite intersection property if any finite
subcollection J ⊆ I has a non-empty intersection

⋂
j∈J Aj. In this case, there

exists an ultrafilter on X such that A ⊆ X.

2 Ultrafilters and topological spaces

Definition 9. A topological space consists of a set X together with a set τ
of subsets of X, the open sets of X, such that

1. ∅ ∈ τ and X ∈ τ

2. τ is closed under finite intersections

3. τ is closed under arbitrary unions

Definition 10. A neighborhood V ⊆ X of a point x is a set such that exists
an open V containing x for which V ⊆ U .

Remark 11. Notice that the set of neighborhoods of a point x ∈ X is always a
filter, called the neighborhood filter of x.

Definition 12. A filter F converges to x when for every neighborhood U of x
belongs to F (i.e. the neighborhood filter of x is contained in F ).

Definition 13. A directed set X is a poset such that for every x, y ∈ X, there
exists z ∈ X such that x ≤ z and y ≤ z.

Definition 14. A net in a set X is a function ν : I → X where I is a directed
set, that we often write (xi)i∈I . Given Y ⊆ X, a net (xi) is eventually in Y
if there exists i ∈ I such that for every j ≥ i, xj ∈ Y . A point x ∈ X is a limit
of (xi) if for every neighborhood U of x, (xi) is eventually in U .

Remark 15. Every sequence of points (xi)i∈N is a net.

Proposition 16. Every net (xi)i∈I in X defines an eventuality filter F con-
sisting of the subsets of X such that (xi) is eventually in. Conversely, every filter
F defines a net such that I is the set whose elements are (U, x) with U ∈ F and
x ∈ U (it is the disjoint union of F ) such that (U, x) ≥ (V, y) whenever U ⊆ V
and ν : I → X is the second projection.

Question 17. Can we make this a categorical equivalence? In particular, two
nets have the same filter when they are both subsets of each other. Check the
converse direction.

Proposition 18. TODO: convergence wrt nets is the same as convergence wrt
filters.
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Proposition 19. For every function f : X → Y between topological spaces, f
is continuous iff given any point x ∈ X and net (xi)i∈I converging towards x,
the net (f(xi))i∈I converges towards f(x).

Remark 20. The restriction of the above proposition to sequences of points is
only valid in first-countable spaces. We recall that a topological space is first-
countable when every point x has a countable neighborhood basis, i.e. there
exists a sequence (Ui)i∈N of open neighborhoods of x such that for every open
neighborhood V of x there exists i such that Ui ⊆ V . Notice that every metric
space is first-countable.

Lemma 21. An uncountable set (such as R) together with the cofinite topology
is not first-countable.

Proof. Consider a point x ∈ R. TODO...

Definition 22. A topological space is compact when

(i) each open cover contains a finite subcover

(ii) every convergent net has a convergent subnet

(iii) every filter on X has a convergent refinement

(iv) every ultrafilter converges to at least one point

Question 23. Can we characterize the filters coming from sequences? Which
generalization of non-standard analysis do we get?

3 The ultrafilter monad

Definition 24. The ultrafilter monad β : Set → Set sends every set X to
the set βX of its ultrafilters. Given a morphism f : X → Y , and F ∈ βX
we define βf(F ) = {B ⊆ Y | ∃A ⊆ X, f(A) ⊆ B} (i.e. the upward closure
of the set of images, or equivalently B ∈ βf(F ) iff f−1(B) ∈ F ). The unit
ηX : X → βX of the monad sends x ∈ X to the principal ultrafilter Px generated
by x. Given a set A ⊆ X, we write [A]X for the set of ultrafilters on X which
contain A. The multiplication µX : ββX → βX sends F (an ultrafilter on βX)
to µX(F ) = {A | [A]X ∈ F}. In other words,

– A ∈ ηX(x) iff x ∈ A

– A ∈ µXU iff {F ∈ βX | A ∈ F} ∈ U

Proposition 25. This monad is generated from the adjunction2

Set
P op

--⊥ Boolop

Q

ll

2Some more details in here.
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where Bool is the category of boolean algebras, where P = Set(−, 2) : Setop → Bool
is the powerset functor (with the boolean algebra structure inherited pointwise
from 2 = {0, 1}) and Q = Bool(−, 2) : Boolop → Set.

Remark 26. In the above proposition, one should remark that a boolean algebra
morphism φ : B → 2 is uniquely determined by

– the maximal ideal φ−1(0)

– the ultrafilter φ−1(1)

so Q(B) can be identified with the set of ultrafilters in B.

The monad structure on β can be constructed abstractly, thanks to the
following theorem by Börger [Bör87, HP91]:

Theorem 27. The endofunctor β is terminal among endofunctors Set→ Set
that preserve finite coproducts.

Corollary 28. There exists exactly one monad structure on β and β is terminal
among monads Set→ Set that preserve finite coproducts.

