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Mon premier souvenir d’un cours de combinatoire...

Mots de Dyck

Mots de  Lukasievicz

Arbres planaires

Arbres binaires

(D’après photocopies de transparents de Viennot, 1993)
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Mini-jardin de Catalan



Today’s subject: Super Catalan numbers (Catalan, Gessel)

1
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(2n)!(2m)!
(n + m)!n!m!

– For m = 1, Catalan numbers: (2n)!
n!(n+1)!

= 1
n+1

(
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n

)
.

– For m = 2, the numbers are: 6(2n)!
(n+2)!n!

= 6
n+2

1
n+1

(
2n
n

)
.

1, 2, 5, 14, 42, 132, 429, 1430 . . .

2, 3, 6, 14, 36, 99, 286, 858, . . .

These numbers are integers for all positive m,n.

We shall discuss some interpretations for m = 2.

⇒ They deserve a combinatorial interpretation!



”More precisely”, we aim at the following diagram:
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A one-page preliminary...



Binary trees
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In the Catalan garden, I pluck the...

and
Dyck paths

with n nodes

with length 2n.

They are counted by Catalan numbers: 1
n+1

(
2n
n

)
Here is a bijection:

Turn around the tree,
write up or down
when entering or exiting
a left subtree.



First interpretations: unrooted binary trees



⇒ #{colored tree with n nodes} = 6 · 1
n+1

(
2n
n

)
.

Choose colors
for the root
edge and the
root vertex:

Colors make pictures more fun...

Edge-3-colored binary tree = a binary tree
with colors on the edge and nodes such
that there are two type of nodes:

Take a binary
tree



= 6 · 1
n+1

(
2n
n

)

Agriculture hors sol

unrooted 3-colored tree = like a 3-colored
binary tree, but without the root...

These trees have no symmetries: indeed symmetries of
planar trees must leave the center invariant.

Here the center can be:

or:

⇒ each tree has n + 2 distinct rootings.

= 6
n+2 ·

1
n+1

(
2n
n

)#{unrooted 3-c trees with n nodes}
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Here is our first super-Cat-structure:



Trees on the hexagonal lattice (Pippenger & Schleich’03)

An elegant restatment:
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Up to translation and
rotations, there is a unique
way to embed an unrooted
colored tree on the colored
hexagonal lattice (possibly
with overlaps).
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Trees on the hexagonal lattice (Pippenger & Schleich’03)

An elegant restatment:

= 6
n+2

1
n+1

(
2n
n

)

Up to translation and
rotations, there is a unique
way to embed an unrooted
colored tree on the colored
hexagonal lattice (possibly
with overlaps).

= #{hexagonal trees with n nodes}.



We got an arrow !
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Hexagonal trees are Mireille’s embedded trees...

+1

-3

Turn counterclockwise
around the tree, and label
each side of edges:
• at each corner `=`+1
• at each leaf: `=`−3.
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Hexagonal trees are Mireille’s embedded trees...
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each side of edges:
• at each corner `=`+1
• at each leaf: `=`−3.
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Hexagonal trees are Mireille’s embedded trees...
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Hexagonal trees are Mireille’s embedded trees...
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Turn counterclockwise
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each side of edges:
• at each corner `=`+1
• at each leaf: `=`−3.
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Hexagonal trees are Mireille’s embedded trees...

+1

-3

Turn counterclockwise
around the tree, and label
each side of edges:
• at each corner `=`+1
• at each leaf: `=`−3.

Exemple: 0

1
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More generally:
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Hexagonal trees are Mireille’s embedded trees...

+1

-3

These labels should be viewed as
angles (multiples of π/3).

After a full turn around the tree, the
angle variation is −2π = −6 · (π/3).

Read Mireille’s labels on the left of inner edges.

Turn counterclockwise
around the tree, and label
each side of edges:
• at each corner `=`+1
• at each leaf: `=`−3.

Exemple: 0
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A bigger example.
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Rerooting changes the actual
label, but not the variations!



Rerooting changes the actual
label, but not the variations!
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Rerooting changes the actual
label, but not the variations!
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A bigger example.

⇒ apply the cycle lemma.

By rerooting, the sequence of
variations are cyclically permuted.
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This should give Mireille’s formula for positive binary trees:
recall

Theorem (part of her)Let Bn be the number of rooted
binary trees with n nodes with label ≥ 0. Then

B≥0
n + B≥0

n+1 =
6(2n)!

n!(n + 2)!
.

In other terms:

B≥0
n + B≥−1

n =
6(2n)!

n!(n + 2)!
.



We got an arrow !
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Second interpretation: Dyck paths



n = 1

n = 2

n = 3 + symmetric

2

3

6

Example:

Let a Gessel-Xin pair be a pair of Dyck paths such that the
height of the two paths differ at most by one.



Theorem (Gessel & Xin). The number of Gessel-Xin pairs with
total length 2n is:

4Cn − Cn+1 = 6(2n)!
(n+2)!n!

.
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Theorem (Gessel & Xin). The number of Gessel-Xin pairs with
total length 2n is:

4Cn − Cn+1 = 6(2n)!
(n+2)!n!

