Binary trees, super-Catalan numbers

 and
3-connected Planar Graphs

Gilles Schaeffer

LIX, CNRS/École Polytechnique

Based in part on a joint work with E. Fusy and D. Poulalhon

Mon premier souvenir d'un cours de combinatoire...

Mini-jardin de Catalan
(D'après photocopies de transparents de Viennot, 1993)

Today's subject: Super Catalan numbers (Catalan, Gessel)

$$
\frac{1}{2} \frac{(2 n)!(2 m)!}{(n+m)!n!m!}
$$

These numbers are integers for all positive m, n.
\Rightarrow They deserve a combinatorial interpretation!

- For $m=1$, Catalan numbers: $\frac{(2 n)!}{n!(n+1)!}=\frac{1}{n+1}\binom{2 n}{n}$.

$$
1,2,5,14,42,132,429,1430 \ldots
$$

- For $m=2$, the numbers are: $\quad \frac{6(2 n)!}{(n+2)!n!}=\frac{6}{n+2} \frac{1}{n+1}\binom{2 n}{n}$.

$$
2,3,6,14,36,99,286,858, \ldots
$$

We shall discuss some interpretations for $m=2$.
"More precisely", we aim at the following diagram:

A one-page preliminary...

In the Catalan garden, I pluck the...

Binary trees
with n nodes and

Dyck paths with length $2 n$.

They are counted by Catalan numbers: $\frac{1}{n+1}\binom{2 n}{n}$

Here is a bijection:

Turn around the tree, write up or down when entering or exiting a left subtree.

First interpretations: unrooted binary trees

Colors make pictures more fun...

Edge-3-colored binary tree $=$ a binary tree with colors on the edge and nodes such that there are two type of nodes:

Take a binary tree

Choose colors for the root edge and the root vertex:

$$
\Rightarrow \quad \#\{\text { colored tree with } n \text { nodes }\}=6 \cdot \frac{1}{n+1}\binom{2 n}{n} .
$$

Agriculture hors sol
unrooted 3-colored tree $=$ like a 3-colored binary tree, but without the root...

These trees have no symmetries: indeed symmetries of planar trees must leave the center invariant.

Here the center can be:
or:

\Rightarrow each tree has $n+2$ distinct rootings.
\#\{unrooted 3-c trees with n nodes $\}$

$$
=\frac{6}{n+2} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

Here is our first super-Cat-structure:

$$
\frac{6}{n+2} \frac{1}{n+1}\binom{2 n}{n}
$$

An elegant restatment:

Trees on the hexagonal lattice (Pippenger \& Schleich'03)

Up to translation and rotations, there is a unique way to embed an unrooted colored tree on the colored hexagonal lattice (possibly with overlaps).

An elegant restatment:

Trees on the hexagonal lattice (Pippenger \& Schleich'03)

$$
=\quad \frac{6}{n+2} \frac{1}{n+1}\binom{2 n}{n}
$$

Up to translation and rotations, there is a unique way to embed an unrooted colored tree on the colored hexagonal lattice (possibly with overlaps).

An elegant restatment:

Trees on the hexagonal lattice (Pippenger \& Schleich'03)

Up to translation and rotations, there is a unique way to embed an unrooted colored tree on the colored hexagonal lattice (possibly with overlaps).

$$
=\frac{6}{n+2} \frac{1}{n+1}\binom{2 n}{n}
$$

$=\#\{$ hexagonal trees with n nodes $\}$.

We got an arrow!

$$
\frac{6}{n+2} \frac{1}{n+1}\binom{2 n}{n}
$$

Hexagonal trees are Mireille's embedded trees...

Turn counterclockwise around the tree, and label each side of edges:

- at each corner $\ell=\ell+1$
- at each leaf: $\ell=\ell-3$.

Hexagonal trees are Mireille's embedded trees...

Turn counterclockwise
around the tree, and label
each side of edges: each side of edges:

- at each corner $\ell=\ell+1$
- at each leaf: $\ell=\ell-3$.

Hexagonal trees are Mireille's embedded trees...

> Turn counterclockwise around the tree, and label each side of edges:

- at each corner $\ell=\ell+1$
- at each leaf: $\ell=\ell-3$.

Hexagonal trees are Mireille's embedded trees...

> Turn counterclockwise around the tree, and label each side of edges:

- at each corner $\ell=\ell+1$
- at each leaf: $\ell=\ell-3$.

