Arbres, cartes et nombres de Hurwitz

Gilles Schaeffer
CNRS \& École Polytechnique ERC Research Starting Grant 208471 "ExploreMaps"

Colloquium du LAREMA, Angers, juin 2013

Plan de l'exposé

Revêtements ramifiés et cartes
Cartes et arbres
Énumération d'arbres et formule d'Hurwitz
Revêtements et cartes aléatoires

Plan de l'exposé

Plan de l'exposé

Revêtements ramifiés et cartes
Cartes et arbres

Énumération d'arbres et formule d'Hurwitz
Revêtements et cartes aléatoires

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

By continuity, the number $n=\left|\phi^{-1}(x)\right|$ of sheets of a covering ϕ does not depend on x : for instance $n=k$ for ϕ_{k}.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

By continuity, the number $n=\left|\phi^{-1}(x)\right|$ of sheets of a covering ϕ does not depend on x : for instance $n=k$ for ϕ_{k}.

The number n of sheets is called the degree of the covering.

Ramified coverings of the sphere by itself

Let $B=\{z| | z \mid<1\} \subset \mathbb{C}$ and let \sim denote equivalence up to homeomorphisms

A mapping $\phi: \mathcal{D} \rightarrow \mathcal{I}$ is a covering if, for all x in \mathcal{I} there exists $n \geq 1$ and a neighborhood V of x such that $\phi^{-1}(V) \sim B \times\{1, \ldots, n\}$,
and the restriction of ϕ to each sheet B_{i} (connected component of the preimage)
is an homeomorphism $\phi_{\mid B_{i}}: B_{i} \xrightarrow{\sim} B$.

Example:

Let A_{r} be the annulus $\{z|r<|z|<1\} \subset \mathbb{C}$.
Consider $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.

By continuity, the number $n=\left|\phi^{-1}(x)\right|$ of sheets of a covering ϕ does not depend on x : for instance $n=k$ for ϕ_{k}.

The number n of sheets is called the degree of the covering.
What is we try to extend from A_{r} to B ?

Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from A_{r} to B ?
The mapping $\phi_{k}: B^{*} \rightarrow B^{*}$ is a covering, but not $\phi_{k}: B \rightarrow B$.

Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from A_{r} to B ?
The mapping $\phi_{k}: B^{*} \rightarrow B^{*}$ is a covering, but not $\phi_{k}: B \rightarrow B$.

What happens at $x=0$?

Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from A_{r} to B ?
The mapping $\phi_{k}: B^{*} \rightarrow B^{*}$ is a covering, but not $\phi_{k}: B \rightarrow B$.

What happens at $x=0$?

The mapping $\phi_{k}: B \rightarrow B$ has a connected ramification of degree k at $x=0$.

Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from A_{r} to B ?
The mapping $\phi_{k}: B^{*} \rightarrow B^{*}$ is a covering, but not $\phi_{k}: B \rightarrow B$.

What happens at $x=0$?

The mapping $\phi_{k}: B \rightarrow B$ has a connected ramification of degree k at $x=0$.

A mapping ϕ is ramified at $x=0$ if

- there is a neighborhood V of the origin such that $\phi^{-1}(V) \sim B \times[1, \ldots, p]$ and,
- the restriction of ϕ to each component of $\phi^{-1}(V)$ is homeomorphic to ϕ_{k} for some k.

Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from A_{r} to B ?
The mapping $\phi_{k}: B^{*} \rightarrow B^{*}$ is a covering, but not $\phi_{k}: B \rightarrow B$.

What happens at $x=0$?

The mapping $\phi_{k}: B \rightarrow B$ has a connected ramification of degree k at $x=0$.

A mapping ϕ is ramified at $x=0$ if

- there is a neighborhood V of the origin such that $\phi^{-1}(V) \sim B \times[1, \ldots, p]$ and,
- the restriction of ϕ to each component of $\phi^{-1}(V)$ is homeomorphic to ϕ_{k} for some k.

Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from A_{r} to B ?
The mapping $\phi_{k}: B^{*} \rightarrow B^{*}$ is a covering, but not $\phi_{k}: B \rightarrow B$.

What happens at $x=0$?

The mapping $\phi_{k}: B \rightarrow B$ has a connected ramification of degree k at $x=0$.

A mapping ϕ is ramified at $x=0$ if

- there is a neighborhood V of the origin such that $\phi^{-1}(V) \sim B \times[1, \ldots, p]$ and,
- the restriction of ϕ to each component of $\phi^{-1}(V)$ is homeomorphic to ϕ_{k} for some k.