Definition 29. A topological space X is Hausdorff (or separated or T2) if it
satisfies one of the following equivalent conditions

(i) for every points x, y ∈ X there exists a neighborhood U of x and a neigh-
borhood V of y such that U ∩ V = ∅

(ii) every net ν admits at most one limit

(iii) every filter F admits at most one limit

(iii) every ultrafilter F admits at most one limit

Remark 30. In a Hausdorff space X, given a set U and a point x ∈ X, either U
is a neighborhood of x or X \ U is, so the neighborhood filter is an ultrafilter.

We thus get the following beautiful theorem by Manes [Man69]:

Proposition 31. The Eilenberg-More category of β is the category of compact
Hausdorff spaces (a β-algebra is sometimes called a compactum).

Proof. IfX is a compact Hausdorff space, then the corresponding algebra ` : βX → X
sends an ultrafilter to its limit. Conversely, given an algebra ` : βX → X, we
define a topology on X by U ⊆ X is open when for every x ∈ X and every
F ∈ βX such that U ∈ F , if `(F ) = x then x ∈ U (i.e. U is a neighborhood of
every point it contains).

Remark 32. The algebra part βX → X sends every filter to its limit!

Remark 33. Given a topological space X, βX is the free compact Hausdorff
space on X, called its Stone-Čech compactification.
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To sum up: Hausdorff means every ultrafilter converges to at most one point
and compact means every ultrafilter converges to at least one point (this also
works if we say proper filter instead of ultrafilter). We can thus have more
generality when using relations to relate a filter with its possible limits, and
Proposition 31 was generalized by Barr [Bar70] to show that3

Proposition 34. The category Top is isomorphic to the category of lax algebras
of β in Rel (which are sometimes called relational β-modules). Notice that
in Rel the multiplication of β is strict but the unit is oplax in the sense that

X

_r
��

ηX //

⊆

βX

_βr
��

Y
ηY
// βY

By a lax algebra a : βX → X, we mean here

X

id !!

ηX // βX

_a
��

⊆

X

ββX
�βa //

µX

��
⊇

βX

_a
��

βX �
a
// X

and a morphism f : (X, a)→ (Y, b) between such algebras is a map f : X → Y
such that

βX

_a
��

βf //

⊆

βY

_b
��

X
f
// Y

4 The filter monad

Many properties of the filter monad are studied in [EF99].

Definition 35. The filter monad T : Set→ Set is defined as in Definition 24
replacing ultrafilter by filter.

Question 36. Can we also define an ultrapower monad similarly? It doesn’t
seem so.

Definition 37. The Scott topology of a poset L makes functions preserving
directed suprema continuous: open sets U are those which are

– upward closed

3See http://www2.mat.ua.pt/pessoais/dirk/artigos/kleislitop_sec.pdf.
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– inaccessible by directed joins (all directed sets with supremum in U have
a non-empty intersection with U).

Remark 38. Closed sets are the downward closed and closed under suprema of
directed subsets.

Definition 39. A poset (E,≤) is continuous if for every x ∈ E,

1. the set wb(x) = {y ∈ E | y � x} is directed

2.
∨

wb(x) exists

3. x =
∨

wb(x)

Above, x is way-below y, what we write x � y, when for every directed set
D ⊆ E with supremum such that y ≤

∨
D, there exists d ∈ D such that x ≤ d. A

continuous lattice is a complete lattice whose underlying poset is continuous.
Equivalently, a complete lattice is continuous when for every d ∈ D

d =
∨
{
∧
U | d ∈ U with U Scott-open}

Definition 40. A topological space is Kolmogorov (or T0) if for every pair
of distinct points of X, at least one of them has an open neighborhood not
containing the other.

It was shown by Day [Day75] that

Proposition 41. The algebras of the filter monad over the category of T0 topo-
logical spaces are the continuous lattices with the Scott topology. Moreover, the
structure map mD : TD → D is given by mD(φ) =

∨
{
∧
U | U ∈ φ}.

The monadicity over sets is a bit less enlightening:

Proposition 42. A D-lattice is a complete lattice L such that for any family
(Di)i∈I of directed subsets∧

{
∨
Di | i ∈ I} =

∧
{
∨

(di)i∈I | d ∈
∏
i∈I

Di}

and a morphism between those is a function preserving directed joins and arbi-
trary meets. The category of D-lattices is monadic over Set by T .

5 Ultrapowers

Definition 43. Given an ultrafilter F on a set X, the ultrapower of a set Y is
the set Y X/F , whose elements are equivalence classes 〈f〉 of functions f ∈ Hom(X,Y )
under the relation ∼ such that f ∼ g whenever {x ∈ X | f(x) = g(x)} ∈ F .

Remark 44. If F is principal then Y X/F ∼= Y , so we are mainly interested in
non-principal ultrafilters.

Remark 45. An ultrafilter F on X can be seen as a point in the Stone-Čhech
compactification βX of the discrete space Xd and ultrapowers can be interpreted
as taking stalks4. Namely, the inclusion ηX : X → βX is a continuous functions

4Found this here.
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and hence induces a geometric morphism ηX∗ between the sheaf toposes over
the spaces. Then, under the composite

Set
∆→ Set/X ∼= Sh(Xd)

ηX∗→ Sh(βX)
stalkF→ Set

the set Y is taken to Y X/F .