Hexagonal trees are Mireille's embedded trees...

> Turn counterclockwise around the tree, and label each side of edges:

- at each corner $\ell=\ell+1$
- at each leaf: $\ell=\ell-3$.

Hexagonal trees are Mireille's embedded trees...

> Turn counterclockwise around the tree, and label each side of edges:

- at each corner $\ell=\ell+1$
- at each leaf: $\ell=\ell-3$.

Hexagonal trees are Mireille's embedded trees...

Turn counterclockwise around the tree, and label each side of edges:

- at each corner $\ell=\ell+1$
- at each leaf: $\ell=\ell-3$.

Exemple: ${ }^{0}-3$

Hexagonal trees are Mireille's embedded trees...

> Turn counterclockwise around the tree, and label each side of edges:
> - at each corner $\ell=\ell+1$
> - at each leaf: $\ell=\ell-3$.

Exemple: ${ }^{0}$-3
These labels should be viewed as angles (multiples of $\pi / 3$).

After a full turn around the tree, the angle variation is $-2 \pi=-6 \cdot(\pi / 3)$.

A bigger example.

A bigger example.

A bigger example.

A bigger example.

This should give Mireille's formula for positive binary trees: recall

Theorem (part of her)Let B_{n} be the number of rooted binary trees with n nodes with label ≥ 0. Then

$$
B_{n}^{\geq 0}+B_{n+1}^{\geq 0}=\frac{6(2 n)!}{n!(n+2)!} .
$$

In other terms:

$$
B_{n}^{\geq 0}+B_{n}^{\geq-1}=\frac{6(2 n)!}{n!(n+2)!}
$$

We got an arrow!

$$
\frac{6}{n+2} \frac{1}{n+1}\binom{2 n}{n}
$$

Second interpretation: Dyck paths

Let a Gessel-Xin pair be a pair of Dyck paths such that the height of the two paths differ at most by one.

Example:

Let a Gessel-Xin pair be a pair of Dyck paths such that the height of the two paths differ at most by one.

Example:

Theorem (Gessel \& Xin). The number of Gessel-Xin pairs with total length $2 n$ is:

$$
4 C_{n}-C_{n+1}=\frac{6(2 n)!}{(n+2)!n!}
$$

Let a Gessel-Xin pair be a pair of Dyck paths such that the height of the two paths differ at most by one.

Example:

Theorem (Gessel \& Xin). The number of Gessel-Xin pairs with total length $2 n$ is:

$$
4 C_{n}-C_{n+1}=\frac{6(2 n)!}{(n+2)!n!}
$$

Can we relate this to the previous binary trees ?

Decomposition at the center of the tree

Decomposition at the center of the tree

$$
\Rightarrow \text { Two binary trees with equal height: } \quad \sum_{k} T_{k}(z)^{2}
$$

Decomposition at the center of the tree

$$
\Rightarrow \text { Two binary trees with equal height: } \quad \sum_{k} T_{k}(z)^{2}
$$

Decomposition at the center of the tree

\Rightarrow Two binary trees with equal height: $\quad \sum_{k} T_{k}(z)^{2}$

 *

\Rightarrow Two binary trees with almost the same height: $\quad \sum_{k} T_{k}(z) T_{k-1}(z)$

Decomposition at the center of the tree

\Rightarrow Two binary trees with equal height:
$\sum_{k} T_{k}(z)^{2}$

 4

\Rightarrow Two binary trees with almost the same height: $\quad \sum_{k} T_{k}(z) T_{k-1}(z)$

But this approach does not yield the relation to Dyck paths:

- Colors are not taken into account correctly...
- Not the right notion of height!

A notion of center inherited from Dyck paths.

hence the rule for computing the height:

$$
k=\max (i+1, j)
$$

$\#\{(\overbrace{}^{i} \overbrace{}^{j})||i-j| \leq 1\}=\frac{6}{n+2} \frac{1}{n+1}\binom{2 n}{n}$.

Depending on the position of the root, each edge can get two labels: there is a height labelling of an unrooted tree!

Exemple:

Theorem. Exactly one of the following two cases occur:

- there is one edge with the 2 labels that are equal,
- or there is one vertex with the 3 incident labels that are equal.