Regular (aka unramified) value $=$ ramified with ϕ_{1} on each component.

Ramified coverings of the sphere by itself

Recall $\phi_{k}: A_{r} \rightarrow A_{r^{k}}$ with $\phi_{k}(z)=z^{k}$.
Extend from A_{r} to B ?
The mapping $\phi_{k}: B^{*} \rightarrow B^{*}$ is a covering, but not $\phi_{k}: B \rightarrow B$.

What happens at $x=0$?

The mapping $\phi_{k}: B \rightarrow B$ has a connected ramification of degree k at $x=0$.

A mapping ϕ is ramified at $x=0$ if

- there is a neighborhood V of the origin such that $\phi^{-1}(V) \sim B \times[1, \ldots, p]$ and,
- the restriction of ϕ to each component of $\phi^{-1}(V)$ is homeomorphic to ϕ_{k} for some k.

Regular (aka unramified) value $=$ ramified with ϕ_{1} on each component.

Ramified coverings of the sphere by itself (Cont'd)

A mapping ϕ is a ramified covering of \mathbb{S} by \mathbb{S} if there exists a finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\}$ such that:

- $\phi_{\mathbb{S} \backslash \phi^{-1}(X)}$ is a covering, and
- ϕ is ramified over each x_{i}

$$
\mathcal{D}=\mathbb{S}
$$

regular value

Ramified coverings of the sphere by itself (Cont'd)

A mapping ϕ is a ramified covering of \mathbb{S} by \mathbb{S} if there exists a finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\}$ such that:

- $\phi_{\mathbb{S} \backslash \phi^{-1}(X)}$ is a covering, and
- ϕ is ramified over each x_{i}

$$
\mathcal{D}=\mathbb{S}
$$

On each component V_{j} of $\phi^{-1}\left(V\left(x_{i}\right)\right)$, $\phi \sim \phi_{\lambda_{j}^{(i)}}$ for some integer $\lambda_{j}^{(i)}$.

regular value
$\lambda^{(1)}=1^{5}$
$\lambda^{(2)}=1,2^{2}$

critical value
critical value

Ramified coverings of the sphere by itself (Cont'd)

A mapping ϕ is a ramified covering of \mathbb{S} by \mathbb{S} if there exists a finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\}$ such that:

- $\phi_{\mathbb{S} \backslash \phi^{-1}(X)}$ is a covering, and
- ϕ is ramified over each x_{i}

On each component V_{j} of $\phi^{-1}\left(V\left(x_{i}\right)\right)$, $\phi \sim \phi_{\lambda_{j}^{(i)}}$ for some integer $\lambda_{j}^{(i)}$.

Ramified coverings of the sphere by itself (Cont'd)

A mapping ϕ is a ramified covering of \mathbb{S} by \mathbb{S} if there exists a finite subset $X=\left\{x_{1}, \ldots, x_{p}\right\}$ such that:

- $\phi_{\mathbb{S} \backslash \phi^{-1}(X)}$ is a covering, and
- ϕ is ramified over each x_{i}

On each component V_{j} of $\phi^{-1}\left(V\left(x_{i}\right)\right)$, $\phi \sim \phi_{\lambda_{j}^{(i)}}$ for some integer $\lambda_{j}^{(i)}$.

The ramification type over a critical value x_{i} is the partition $\lambda^{(i)}$

regular value
critical value
critical value
The passport of a ramified covering is the list $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$

$$
\lambda^{(1)}=1^{5} \quad \lambda^{(2)}=1,2^{2} \quad \lambda^{(2)}=2,3
$$

the passport $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$ of a ramified covering

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

To understand the "shape" of the covering, draw paths on \mathcal{I} and study its preimages.
regular value
$\lambda^{(1)}=1^{5}$
$\lambda^{(2)}=1,2^{2}$
critical value

$$
\lambda^{(2)}=2,3
$$

the passport $\Lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(p)}\right)$ of a ramified covering

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Ramified coverings of the sphere by itself (Cont'd)

Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.

Example: $(1,2)(3,4)(5)$ in cyclic notation

Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.

Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.

Loop \Rightarrow permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$
\Rightarrow identity permutation

Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.

Loop \Rightarrow permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$
\Rightarrow identity permutation

Concatenation of two loops \Rightarrow product of the permutations
Example: $(1)(2,3,4,5) \cdot(1,2)(3,4)(5)$

Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.

