Binary trees, super-Catalan numbers and 3-connected Planar Graphs

Gilles Schaeffer LIX, CNRS/École Polytechnique

Based in part on a joint work with E. Fusy and D. Poulalhon

Mon premier souvenir d'un cours de combinatoire...

Mini-jardin de Catalan

(D'après photocopies de transparents de Viennot, 1993)

Today's subject: **Super Catalan numbers** (*Catalan, Gessel*)

 $\frac{1}{2} \frac{(2n)!(2m)!}{(n+m)!n!m!}$

These numbers are integers for all positive m, n. \Rightarrow They deserve a combinatorial interpretation!

- For
$$m = 1$$
, Catalan numbers: $\frac{(2n)!}{n!(n+1)!} = \frac{1}{n+1} {\binom{2n}{n}}$.
 $1, 2, 5, 14, 42, 132, 429, 1430...$
- For $m = 2$, the numbers are: $\frac{6(2n)!}{(n+2)!n!} = \frac{6}{n+2} \frac{1}{n+1} {\binom{2n}{n}}$.
 $2, 3, 6, 14, 36, 99, 286, 858, ...$

We shall discuss some interpretations for m = 2.

"More precisely", we aim at the following diagram:

A one-page preliminary...

In the Catalan garden, I pluck the...

They are counted by Catalan numbers: $\frac{1}{n+1}\binom{2n}{n}$

Turn around the tree, write *up* or *down* when *entering* or *exiting* a left subtree. First interpretations: unrooted binary trees

Colors make pictures more fun...

Edge-3-colored binary tree = a binary tree with colors on the edge and nodes such that there are two type of nodes:

Take a binary tree Choose colors for the root edge and the root vertex:

 $\Rightarrow \#\{\text{colored tree with } n \text{ nodes}\} = 6 \cdot \frac{1}{n+1} \binom{2n}{n}.$

Agriculture hors sol

unrooted 3-colored tree = like a 3-colored binary tree, but without the root...

These trees have no symmetries: indeed symmetries of planar trees must leave the center invariant.

or:

Here the center can be:

 \Rightarrow each tree has n+2 distinct rootings.

#{unrooted 3-c trees with n nodes} = $\frac{6}{n+2} \cdot \frac{1}{n+1} \binom{2n}{n}$

Here is our first super-Cat-structure:

An elegant restatment:

Trees on the hexagonal lattice (Pippenger & Schleich'03)

An elegant restatment:

Trees on the hexagonal lattice (Pippenger & Schleich'03)

Up to translation and rotations, there is a unique way to embed an unrooted colored tree on the colored hexagonal lattice (possibly with overlaps). An elegant restatment:

Trees on the hexagonal lattice (Pippenger & Schleich'03)

Up to translation and rotations, there is a unique way to embed an unrooted colored tree on the colored hexagonal lattice (possibly with overlaps).

 $\frac{6}{n+2} \frac{1}{n+1} \binom{2n}{n}$ = #{hexagonal trees with n nodes}.

We got an arrow !

- at each corner $\ell {=} \ell {+} 1$
- at each leaf: $\ell = \ell 3$.

- at each corner $\ell {=} \ell {+} 1$
- at each leaf: $\ell = \ell 3$.

- at each corner $\ell {=} \ell {+} 1$
- at each leaf: $\ell = \ell 3$.

- at each corner $\ell {=} \ell {+} 1$
- at each leaf: $\ell = \ell 3$.

- at each corner $\ell {=} \ell {+} 1$
- at each leaf: $\ell = \ell 3$.

- at each corner $\ell {=} \ell {+} 1$
- at each leaf: $\ell = \ell 3$.

- at each corner $\ell {=} \ell {+} 1$
- at each leaf: $\ell = \ell 3$.

Turn counterclockwise around the tree, and label each side of edges:

- at each corner $\ell {=} \ell {+} 1$
- at each leaf: $\ell = \ell 3$.

Read Mireille's labels on the left of inner edges.

These labels should be viewed as angles (multiples of $\pi/3$).

After a full turn around the tree, the angle variation is $-2\pi = -6 \cdot (\pi/3)$.

More generally: 0 -31 -2 -4-2 -1

Exemple:

Rerooting changes the actual label, but not the variations!

Rerooting changes the actual label, but not the variations!

$$\frac{6}{n+2}\frac{1}{n+1}\binom{2n}{n}$$

This should give Mireille's formula for positive binary trees: recall

Theorem (part of her)Let B_n be the number of rooted binary trees with n nodes with label ≥ 0 . Then

$$B_n^{\geq 0} + B_{n+1}^{\geq 0} = \frac{6(2n)!}{n!(n+2)!}.$$

In other terms:

$$B_n^{\geq 0} + B_n^{\geq -1} = \frac{6(2n)!}{n!(n+2)!}.$$

We got an arrow !

