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Mon premier souvenir d'un cours de combinatoire...

Mots de Dyck

1 2n ..
| (n) / Arbres binaires
j\/\'\_\ <> Arbres planaires

Mots de tukasievicz

Mini-jardin de Catalan
(D’apres photocopies de transparents de Viennot, 1993)



Today's subject: Super Catalan numbers ( Catalan, Gessel)

1 (2n)!(2m)!
2 (n +m)In!m!

These numbers are integers for all positive m, n.
= They deserve a combinatorial interpretation!

—_ — . (2n)! _ 1 (2n
For m = 1, Catalan numbers: D = i (n)

1,2,5,14, 42,132,429, 1430. . .

6(2n)! 6 1 (Qn)
(n+2)In! — n4+2 n+1 .

2.3.6,14, 36,99, 286, 858, . . .

— For m = 2, the numbers are:

We shall discuss some interpretations for m = 2.



" More precisely”, we aim at the following diagram:




A one-page preliminary...



In the Catalan garden, | pluck the...

Binary trees

with n nodes M/\

and
Dyck paths
with length 2n.
They are counted by Catalan numbers: %H(Q,:’)

Here is a bijection:

M

Turn around the tree,
write up or down

when entering or exiting
a left subtree.




First interpretations: unrooted binary trees



Colors make pictures more fun...

Edge-3-colored binary tree = a binary tree
with colors on the edge and nodes such & )
that there are two type of nodes:

Choose colors
for the root
edge and the !

root vertex: j

= #{colored tree with n nodes} = 6 - —,,Hl_l (27?)

Take a binary
tree



Agriculture hors sol
_ -9
unrooted 3-colored tree = like a 3-colored

binary tree, but without the root...

These trees have no symmetries: indeed symmetries of
planar trees must leave the center invariant.
Here the center can be: & ) ?\.\
o—=o

or.

= each tree has n + 2 distinct rootings.

#{unrooted 3-c trees with n nodes}

nf—Q . n—li-l (27;',1) _? - o %"I'l (2':)




Here is our first super-Cat-structure:

—o

-

6 1 2n
n+2n+1\n




An elegant restatment:

Trees on the hexagonal lattice (Pippenger & Schleich’03)

Up to translation and
rotations, there is a unique
way to embed an unrooted
colored tree on the colored
hexagonal lattice (possibly
A with overlaps).

—? _ 6 1 (2n
- n4+2n+1\n



An elegant restatment:

Trees on the hexagonal lattice (Pippenger & Schleich’03)

\ f (\\ Up to translation and

Y o WY 28 rotations, there is a unique

ST C way to embed an unrooted

,': colored tree on the colored

. hexagonal lattice (possibly

TN with overlaps).

—e _ 6 1 (2n)i
 ni2nt+l\n )



An elegant restatment:

Trees on the hexagonal lattice (Pippenger & Schleich’03)

\ f (\\ Up to translation and
Y o WY 28 rotations, there is a unique
ST way to embed an unrooted
,': colored tree on the colored
. hexagonal lattice (possibly
TN with overlaps).
—9 L 6 1 (Qn)
 nt+2n+l1\n

j = #{hexagonal trees with n nodes}.



We got an arrow |

6 1

n+2 n+1

2n
n



Hexagonal trees are Mireille's embedded trees...

TN Turn counterclockwise

\ / ‘\\ _____ around the tree, and label _|_1/

each side of edges:

ST e at each corner {=/(+1
p ) e at each leaf: /=/—3. <¥
' -3
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Hexagonal trees are Mireille's embedded trees...

TN Turn counterclockwise

\ / ‘\\ _____ around the tree, and label _|_1/

each side of edges:

ST e at each corner {=/(+1

p ) e at each leaf: /=/¢—3. <¥
: -3

Exemple: O



Hexagonal trees are Mireille's embedded trees...

Turn counterclockwise

around the tree, and label 41
each side of edges: /
e at each corner /=/+1

e at each leaf: /=¢—3. <¥
-3

Exemple: O



Hexagonal trees are Mireille's embedded trees...