Loop \Rightarrow permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$
\Rightarrow identity permutation

Concatenation of two loops \Rightarrow product of the permutations
Example: $(1)(2,3,4,5) \cdot(1,2)(3,4)(5)$

Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.

Loop \Rightarrow permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$
\Rightarrow identity permutation

Concatenation of two loops \Rightarrow product of the permutations
Example: $(1)(2,3,4,5) \cdot(1,2)(3,4)(5)$

Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.

Loop \Rightarrow permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$
\Rightarrow identity permutation

Concatenation of two loops \Rightarrow product of the permutations
Example: $(1)(2,3,4,5) \cdot(1,2)(3,4)(5)$
\Rightarrow Equivalence classes of ramified coverings \equiv factorizations of permutations

Monodromy, and permutations

Let us label $\{1, \ldots, n\}$ the preimages of a regular point.

Loop \Rightarrow permutation of sheet labels
Example: $(1,2)(3,4)(5)$ in cyclic notation

The permutation is invariant under continuous deformation of the loop provided it stays in $\mathbb{S} \backslash\{X\}$

Contractible loop in $\mathbb{S} \backslash X$
\Rightarrow identity permutation

Concatenation of two loops \Rightarrow product of the permutations
Example: $(1)(2,3,4,5) \cdot(1,2)(3,4)(5)$
\Rightarrow Equivalence classes of ramified coverings \equiv factorizations of permutations but geometric intuition is lost
coverings with 3 critical values and bipartite maps

coverings with 3 critical values and bipartite maps

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages
coverings with 3 critical values and bipartite maps

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{0}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

coverings with 3 critical values and bipartite maps

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

coverings with 3 critical values and bipartite maps

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2}{ }_{2} \quad \lambda^{\square}=62$
1 regular value with labeled preimages

coverings with 3 critical values and bipartite maps

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2}{ }_{2} \quad \lambda^{\square}=62$
1 regular value with labeled preimages

coverings with 3 critical values and bipartite maps

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2}{ }_{2} \quad \lambda^{\square}=62$
1 regular value with labeled preimages

coverings with 3 critical values and bipartite maps

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{0}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2} 2 \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2}{ }_{2} \quad \lambda^{\square}=62$
1 regular value with labeled preimages

3 critical values, bipartite maps and permutations

3 critical values $\quad \lambda^{\bullet}=2^{3} 1^{2} \quad \lambda^{\circ}=3^{2}{ }_{2} \quad \lambda^{\square}=62$
1 regular value with labeled preimages
$m+1$ critical values, m-constellations, permutations

$m+1$ critical values ㅁ (1) (2) (3) (4)
1 regular value with labeled preimages
$m+1$ critical values, m-constellations, permutations

Monodromy, permutations, constellations: a summary

Theorem. There is a bijection between

- Labelled ramified covering of \mathbb{S} of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations $\left(\sigma_{1} \cdots \sigma_{m}=\sigma_{0}\right)$ of type Λ
- labelled m-star-constellations of type Λ.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality \Leftrightarrow planarity.

Monodromy, permutations, constellations: a summary

Theorem. There is a bijection between

- Labelled ramified covering of \mathbb{S} of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations ($\sigma_{1} \cdots \sigma_{m}=\sigma_{0}$) of type Λ
- labelled m-star-constellations of type Λ.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality \Leftrightarrow planarity.

Specializations.

$-m=2$: bipartite maps with n edges

- $m=2, \lambda_{0}=4^{n}$, all faces have degree 4: quadrangulations \Rightarrow Jean-François Le Gall's last year talk at this seminar

Monodromy, permutations, constellations: a summary

Theorem. There is a bijection between

- Labelled ramified covering of \mathbb{S} of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations ($\sigma_{1} \cdots \sigma_{m}=\sigma_{0}$) of type Λ
- labelled m-star-constellations of type Λ.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality \Leftrightarrow planarity.

Specializations.

$-m=2$: bipartite maps with n edges
$-m=2, \lambda_{0}=4^{n}$, all faces have degree 4: quadrangulations \Rightarrow Jean-François Le Gall's last year talk at this seminar
— for all $i \geq 1, \lambda^{(i)}=21^{n-2}$: factorizations in transpositions. coverings with only simple branch points

Monodromy, permutations, constellations: a summary

Theorem. There is a bijection between

- Labelled ramified covering of \mathbb{S} of type $\Lambda=\left(\lambda_{0}, \ldots, \lambda_{m}\right)$
- Factorizations ($\sigma_{1} \cdots \sigma_{m}=\sigma_{0}$) of type Λ
- labelled m-star-constellations of type Λ.
$\mathcal{D}=\mathbb{S} \Leftrightarrow$ minimality \Leftrightarrow planarity.