.

n = 1

n = 2

n = 3 + symmetric
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Example:

Let a Gessel-Xin pair be a pair of Dyck paths such that the
height of the two paths differ at most by one.

Can we relate this to the previous binary trees ?



Decomposition at the center of the tree

peeling
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Decomposition at the center of the tree

⇒ Two binary trees with almost the same height:
∑

k Tk(z)Tk−1(z)
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⇒ Two binary trees with equal height:
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The center can also be a node:



Decomposition at the center of the tree

⇒ Two binary trees with almost the same height:
∑

k Tk(z)Tk−1(z)

peeling

⇒ Two binary trees with equal height:
∑

k Tk(z)2

The center can also be a node:

But this approach does not yield the relation to Dyck paths:

• Colors are not taken into account correctly...

• Not the right notion of height!



A notion of center inherited from Dyck paths.
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Recall the bijection...

2

hence the rule for computing the height:

k

i j

#{ } = 6
n+2

1
n+1

(
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n

)
.|i− j| ≤ 1( ) |
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Depending on the position of the root, each edge can get two labels:
there is a height labelling of an unrooted tree!

Exemple:

Theorem. Exactly one of the following two cases occur:

• there is one edge with the 2 labels that are equal,

• or there is one vertex with the 3 incident labels that are equal.



Decomposition at the center of the tree

⇒ Three binary trees with the same height: 2
∑

k zDk(z)3

⇒ Two binary trees with equal height: 3
∑

k Dk(z)2

The center can also be a node:

This is correct:
∑

k
3Dk(z)2 + 2zDk(z)3 =

∑ 6(2n)!
n!(n+2)!

zn.
But what we want are pairs of Dyck paths with almost the same height.

i
i

i

The center is an edge:

The center is a node: i i
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=
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?

i
i

ii?

i

i+1
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ii

=
i+1 i

Looking at possible label and
exchanging some subtrees,
complete the missing terms!



Here is our diagram...
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Third interpretation: graphs...



A combinatorial operation: the local closureA combinatorial operation: the local closure

Start with a binary tree and apply greedily
the local closure rule
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A combinatorial operation: the local closureA combinatorial operation: the local closure

Start with a binary tree and apply greedily
the local closure rule



A combinatorial operation: the local closure

Start with a binary tree and apply greedily
the local closure rule

Exactly 6 new vertices are needed



A combinatorial operation: the complete closure

Add a hexagon around
the picture



A combinatorial operation: the complete closure

Add a hexagon around
the picture

Form quadrangles...

This yields the
quadrangulation of a
hexagon.



Theorem (Fusy, Poulalhon, S. 05).
The closure is a bijection between

• unrooted binary trees with n nodes,

• unrooted quadrangulations of a hexagon
with n internal vertices.

(I will not prove this theorem: it is hard...)

Corollary. (Mullin & Schellenberg 68)
The number of rooted quadrangulations of a hexagon is

6
n + 2

· 1
n + 1

(
2n

n

)
.
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The diagram is almost complete, but we still miss the
3-connected planar graphs of the title of the talk.
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The diagram is almost complete, but we still miss the
3-connected planar graphs of the title of the talk.



Quadrangulations of a hexagon are ”almost” in bijection with
3-connected planar graphs.

More precisely:
Theorem. (Tutte) There is a simple bijection between

• 3-connected planar maps with n edges,

• quadrangulations∗ of a square with n faces.

Theorem (Whitney). 3-connected planar graphs have es-
sentially only one embedding in the plane.



6
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Unrooted colored trees
with n nodes

Quadrangulations
of a hexagon

with n inner vertices

3-connected planar graphs

with n edges

with length 2n

Gessel-Xin pairs



3
(2i+1)(2j+1)

(
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i
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Unrooted colored trees

Quadrangulations
of a hexagon3-connected planar graphs

Gessel-Xin pairs with i ◦ and j •

with i + 3 ◦ and j + 3 •with i faces and j vertices



univariate bivariate

(order 1 super) Catalan (2n)!
n!(n+1)!

(2i+1)!(2j)!
i!j!(2i+1−j)!(2j+1−i)!

order 2 super Catalan 6(2n)!
n!(n+2)!

3(2i)!(2j)!
i!j!(2i+1−j)!(2j+1−i)!

(m,n) super Catalan 1
2

(2n)!(2m)!
n!m!(n+m)! ???

Maybe having a 2-variable version could help finding a
combinatorial interpretation for all (m,n)...



univariate bivariate

(order 1 super) Catalan (2n)!
n!(n+1)!

(2i+1)!(2j)!
i!j!(2i+1−j)!(2j+1−i)!

order 2 super Catalan 6(2n)!
n!(n+2)!

3(2i)!(2j)!
i!j!(2i+1−j)!(2j+1−i)!

(m,n) super Catalan 1
2

(2n)!(2m)!
n!m!(n+m)! ???

Maybe having a 2-variable version could help finding a
combinatorial interpretation for all (m,n)...

That’s all. Merci de votre attention !
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Unrooted colored trees
with n nodes

Quadrangulations
of a hexagon

with n inner vertices

3-connected planar graphs

with n edges

with length 2n

Gessel-Xin pairs