Turn counterclockwise

4 N (I/
\ / L around the tree, and label _|_1/

each side of edges:

ST e at each corner {=/(+1

p ) e at each leaf: /=/¢—3. <¥
===t : -3

Exemple: O



Hexagonal trees are Mireille's embedded trees...

Turn counterclockwise
around the tree, and label
each side of edges:

e at each corner /=/+1

e at each leaf: /=¢—3. <¥ '
-3

Exemple: 0]-3
1 -4
2 -1

More generally: 0l-3

1 4

-2 —11>




Hexagonal trees are Mireille's embedded trees...

Turn counterclockwise

\\ I/ \ (I
\ / ' around the tree, and label

each side of edges:

ST e at each corner {=/(41 '
p ) e at each leaf: /=¢—3. <¥ ]
R ' -3

' ) Exemple:  0]-3
Read Mireille’'s labels on the left of inner edges. 1 _4
-2 -1
These labels should be viewed as
: 0]-3
angles (multiples of 7 /3). More generally:
1 -4

After a full turn around the tree, the

1y
angle variation is —2m = —6 - (7w/3). >




A bigger example.

Yo




A bigger example.

*0 -3 Rerooting changes the actual
label, but not the variations!




A bigger example.

3 Rerooting changes the actual
label, but not the variations!




A bigger example.

3 Rerooting changes the actual
label, but not the variations!

By rerooting, the sequence of
variations are cyclically permuted.

; /-3 0 .
1 -3
2 4
_1| -4
0 A Do apply the cycle lemma.

6 1 2n
n+2n+1\ n



This should give Mireille's formula for positive binary trees:
recall

Theorem (part of her)Let B, be the number of rooted
binary trees with n nodes with label > 0. Then

6(2n)!
Bz0 4+ B=) .
n T P nl(n + 2)!

In other terms:

6(2n)!
nl(n+2)!

B+ Bt =



We got an arrow |

6 1

n+2 n+1

2n
n



Second interpretation: Dyck paths



Let a Gessel-Xin pair be a pair of Dyck paths such that the
height of the two paths differ at most by one.

Example: W
AN .>Q\ YAVAN

AN |
n=3 ANy NN N /\I/\ + symmetric




Let a Gessel-Xin pair be a pair of Dyck paths such that the
height of the two paths differ at most by one.

Example: W

| /
n=3 ANy NN N /\IA + symmetric §

Theorem (Gessel & Xin). The number of Gessel-Xin pairs with
total length 2n is:

n)!
4Cy —Cnt1 = (2122)37@!'




Let a Gessel-Xin pair be a pair of Dyck paths such that the
height of the two paths differ at most by one.

Example: W

| /
n=3 ANy NN N /\IA + symmetric §

Theorem (Gessel & Xin). The number of Gessel-Xin pairs with
total length 2n is:

n)!
4Cy —Cnt1 = (25—22))!71!‘

Can we relate this to the previous binary trees 7



Decomposition at the center of the tree

peeling é






peeling é

T K

= Two binary trees with equal height:

The center can also be a node: —¢

i

Dk Tk(z)z



The center can also be a node: —¢ —>

A y

= Two binary trees with almost the same height: Zk Tk(z Tk_l(z)

S



The center can also be a node: —¢ —>

i

= Two binary trees with almost the same height: Zk Tk(Z)Tk_l(Z)

e

But this approach does not yield the relation to Dyck paths:

e Colors are not taken into account correctly...
e Not the right notion of height!



A notion of center inherited from Dyck paths.

2
Recall the bijection... 5
i 1
PAVA LV 0o X
1 2n !
n-+1 ( n ) ' X
) 0
___________________________________________________ 1
070

hence the rule for computing the height:

k =max(i+ 1, 5) ?

#{(/K /JK) h’—jgl} = s ()




Depending on the position of the root, each edge can get two labels:
there is a height labelling of an unrooted tree!

0 1 2o 0
Exemple: 5 ' 9
1| 130
2
3
02\ N0
L 0

Theorem. Exactly one of the following two cases occur:

® there is one edge with the 2 labels that are equal,

® or there is one vertex with the 3 incident labels that are equal.