Specializations.

$-m=2$: bipartite maps with n edges

- $m=2, \lambda_{0}=4^{n}$, all faces have degree 4: quadrangulations \Rightarrow Jean-François Le Gall's last year talk at this seminar
> - for all $i \geq 1, \lambda^{(i)}=21^{n-2}$: factorizations in transpositions. coverings with only simple branch points

Simple ramified covers, increasing quadrangulations

A ramified cover is simple if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n-2$ preimages that are faces of degree 2 , and 1 that is a quadrangle.

Simple ramified covers, increasing quadrangulations

A ramified cover is simple if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n-2$ preimages that are faces of degree 2 , and 1 that is a quadrangle.

Upon contracting multiple edges, only quadrangle remains.

Simple ramified covers, increasing quadrangulations

A ramified cover is simple if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n-2$ preimages that are faces of degree 2 , and 1 that is a quadrangle.

Upon contracting multiple edges, only quadrangle remains.

Then the faces of the preimage have distinct labels $1, \ldots, m$ that are increasing in ccw direction around black vertices and in cw direction around white vertices.

Simple ramified covers, increasing quadrangulations

A ramified cover is simple if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n-2$ preimages that are faces of degree 2 , and 1 that is a quadrangle.

Upon contracting multiple edges, only quadrangle remains.

Then the faces of the preimage have distinct labels $1, \ldots, m$ that are increasing in ccw direction around black vertices and in cw direction around white vertices.

Such a map is called an increasing labelled quadrangulation.

Simple ramified covers, increasing quadrangulations

A ramified cover is simple if its m ramifications have type 21^{n-2}.

Then each face of degree 2 on the image has $n-2$ preimages that are faces of degree 2 , and 1 that is a quadrangle.

Upon contracting multiple edges, only quadrangle remains.

Then the faces of the preimage have distinct labels $1, \ldots, m$ that are increasing in ccw direction around black vertices and in cw direction around white vertices.

Such a map is called an increasing labelled quadrangulation.
Theorem. Simple ramified covers of \mathbb{S} by itself with m ramifications points are in bijection with increasing labelled quadrangulations with m faces.

Résumé du 1er épisode

Compter des classes d'équivalence de revêtements ramifiés
介
compter certaines plongements de graphes

Plan de l'exposé

Revêtements ramifiés et cartes
Cartes et arbres
Énumération d'arbres et formule d'Hurwitz
Revêtements et cartes aléatoires

Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.

Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.

Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.

Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.
The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.

Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.
The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.

Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.
The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.

Euler's relation:
(\#vertices-1) $+(\#$ faces- 1)
$=$ \#edges

Planar maps, spanning trees and duality

A planar map is a proper embedding of a connected graph on the sphere (considered up to homeomorphisms).

From now on, map means rooted planar map.
A spanning tree is a subgraph which is a tree and visits every vertices. A tree-rooted map is a map with a spanning tree.

The dual map of a map is the map of incidence between faces.
The dual map of a tree-rooted map is a tree-rooted map: it is naturally endowed with a dual spanning tree.

Euler's relation:
(\#vertices-1) $+(\#$ faces- 1)
= \#edges

Proof?

Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree

Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree
Rooted tree \equiv balanced parenthesis word uduuduuddd

Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree Rooted tree \equiv balanced parenthesis word uduuduuddd
Non visited edges \equiv balanced parenthesis worde

Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree Rooted tree \equiv balanced parenthesis word uduuduuddd
Non visited edges \equiv balanced parenthesis word uuuduuddddud

Encoding and counting tree-rooted maps

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word

Encoding and counting tree-rooted maps

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word

Encoding and counting tree-rooted maps

Writing the two codes during the walk:
uuuududuuudududddddudd

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word $=$ shuffle of two balanced parenthesis words

Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree Rooted tree \equiv balanced parenthesis word uduuduuddd
Non visited edges \equiv balanced parenthesis worde uuuduuddddud

Writing the two codes during the walk:
uuuududuuudududddddudd

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word $=$ shuffle of two balanced parenthesis words

The number of tree rooted planar maps with n edges is $\sum_{i=0}^{n}\binom{2 n}{i} C_{i} C_{n-i}$ where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ denotes Catalan numbers, counting balanced parenthesis words.

