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Some highlights in Jean-Guy’s work

Bétréma-Penaud’s proof from the book (quoting Doron Zeilberger)

Dulucq-Penaud conjecture on Cori-Vauquelin trees for non-separable planar maps:

The decomposition of pyramids of dominoes: all time favorite example of algebraic decomposition...

A non trivial characterization of the well labelled trees that correspond to non separable maps
(one of my first research interests, later rediscovered by Bouttier, Guitter, 2007)

See Enrica Duchi’s talk

A. del Lungo, F. del Ristoro and J.-G. Penaud’s left ternary trees

Viennot introduced pyramids of domino and obtained Motzkin like algebraic equations for their gf
but the direct interpretation of these algebraic equations was given by Bétréma and Penaud.



Bicolored binary trees and Dyck- Lukasiewicz trees



Dyck- Lukasiewicz trees

1, 4, 48, 832, 17408, 408576, 10362880, 277954560, 7777026048, 224908017664

B = {blue/red binary trees} : planted binary tree with blue and red edges

P = {Positive bicolored trees} : no more red than blue in each planted subtree

D = {Dyck- Lukasiewicz trees} : positive + one more red edge than blue

4×

4×

16×

16×

8×

16×

8×

(fun game if you are tired of listening to talks: guess formula... you have 5 min before I give it)



A catalytic decomposition for positive bicolored trees

Let F (u) ≡ F (u, t) =
∑
T∈P

uw(T )t|T |,

so that f ≡ f(t) = [u0]F (u) =
∑
T∈D

t|T | is the gf of Dyck trees

with w(T ) = blue(T )− red(T ) + 1

and more generally Fm = [um]F (u) is the gf of positive tree
with root vertex weight m.
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Random generation via catalytic decompositions

F (u) = tX(u)2 with X(u) = 1 + u · F (u) +
F (u)− f

u

Amenable to a bivariate recursive approach (naive cubic complexity)

but not easily dealt with via Boltzmann due to the divided difference operator.



One variable / one function catalytic equations are easy
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Marking and identification of V

f = V − 4V 3 where V = t(1 + 4V 2)2
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Observe that [t2m+1]V = (m+ 1)[t2m+1]f = [t2m+1]f−•

⇒ V is the gf of (rooted) Dyck trees with a marked red edge



Last passage decomposition and identification of U

Now recall we defined V = F (U) =
∑
m≥0

Um[um]F (u)

Consider a  Lukasiewicz (or last passage) factorization of the weight sequence along the
branch toward the root.

U =
so that

⇒ our series U is the gf of Dyck trees with a marked leaf !

The series V is the gf of (rooted) Dyck trees with a marked red edge



The core of a balanced tree and identification of W

⇒ W is the gf of balanced positive trees with a marked blue
edge in their internally positive core.

The series V is the gf of (rooted) Dyck trees with a marked red edge
The series U is the gf of Dyck trees with a marked leaf



Decomposing marked Dyck- Lukasiewicz trees

We would like a direct quaternary decomposition of these marked rooted trees
to reprove directly that V = t(1 + 4V 2)2.

� V denote the gf of (rooted) Dyck trees with a
marked red edge

� U denote the gf of Dyck trees with a marked leaf

� W denote the gf of balanced positive trees with a
marked red edge in their internally positive core.
W is also the gf of balanced positive trees with a
marked blue edge in their internally positive core.

Let’s now restart from the combinatorial interpretations: let

V =

U =

W =

=
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Finally, a quaternary decomposition of marked Dyck trees

Theorem: The class of marked Dyck trees admit the following decomposition:

where

⇒ V = t (1 + U V +W )2 ⇒ V = t (1 + 2 · 2V · V )2



Complexity of random generation and a resampling trick



Random generation

Theorem[Sportiello 21]: Linear time random generation for context free classes.

⇒ V = t (1 + 2 · 2V · V )2

A class of rooted (2+2)-ary trees...

Sportiello’s theorem allows to generate the decomposition trees in linear time.

However the intermediate transformations on Dyck- Lukasiewicz trees
have a priori an extra linear cost:

V = t (1 + U V +W )2 with U = 2V and W = U · V .

leaf ↔ marked red marked blue ↔ marked red



Random generation and complexity

Theorem[Resampling trick]: from a uniform random (2 + 2)-ary tree, reconstruct in
(quasi-)linear time a resampled Dyck- Lukasiewicz tree

V = t (1 + 2 · 2V · V )2

⇒ V = t (1 + U V +W )2 with U = 2V and W = U · V .

select random leaf select random blue edge

Sportiello (or direct encoding) yields:

all other grafting operations can be done in (quasi-)constant time
(constant number of pointer operation and small integer sampling).



Conclusion



Extend to polynomial equations with one catalytic variable

Let F (u) ≡ F (u, a, b, t) the unique fps∗ solution of

Let Q(v, w, u) =
∑

i,j,k≥0

qijkv
iwjuk a formal power series

F (u) = tQ

(
F (u),

b

u
(F (u)− f), a u

)
with f = F (0)


V = tQ(V, bW, aU)
U = t U Q′

v(V, bW, aU) + t bQ′
w(V, bW, aU)

W = tW Q′
v(V, bW, aU) + t aQ′

u(V, bW, aU)
(tf ′

t) = t (tf ′
t)Q

′
v(V, bW, aU) + V

Then the derivative f ′
t satisfies a system of positive algebraic equation.

with a full combinatorial interpretation that allows for random generation using
Sportiello’s general approach for context free structures and resampling.



Application of the general result

Special cases: this yields algebraic decompositions for
� Linxiao Chen’s fully parked trees (2021)
� Duchi et al.’s fighting fish and variants (2016)
� Various families of permutations (West’s two-stack sortable) (1990)
� Tutte’s map decomposition (60’s)

Works as well with exponential series: Dyck Cayley trees.

However in most of the cases combinatorial intuition is still needed to simplify the
resulting decompositions, and express it in terms of the original structures.



Thank you!