Decomposition at the center of the tree

o e
) A

= Two binary trees with equal height: 3 Zk; l)k(z)2

The center is an edge:

« 1
U o
The center i1s a node: .
AW
The center can also be a node: %

= Three binary trees with the same height: 2 Zk 2Dy, (2)3

This is correct: >, 3Dy (2)? + 22Dg(2)° = > n?((ji);)! 2",

But what we want are pairs of Dyck paths with almost the same height.












1+1

Looking at possible label and
exchanging some subtrees,
complete the missing terms!




Here is our diagram...




Third interpretation: graphs...



A combinatorial operation: the local closure

Start with a binary tree and apply greedily
the local closure rule

.
.,
.
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A combinatorial operation: the local closure

Start with a binary tree and apply greedily
the local closure rule

.
.,
.



A combinatorial operation: the local closure

Start with a binary tree and apply greedily
the local closure rule

.
.,
.

Exactly 6 new vertices are needed



A combinatorial operation: the complete closure

Add a hexagon around
the picture




A combinatorial operation: the complete closure

Add a hexagon around
the picture

Form quadrangles...

This yields the
quadrangulation of a
hexagon.




Theorem (Fusy, Poulalhon, S. 05). o\f/
The closure is a bijection between * N

e unrooted binary trees with n nodes, (

e unrooted quadrangulations of a hexagon
with n internal vertices.

(I will not prove this theorem: it is hard...)

Corollary. (Mullin & Schellenberg 68)
The number of rooted quadrangulations of a hexagon is

6 1 2N
n+2 n+1\n/




The diagram is almost complete, but we still miss the
3-connected planar graphs of the title of the talk.




The diagram is almost complete, but we still miss the
3-connected planar graphs of the title of the talk.




Quadrangulations of a hexagon are "almost” in bijection with
3-connected planar graphs.

More precisely:
Theorem. (Tutte) There is a simple bijection between

e 3-connected planar maps with n edges,

e quadrangulations™ of a square with n faces.

Theorem (Whitney). 3-connected planar graphs have es-
sentially only one embedding in the plane.



Unrooted colored trees
Gessel-Xin pairs with n nodes

with length 2n !

AP A N -t 1 T
6 (Qn) P
(n+2)(n+1) \ n S < /

Quadrangulations
of a hexagon

3-connected planar graphs

with n edges with n inner vertices



Unrooted colored trees

Gessel-Xin pairs with i o and j e

ﬂ
PO A A S

: : -"J\I\) \-(/

s (0 ()

- =s .
’ \ ’
\ ’
(
\
\
\
\
¥
’ ’
’ ’
==X
’ \
’ \
& .

Quadrangulations
of a hexagon

3-connected planar graphs

with ¢ faces and j vertices with i +3 cand j+3 e



univariate bivariate

2n)! 2i4+1)!(25)!
(order 1 super) Catalan n!((n+)1)! i!j!(2i(—|—1tj))!((2?j)—l—1—i)!
6(2n)! 3(21)!(25)!
order 2 super Catalan n!((n—l—)Z)! i!j!(2i+g—;)(!(;?7+1—i)!
(m,n) super Catalan %n(!%b!)(!éi%!)! 777

Maybe having a 2-variable version could help finding a
combinatorial interpretation for all (m,n)...



univariate bivariate

2n)! 2i41)!(25)!
(order 1 super) Catalan n!((n+)1)! i!j!(Zi(—I—ltj))!((ZJj)—H—i)!
6(2n)! 3(24)!(25)!
order 2 super Catalan n!((n—l—)2)! i!j!(2i+g—;)(!(%;'+1—i)!
(m,n) super Catalan %n(!%b!)(!éi”%! 777

Maybe having a 2-variable version could help finding a
combinatorial interpretation for all (m,n)...

That's all. Merci de votre attention !



Unrooted colored trees
Gessel-Xin pairs with n nodes

with length 2n !

AP A N -t 1 T
6 (Qn) P
(n+2)(n+1) \ n S < /

Quadrangulations
of a hexagon

3-connected planar graphs

with n edges with n inner vertices