Encoding and counting tree-rooted maps

Starting at a root corner, turn around the tree Rooted tree \equiv balanced parenthesis word uduuduuddd
Non visited edges \equiv balanced parenthesis word uuuduuddddud

Writing the two codes during the walk:
uuuududuuudududddddudd

Observe that closure edges turn clockwise around the tree.

Code of the tree-rooted map $=$ tree decorated by a balanced parenthesis word $=$ shuffle of two balanced parenthesis words

The number of tree rooted planar maps with n edges is $\sum_{i=0}^{n}\binom{2 n}{i} C_{i} C_{n-i}$ where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ denotes Catalan numbers, counting balanced parenthesis words.

but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree

but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree

Then write the code of the primal tree on the chosen canonical tree

but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree

Then write the code of the primal tree on the chosen canonical tree
The map is recovered from the code by closure.

but we want rooted (not tree-rooted) maps

Let us recycle the idea used for tree-rooted maps, using a canonical spanning tree

Then write the code of the primal tree on the chosen canonical tree
The map is recovered from the code by closure.
Our code of the map will be a canonical decorated tree
Question is How do we choose the canonical spanning tree so that the resulting decorated trees can be described and counted ?

From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root

From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.

From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.

It is called a minimal orientation (for the order induced by circuit reversal).

From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.

It is called a minimal orientation (for the order induced by circuit reversal).
A oriented map is accessible if every vertex can be reach by an oriented path from the root.

From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.

It is called a minimal orientation (for the order induced by circuit reversal).
A oriented map is accessible if every vertex can be reach by an oriented path from the root.

Theorem (Bernardi 2005) This is a bijection between tree-rooted maps with n edges and minimum accessible maps with n edges

From tree-rooted maps to minimal accessible maps

Orient the tree edges away from the root
Orient the other edges couterclockwise around the tree

The resulting orientation has no clockwise circuit.

It is called a minimal orientation (for the order induced by circuit reversal).
A oriented map is accessible if every vertex can be reach by an oriented path from the root.

Theorem (Bernardi 2005) This is a bijection between tree-rooted maps with n edges and minimum accessible maps with n edges

The tree is recovered by reconstructing its contour.

Minimal orientations and canonical spanning trees

Idea:

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

Minimal orientations and canonical spanning trees

Idea:

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

A function $\alpha: V \rightarrow \mathbb{N}$ is feasible on a plane map M if there exists an orientation of M such that for each vertex v the outdegree of v is $f(v)$.

Minimal orientations and canonical spanning trees

Idea:

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

A function $\alpha: V \rightarrow \mathbb{N}$ is feasible on a plane map M if there exists an orientation of M such that for each vertex v the outdegree of v is $f(v)$.

Theorem (Felsner 2004). Let α be a feasible function on a plane map M. Then the map M has a unique minimal α-orientation.

Minimal orientations and canonical spanning trees

Idea:

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

A function $\alpha: V \rightarrow \mathbb{N}$ is feasible on a plane map M if there exists an orientation of M such that for each vertex v the outdegree of v is $f(v)$.

Theorem (Felsner 2004). Let α be a feasible function on a plane map M. Then the map M has a unique minimal α-orientation.

Our pb becomes: How to choose a canonical α ? (and check accessibility)

Minimal orientations and canonical spanning trees

Idea:

Choose a minimal accessible orientation to get a spanning tree

Our pb becomes:
How to choose a canonical accessible minimal orientation?

A function $\alpha: V \rightarrow \mathbb{N}$ is feasible on a plane map M if there exists an orientation of M such that for each vertex v the outdegree of v is $f(v)$.

Theorem (Felsner 2004). Let α be a feasible function on a plane map M. Then the map M has a unique minimal α-orientation.

Our pb becomes: How to choose a canonical α ? (and check accessibility)
Fact: For many subclasses \mathcal{F} of planar maps, there exists an $\alpha_{\mathcal{F}}$ s.t.:
A planar map is in \mathcal{F} if and only if it admits an $\alpha_{\mathcal{F}}$-orientation.

α-orientations for increasing quadrangulations

Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in $\{1, \ldots, 2 n-2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order

α-orientations for increasing quadrangulations

Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in $\{1, \ldots, 2 n-2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order

Orient each edge so that the minimum incident label is on the left

α-orientations for increasing quadrangulations

Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in $\{1, \ldots, 2 n-2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order

Orient each edge so that the minimum incident label is on the left This orientation is accessible, in fact strongly connected.

α-orientations for increasing quadrangulations

Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in $\{1, \ldots, 2 n-2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order

Orient each edge so that the minimum incident label is on the left This orientation is accessible, in fact strongly connected.