Second interpretation: Dyck paths

Let a Gessel-Xin pair be a pair of Dyck paths such that the height of the two paths differ at most by one.

Let a Gessel-Xin pair be a pair of Dyck paths such that the height of the two paths differ at most by one.

Theorem (Gessel & Xin). The number of Gessel-Xin pairs with total length 2n is:

$$4C_n - C_{n+1} = \frac{6(2n)!}{(n+2)!n!}.$$

Let a Gessel-Xin pair be a pair of Dyck paths such that the height of the two paths differ at most by one.

Theorem (Gessel & Xin). The number of Gessel-Xin pairs with total length 2n is:

$$4C_n - C_{n+1} = \frac{6(2n)!}{(n+2)!n!}.$$

Can we relate this to the previous binary trees ?

Decomposition at the center of the tree

 \Rightarrow Two binary trees with almost the same height: $\sum_k T_k(z)T_{k-1}(z)$

 \Rightarrow Two binary trees with almost the same height: $\sum_k T_k(z)T_{k-1}(z)$

But this approach does not yield the relation to Dyck paths:

- Colors are not taken into account correctly...
- Not the right notion of height!

A notion of center inherited from Dyck paths.

Depending on the position of the root, each edge can get two labels: there is a height labelling of an unrooted tree!

Theorem. Exactly one of the following two cases occur:

- there is one edge with the 2 labels that are equal,
- or there is one vertex with the 3 incident labels that are equal.

Decomposition at the center of the tree

This is correct: $\sum_{k} 3D_{k}(z)^{2} + 2zD_{k}(z)^{3} = \sum \frac{6(2n)!}{n!(n+2)!} z^{n}$. But what we want are pairs of Dyck paths with almost the same height.

Here is our diagram...

Third interpretation: graphs...

Start with a binary tree and apply greedily the **local closure rule**

Exactly 6 new vertices are needed

Add a hexagon around the picture

Add a hexagon around the picture

Form quadrangles...

This yields the quadrangulation of a hexagon. **Theorem (Fusy, Poulalhon, S. 05).** *The closure is a bijection between*

- unrooted binary trees with n nodes,
- unrooted quadrangulations of a hexagon with n internal vertices.
- (I will not prove this theorem: it is *hard*...)

Corollary. (Mullin & Schellenberg 68) The number of rooted quadrangulations of a hexagon is

$$\frac{6}{n+2} \cdot \frac{1}{n+1} \binom{2n}{n}.$$

The diagram is almost complete, but we still miss the 3-connected planar graphs of the title of the talk.

 $\frac{6}{n+2}\frac{1}{n+1}\binom{2n}{n}$

The diagram is almost complete, but we still miss the 3-connected planar graphs of the title of the talk.

 $\frac{6}{n+2}\frac{1}{n+1}\binom{2n}{n}$

Quadrangulations of a hexagon are "almost" in bijection with 3-connected planar graphs.

More precisely: **Theorem. (Tutte)** *There is a simple bijection between*

- 3-connected planar maps with n edges,
- quadrangulations * of a square with n faces.

Theorem (Whitney). 3-connected planar graphs have essentially only one embedding in the plane.

	univariate	bivariate
(order 1 super) Catalan	$\frac{(2n)!}{n!(n+1)!}$	$\frac{(2i\!+\!1)!(2j)!}{i!j!(2i\!+\!1\!-\!j)!(2j\!+\!1\!-\!i)!}$
order 2 super Catalan	$\frac{6(2n)!}{n!(n+2)!}$	$\frac{3(2i)!(2j)!}{i!j!(2i+1-j)!(2j+1-i)!}$
(m,n) super Catalan	$\frac{1}{2} \frac{(2n)!(2m)!}{n!m!(n+m)!}$???

Maybe having a 2-variable version could help finding a combinatorial interpretation for all (m, n)...

	univariate	bivariate
(order 1 super) Catalan	$\frac{(2n)!}{n!(n+1)!}$	$\frac{(2i\!+\!1)!(2j)!}{i!j!(2i\!+\!1\!-\!j)!(2j\!+\!1\!-\!i)!}$
order 2 super Catalan	$\frac{6(2n)!}{n!(n+2)!}$	$\frac{3(2i)!(2j)!}{i!j!(2i+1-j)!(2j+1-i)!}$
(m,n) super Catalan	$\frac{1}{2} \frac{(2n)!(2m)!}{n!m!(n+m)!}$???

Maybe having a 2-variable version could help finding a combinatorial interpretation for all (m, n)...

That's all. Merci de votre attention !