Decomposition at the center of the tree

The center is an edge:

\Rightarrow Two binary trees with equal height: $3 \sum_{k} D_{k}(z)^{2}$

The center is a node:
The center can also be a node:

\Rightarrow Three binary trees with the same height: $2 \sum_{k} z D_{k}(z)^{3}$

This is correct: $\sum_{k} 3 D_{k}(z)^{2}+2 z D_{k}(z)^{3}=\sum \frac{6(2 n)!}{n!(n+2)!} z^{n}$.
But what we want are pairs of Dyck paths with almost the same height.

Looking at possible label and exchanging some subtrees, complete the missing terms!

Here is our diagram...

Third interpretation: graphs...

A combinatorial operation: the local closure

Start with a binary tree and apply greedily the local closure rule

A combinatorial operation: the local closure

Start with a binary tree and apply greedily the local closure rule

A combinatorial operation: the local closure

Start with a binary tree and apply greedily the local closure rule

A combinatorial operation: the local closure

Start with a binary tree and apply greedily the local closure rule

A combinatorial operation: the local closure

Start with a binary tree and apply greedily the local closure rule

A combinatorial operation: the local closure

Start with a binary tree and apply greedily the local closure rule

Exactly 6 new vertices are needed

A combinatorial operation: the complete closure

Add a hexagon around the picture

A combinatorial operation: the complete closure

Add a hexagon around the picture

Form quadrangles...

This yields the quadrangulation of a hexagon.

Theorem (Fusy, Poulalhon, S. 05).

The closure is a bijection between

- unrooted binary trees with n nodes,
- unrooted quadrangulations of a hexagon with n internal vertices.
(I will not prove this theorem: it is hard...)
Corollary. (Mullin \& Schellenberg 68)

The number of rooted quadrangulations of a hexagon is

$$
\frac{6}{n+2} \cdot \frac{1}{n+1}\binom{2 n}{n}
$$

The diagram is almost complete, but we still miss the 3 -connected planar graphs of the title of the talk.

The diagram is almost complete, but we still miss the 3-connected planar graphs of the title of the talk.

$$
\frac{6}{n+2} \frac{1}{n+1}\binom{2 n}{n}
$$

Quadrangulations of a hexagon are "almost" in bijection with 3-connected planar graphs.

More precisely:
Theorem. (Tutte) There is a simple bijection between

- 3-connected planar maps with n edges,
- quadrangulations* of a square with n faces.

Theorem (Whitney). 3-connected planar graphs have essentially only one embedding in the plane.

Gessel-Xin pairs with length $2 n$

Unrooted colored trees with n nodes

$$
\frac{6}{(n+2)(n+1)}\binom{2 n}{n}
$$

3-connected planar graphs with n edges

with n inner vertices
 with i faces and j vertices

univariate

(order 1 super) Catalan $\quad \frac{(2 n)!}{n!(n+1)!} \quad \frac{(2 i+1)!(2 j)!}{i!j!(2 i+1-j)!(2 j+1-i)!}$
order 2 super Catalan

$$
\frac{6(2 n)!}{n!(n+2)!} \quad \frac{3(2 i)!(2 j)!}{i!j!(2 i+1-j)!(2 j+1-i)!}
$$

(m, n) super Catalan $\quad \frac{1}{2} \frac{(2 n)!(2 m)!}{n!m!(n+m)!}$
???

Maybe having a 2-variable version could help finding a combinatorial interpretation for all $(m, n) \ldots$

univariate

(order 1 super) Catalan $\quad \frac{(2 n)!}{n!(n+1)!} \quad \frac{(2 i+1)!(2 j)!}{i!j!(2 i+1-j)!(2 j+1-i)!}$ order 2 super Catalan $\quad \frac{6(2 n)!}{n!(n+2)!} \quad \frac{3(2 i)!(2 j)!}{i!j!(2 i+1-j)!(2 j+1-i)!}$ (m, n) super Catalan $\quad \frac{1}{2} \frac{(2 n)!(2 m)!}{n!m!(n+m)!}$

Maybe having a 2-variable version could help finding a combinatorial interpretation for all $(m, n) \ldots$

That's all. Merci de votre attention!

Gessel-Xin pairs with length $2 n$

Unrooted colored trees with n nodes

$$
\frac{6}{(n+2)(n+1)}\binom{2 n}{n}
$$

3-connected planar graphs with n edges

with n inner vertices