Each black vertex has indegree $\alpha_{h}($ black $)=m-1$, outdegree 1
Each white vertex has indegree $\alpha_{h}($ white $)=1$.

α-orientations for increasing quadrangulations

Recall increasing quadrangulations are planar maps with faces of degree 4 such that:

- faces have labels in $\{1, \ldots, 2 n-2\}$
- around labeled vertices, face labels increase in ccw order
- around white vertices, face labels increase in cw order

Orient each edge so that the minimum incident label is on the left This orientation is accessible, in fact strongly connected.

Each black vertex has indegree $\alpha_{h}($ black $)=m-1$, outdegree 1
Each white vertex has indegree $\alpha_{h}($ white $)=1$.
This is our choice of canonical α to decompose increasing quadrangulations.
opening of an increasing quadrangulation

Proposition. The resulting simple Hurwitz trees has n unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.

From simple Hurwitz trees to increasing quadrangulations

A local rule to create increasing half edges

Cas 2:

Two half-edges with same label \Rightarrow edge and face of degree 4

Iterate the local rules as long as possible...

From simple Hurwitz trees to factorizations

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

From simple Hurwitz trees to factorizations

vertex label are useless for the bijection

adding buds

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

adding buds

Parings and adding buds again

From simple Hurwitz trees to factorizations

vertex label are useless for the bijection

adding buds

Parings and adding buds again

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

adding buds

Parings and adding buds again

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

adding buds

Parings and adding buds again

Lemma. When it stops, there are only white half-edges left.

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

adding buds

Parings and adding buds again

Lemma. When it stops, there are only white half-edges left.
We connect them to a new black vertex and reload labels.

From simple Hurwitz trees to factorizations

vertex label are useless
for the bijection

adding buds

Parings and adding buds again

Lemma. When it stops, there are only white half-edges left.
We connect them to a new black vertex and reload labels.

From simple Hurwitz trees to factorizations

vertex label are useless

adding buds

Parings and adding buds again

Theorem[Duchi-Poulalhon-S. 2012] Closure is the reverse bijection between

- simple Hurwitz trees of size n, and
- increasing quadrangulations, and
- simple ramified covers of \mathbb{S} by itself with $m=2 n-2$ critical values.

From simple Hurwitz trees to factorizations

vertex label are useless

adding buds

Parings and adding buds again

Theorem[Duchi-Poulalhon-S. 2012] Closure is the reverse bijection between

- simple Hurwitz trees of size n, and
- increasing quadrangulations, and
- simple ramified covers of \mathbb{S} by itself with $m=2 n-2$ critical values.

Résumé des 2 premiers épisodes

Compter des classes d'équivalence de revêtements ramifiés
\square
compter certaines plongements de graphes
I)
compter certains arbres

Plan de l'exposé

Plan de l'exposé

Revêtements ramifiés et cartes
Cartes et arbres

Énumération d'arbres et formule d'Hurwitz
Revêtements et cartes aléatoires

Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.

Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.

Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.

Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.

Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.

Hurwitz formula for increasing quadrangulations

Theorem[Duchi-Poulalhon-S. 2012] Increasing quadrangulations (size n) are in bijection with simple Hurwitz trees having n unlabelled vertices, $n-1$ labeled vertices of degree $2,2 n-2$ edges that increase ccw around labeled vertices.

The number of simple ramified cover of \mathbb{S} by itself with $m=2 n-2$ critical points is

$$
n^{n-3}(2 n-2)!.
$$

Hurwitz formula for factorizations in transpositions

Theorem. Let $\lambda=1^{\ell_{1}}, \ldots, n^{\ell_{n}}$ be a partition n, and $\ell=\sum_{i} \ell_{i}$. The number of m-uples of transpositions $\left(\tau_{1}, \ldots, \tau_{m}\right)$ such that

- (product cycle type) $\tau_{1} \cdots \tau_{m}=\sigma$ has cycle type λ
- (transitivity) the associated graph is connected
- (minimality) the number of factors is $m=n+\ell-2$
is

$$
n^{\ell-3} \cdot m!\cdot n!\cdot \prod_{i \geq 1} \frac{1}{\ell_{i}!}\left(\frac{i^{i}}{i!}\right)^{\ell_{i}}
$$

Proofs:

(Hurwitz 1891, Strehl 1996) (Goulden-Jackson 1997) (Lando-Zvonkine 1999) (Bousquet-Mélou-Schaeffer 2000)
(recurrences, Abel identities) (gfs and differential eqns) (geometry of LL mapping) (bijection + inclusion/exclusion)
$\lambda=n$, factorizations of n-cycles: $n^{n-2} \cdot(n-1)$!
$\lambda=1^{n}$, factorizations of the identity: $n^{n-3} \cdot(2 n-2)$!