Theorem 46 ( Loś theorem). Given an ultrafilter F on I, we have

(Mi)/F � φ iff {i ∈ I | Mi � φ} ∈ F

Theorem 47 (Compactness theorem). A set Σ of formulas has a model iff
every finite subset of Σ has a model.

Proof. The direct implication is trivial. We consider the other direction. We
write U for the cardinal of Σ. Given a finite set I ⊆ U , we write SI = {J finite | J ⊇ I}.
Then the set {SI | I finite} has the finite intersection property. Therefore by
the ultrafilter lemma, there exists an ultrafilter F containing all the SI and we
can form the ultraproduct (MI)/F where MI is the model associated to the
finite set I. By  Loś theorem it is then easy to show that (MI)/F is a model
of Σ.

6 Stone duality

The duality for boolean algebras is handled in [BS81].

Definition 48. A boolean algebra is ...

Definition 49. The Stone space S(B) associated to a boolean algebra B is
the topological space of ultrafilters on B (or equivalently the homomorphisms
Bool(B, 2)), with the topology generated by the basis Px = {F ∈ S(B) | x ∈ F}.

Lemma 50. The spaces S(B) are compact totally disconnected Hausdorff (such
spaces are called Stone spaces). Totally disconnected means that the only
connected subspaces are empty or reduced to a point.

Lemma 51. Given a topological space X, its collection of clopen (both closed
and open) sets is a boolean algebra.

Theorem 52 (Stone’s representation theorem). Any boolean algebra B is iso-
morphic to the algebra of the clopen sets of the Stone space S(B), and this
extends contravariantly to morphisms:

Stone ∼= Boolop

There are many variants and extensions of this result:

Definition 53. A topological space is irreducible when it cannot be written
as the union of two proper closed sets. A topological space is sober when every
irreducible closed subset is the closure of exactly one point.
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Lemma 54. Hausdorff (T2) implies sober implies Kolmogorov (T0).

Definition 55. A frame F is a Heyting algebra which is complete as a lattice.
Equivalently, it is a complete lattice such that

1. it is a Heyting algebra, i.e. x ∧ − has a right adjoint

2. for every x ∈ F and S ⊆ F , x ∧
∨
S =

∨
{x ∧ s | s ∈ S}

3. F is a distributive lattice: x ∧ (y ∨ z) = (x ∨ y) ∧ (x ∨ z)

A morphism of frames is a (necessarily monotone) function which preserves
finite meets and arbitrary joins. The category of frames is denoted by Frm.
The category of locales is the dual category.

Theorem 56 (Stone’s representation theorem). The category of sober spaces
and continuous functions is dual to the category of spacial frames.

Sob ∼= SpFrmop

Proof. We can define a functor Ω : Top→ Frmop sending a topological space X
to its frame of open sets (its is contravariant because we know that f−1(O) is
an open set when O is an open set and f is continuous). Now, we’d like to
define an adjoint for this functor. Given a space X, its points x are morphisms
px : 1 → X, which are mapped to Ω(px) : Ω(X) → Ω(1) ∼= 2. This suggests
that we define a functor pt : Frmop → Top as follows. Given a frame F , the
points of pt(F ) are the morphisms p : F → 2 such a morphism is equivalently
characterized by

– the principal meet-prime ideal p−1(0),

– the completely prime filter p−1(1).

The open sets of pt(F ) are the sets of the form φ(x) = {p ∈ pt(F ) | p(x) = 1}.
It can be shown that Ω is left adjoint to pt and the images of the two functors
can be characterized as indicated in the theorem.

Definition 57. The spectrum Spec(R) of a commutative ring R is the set of
proper prime ideals of R with the Zariski topology, whose closed sets are of the
form

V (I) = {P ∈ Spec(R) | I ⊆ P}

for some ideal I. A coherent space (or spectral space) is a topological space
which is isomorphic to the spectrum of a commutative ring. Equivalently, a
coherent space X is spectral when

(i) it is a projective limit of T0 spaces

(ii) if we write KO(X) for the set of quasi-compact open subsets of X,

1. X is quasi-compact and T0
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2. KO(X) is a basis of open subsets of X

3. KO(X) is closed under finite intersections

4. X is sober

(quasi-compact means that from every open cover we can extract a finite
open cover)

Theorem 58. The category of coherent sober spaces (and coherent maps) is
equivalent to the category of coherent locales which is in turn dual to the category
of distributive lattices.

Spec = CohSp ∼= CohLoc ∼= DLatop

Let us investigate the above theorem in details.

Definition 59. A Priestley space (X,≤) consists of a topological space X
together with a partial order on the underlying set X such that

– X is compact

– if x 6≤ y then there exists a clopen up-set U of X such that x ∈ U and
y 6∈ U

Definition 60. A space is zero-dimensional if it has a basis of clopen sets.

Lemma 61. A zero-dimensional Hausdorff space is necessarily totally discon-
nected.

Lemma 62. Every Priestley space is Hausdorff, zero-dimensional, and thus a
Stone space.

Proposition 63.
Pries ∼= DLatop

Proposition 64. The category of Priestley spaces is isomorphic to the category
of spectral spaces

Pries ∼= Spec
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