A formula for general factorizations [BMS00]

Theorem. Let $\lambda=1^{\ell_{1}}, \ldots, n^{\ell_{n}}$ be a partition of n, and $\ell=\sum_{i} \ell_{i}$.
The number of m-uple of permutations $\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ such that

- (factorization) $\sigma_{1} \cdots \sigma_{m}=\sigma$ with cycle type λ
- (transitivity) $\left\langle\sigma_{1}, \ldots, \sigma_{m}\right\rangle$ acts transitively on $\{1, \ldots, n\}$
- (minimality) the total rank of factors is $\sum_{i} r\left(\sigma_{i}\right)=n+\ell-2$
is

$$
m \frac{((m-1) n-1)!}{(m n-(n+\ell-2))!} \cdot n!\cdot \prod_{i} \frac{1}{\ell_{i}!}\binom{m i-1}{i}^{\ell_{i}}
$$

Proofs:

(Bousquet-Mélou-Schaeffer 2000) (Goulden-Serrano 2009)
(bijection + inclusion/exclusion)(gfs and differential eqns)
$\lambda=n$, factorizations of n-cycles: $\frac{1}{(m n+1)}\binom{m n+1}{n} \cdot(n-1)$!
$\lambda=1^{n}$, identity factorizations: $\frac{m}{(m-2) n+2} \frac{(m-1)^{n-1}}{(m-2) n+1}\binom{(m-1) n}{n} \cdot(n-1)$!

Résumé des 3 premiers épisodes

Compter des classes d'équivalence de revêtements ramifiés
\square
compter certaines plongements de graphes
I
compter certains arbres
les formules simples appellent des preuves constructives

Plan de l'exposé

Plan de l'exposé

Revêtements ramifiés et cartes
Cartes et arbres

Énumération d'arbres et formule d'Hurwitz
Revêtements et cartes aléatoires

Quadrangulations croissantes aléatoires uniformes

$\overline{\mathcal{Q}}_{n}=$ \{quadrangulations croissantes à n faces $\}$.

Quadrangulation croissante uniforme $=$ variable aléatoire Q_{n} à valeur dans $\overline{\mathcal{Q}}_{n}$ avec

$$
\operatorname{Pr}\left(Q_{n}=q\right)=\frac{1}{\left|\overline{\mathcal{Q}}_{n}\right|}=\frac{1}{n^{n-3}(2 n-2)!} \quad \text { pour tout } q \in \overline{\mathcal{Q}}_{n}
$$

Quadrangulations croissantes aléatoires uniformes

$\overline{\mathcal{Q}}_{n}=$ \{quadrangulations croissantes à n faces $\}$.

Quadrangulation croissante uniforme $=$ variable aléatoire Q_{n} à valeur dans $\overline{\mathcal{Q}}_{n}$ avec

$$
\operatorname{Pr}\left(Q_{n}=q\right)=\frac{1}{\left|\overline{\mathcal{Q}}_{n}\right|}=\frac{1}{n^{n-3}(2 n-2)!} \quad \text { pour tout } q \in \overline{\mathcal{Q}}_{n}
$$

- le choix de la distribution uniforme combinatoire est le plus immédiat

Parallèle naturel avec la distribution uniforme sur les quadrangulations enracinées:

$$
\operatorname{Pr}\left(\vec{Q}_{n}=q\right)=\frac{1}{\left|\overrightarrow{\mathcal{Q}}_{n}\right|}=\frac{1}{\frac{2 \cdot 3^{n}(2 n)!}{(n+2)!n!}} \quad \text { pour tout } q \in \overrightarrow{\mathcal{Q}}_{n}
$$

Comment étudier Q_{n} ?

Propriétés des cartes aléatoires uniformes ?

Propriétés des cartes aléatoires uniformes ?

Triangulation uniforme aléatoire d'un disque

Delaunay de points aléatoires dans un disque
on est loin d'une discrétisation aléatoire d'une géométrie euclidienne en physique on lie cela à la modélisation discrète de la gravité quantique

Quadrangulations uniformes comme surfaces aléatoires

L'allure d'une sphère aléatoire dépend un peu de qui dessine...

Objectif: Choisir une métrique intrinsèque et décrire les surfaces ainsi obtenues

Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

1ère approche: Étudier le comportement asymptotique de paramètres:

- degré d'un sommet aléatoire
- loi 0-1 pour les propriétés locales
\Rightarrow espérance, moments, lois limites discrètes ou continues, qd $n \rightarrow \infty$
- distance entre 2 sommets aléatoires
- longueur d'un plus petit cycle diviseur

Ambjørn, Watabiki et al (90 's \longrightarrow) en physique

Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

1ère approche: Étudier le comportement asymptotique de paramètres:

- degré d'un sommet aléatoire
- loi 0-1 pour les propriétés locales
\Rightarrow espérance, moments, lois limites discrètes ou continues, qd $n \rightarrow \infty$
Bender, Canfield et al (90's \rightarrow) en combinatoire

Exemple: $\Delta_{n}=$ distance entre 2 sommets aléatoires uniformes de Q_{n}
Théorème (Chassaing-S. 2004) $\mathbb{E}\left(\Delta_{n}\right) \sim c \cdot n^{1 / 4}$

$$
\left(n^{-1 / 4} \Delta_{n}\right) \xrightarrow{d} \max \text { (serpent Brownien) }
$$

Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

2ème approche: Définir des surfaces aléatoires limites

Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

2ème approche: Définir des surfaces aléatoires limites

- convergence vers une limite d'échelle
(Pb posé au séminaire Hypathie en 2002 à Lyon)
\Rightarrow la carte Brownienne

Étudier les quadrangulations aléatoires uniformes

Distribution uniforme sur les quadrangulations à n faces, pour n grand

2ème approche: Définir des surfaces aléatoires limites

- convergence vers une limite d'échelle
(Pb posé au séminaire Hypathie en 2002 à Lyon)
\Rightarrow la carte Brownienne Marckert, Mokkadem, Le Gall, Miermont, ... puis Weill, Curien, Benjamini,...
- convergence vers une limite infinie discrète
\Rightarrow la quadrangulation infinie uniforme (UIPQ)
Angel, Schramm, ...

Conclusions

- L'excursion Brownienne décrit la limite d'échelle de toute sorte d'excursions aléatoires discrètes plus ou moins complexes.
- L'arbre continu aléatoire est limite d'échelle de toute sorte d'arbres aléatoires discrets plus ou moins complexes.
\Rightarrow On pense qu'il en est de même de la carte Brownienne.

Conclusions

- L'excursion Brownienne décrit la limite d'échelle de toute sorte d'excursions aléatoires discrètes plus ou moins complexes.
- L'arbre continu aléatoire est limite d'échelle de toute sorte d'arbres aléatoires discrets plus ou moins complexes.
\Rightarrow On pense qu'il en est de même de la carte Brownienne.

Les résultats de Le Gall et Miermont valent pour des cartes avec des contraintes de degré de faces plus générales (q-angulations,...)

Conclusions

- L'excursion Brownienne décrit la limite d'échelle de toute sorte d'excursions aléatoires discrètes plus ou moins complexes.
- L'arbre continu aléatoire est limite d'échelle de toute sorte d'arbres aléatoires discrets plus ou moins complexes.
\Rightarrow On pense qu'il en est de même de la carte Brownienne.

Les résultats de Le Gall et Miermont valent pour des cartes avec des contraintes de degré de faces plus générales (q-angulations,...)

Un challenge est de montrer que des objets a priori plus éloignés tels que les graphes planaires (non plongés) ou les revêtements ramifiés, sont en fait dans la même classe d'universalité.

Conclusions

- L'excursion Brownienne décrit la limite d'échelle de toute sorte d'excursions aléatoires discrètes plus ou moins complexes.
- L'arbre continu aléatoire est limite d'échelle de toute sorte d'arbres aléatoires discrets plus ou moins complexes.
\Rightarrow On pense qu'il en est de même de la carte Brownienne.

Les résultats de Le Gall et Miermont valent pour des cartes avec des contraintes de degré de faces plus générales (q-angulations,...)

Un challenge est de montrer que des objets a priori plus éloignés tels que les graphes planaires (non plongés) ou les revêtements ramifiés, sont en fait dans la même classe d'universalité.

On dispose d'un cadre bijectif très général pour la construction de cartes par recollements d'arbres (Bernardi-Chapuy-Fusy 2011, Albenque-Poulalhon 2012)
On obtient ainsi en particulier un codage d'arbres pour les revêtements... II reste à utiliser ces constructions pour passer à la limite...

