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Summary of the talk

Fighting fish, a new combinatorial model
of discrete branching surfaces

Exact counting formulas for fighting fish

Fighting fish VS classical combinatorial structures

a bijective challenge...

with a glipse of the proof



Fighting fish, definition

Cells

45o tilted unit square
(of thin paper or cloth)

Build surface by gluing cells along edges in
a coherent way: upper left with lower right
or lower left with upper right.

upper right edge

lower right edgelower left edge

upper left edge

glued edges

free edges

=

These objects do not necessarily fit in the plane so my pictures are projections
of the actual surfaces: Apparently overlapping cells are in fact independant.



Fighting fish, definition

Directed cell aggregation. Restrict to only three legal ways to add cells:

by lower right gluing, upper right gluing, or simultaneous lower
and upper right gluings from adjacent free edges.

⇒

⇒

⇒

by lower right gluing, upper right gluing, or simultaneous lower
and upper right gluings from adjacent free edges.

lower right gluing

upper right gluing

simultaneous right gluing



Fighting fish, definition

Lemma. Single cell + aggregations
⇒ a simply connected surface

⇒

⇒

⇒

Proposition. Such surfaces can be recovered from their boundary walk.

(not used later)



Fighting fish, definition

A fighting fish is a surface that can be obtained from a single
cell by a sequence of directed cell agregations.

Fighting fish

We are interested only in the resulting surface, not in the
aggregation order (but type of aggregation matters)
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Fighting fish versus polyominoes

Polyomino = edge-connected set of
cells of the planar square lattice

⇒ fighting fish do not all fit in the plane,
ie they are not all polyominoes.

Directed polyominoes: there is a
cell, the head, from which all cells can
be reached by a left-to-right path.

Conversely there are polyominoes that are not fighting fish:
Proposition. A directed polyomino is a fighting fish

iff its interior is simply connected.

In particular all directed convex polyominoes are fighting fish.

Proposition.
A fighting fish is a directed polyomino
iff its projection in the plane is injective.



Parameters of fighting fish

Area = # cells

The fin length = #{ lower free edges from head to first tail }

nose
tails

branch points

fin

Size = semi-perimeter
= #{upper free edges}
= #{upper left free edges} + #{upper right free edges}
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Parameters of fighting fish

Area = # cells

The fin length = #{ lower free edges from head to first tail }

Fighting fish with exactly 1 tail

in this case, fin length = semi-perimeter

nose
tails

branch points

fin

Size = semi-perimeter
= #{upper free edges}
= #{upper left free edges} + #{upper right free edges}

= parallelogram polyominoes
aka staircase polygons



Fighting fish as random branching surfaces

Let Fn be a fighting fish taken uniformly at random among all
fighting fish of size n. (Fn is called a URF of size n)



Fighting fish as random branching surfaces

Theorem (Duchi, Guerrini, Rinaldi, S., J. Physics A, 2016)
The expected area of Fn is of order n5/4

Let Fn be a fighting fish taken uniformly at random among all
fighting fish of size n. (Fn is called a URF of size n)
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Compare to the known expected area n3/2 of
random parallelogram polyominoes of size n
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Fighting fish as random branching surfaces

Compare to the known expected area n3/2 of
random parallelogram polyominoes of size n

Theorem (Duchi, Guerrini, Rinaldi, S., J. Physics A, 2016)
The expected area of Fn is of order n5/4

The Uniform Random fighting Fish of size n (URF) yields a
new model of random branching surfaces with original features.

Let Fn be a fighting fish taken uniformly at random among all
fighting fish of size n. (Fn is called a URF of size n)
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Theorem (folklore)

#

{
parallelogram polyominos
with semi-perimeter n+ 1

}
=

1

2n+ 1

(
2n

n

)

#

{
parallelogram polyominos with
i top left and j top right edges

}
= 1

i+j−1
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i
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Enumerative results

Theorem (folklore)

Theorem (Duchi, Guerrini, Rinaldi, S. 2016)

#

{
parallelogram polyominos
with semi-perimeter n+ 1

}
=

1

2n+ 1

(
2n

n

)

#

{
parallelogram polyominos with
i top left and j top right edges

}
= 1

i+j−1

(
i+j−1

i

)(
i+j−1

j

)

#

{
fighting fish

with semi-perimeter n+ 1

}
=

2

(n+ 1)(2n+ 1)

(
3n

n

)

#

{
fighting fish with

i top left and j top right edges

}
= 1

(2j+j−1)(2j+i−1)

(
2i+j−1

i

)(
2j+i−1

j

)

fighting fish with 1 tail



A glipse of the proof

Extend the wasp-waist decomposition of parallelogram polyominoes:

remove one cell at the bottom of each diagonal, from left to right
along the fin, until this creates a cut

+



A glipse of the proof

Extend the wasp-waist decomposition of parallelogram polyominoes:

remove one cell at the bottom of each diagonal, from left to right
along the fin, until this creates a cut

Two more cases must be considered for fighting fish...

+



A glipse of the proof

P (u) = tu(1 + P (u))2 + ytuP (u)
P (1)− P (u)

1− u

Let P (u) =
∑

f t
|f |ufin(f)ytail(f) be the GF of fighting fish

according to the size, fin length and number of extra tails.
Then
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A glipse of the proof

P (u) = tu(1 + P (u))2 + ytuP (u)
P (1)− P (u)

1− u

General case. A polynomial equation with one catalytic variable:

easily solved using Bousquet-Mélou-Jehanne approach.

Case y = 0. Fish with one tail, ie parallelogram polyominoes:
boils down to the algebraic equation for the GF of Catalan numbers.

⇒ an algebraic equation that generalizes the equation for
parallelogram polyominoes to an arbitrary number of tails.

Corollary (DGRS 2016). The gf of fighting fish with k tails for
any fixed k is a rational function of the Catalan GF.

Let P (u) =
∑

f t
|f |ufin(f)ytail(f) be the GF of fighting fish

according to the size, fin length and number of extra tails.
Then



Bijections and parameter
equidistributions?



Sloane’s OEIS...

The number of fighting fish of size n+ 1 (with i left and j down top edges)
is equal to the number of:

• Two-stack sortable permutations of {1, . . . , n} (i ascending and j descending runs)
(West, Zeilberger, Bona, 90’s)

• Rooted non separable planar maps with n edges (i+ 1 vertices, j + 1 faces)
(Tutte, Mullin and Schellenberg, 60’s)

This integer sequence was already in Sloane’s !

• Left ternary trees with n edges (i+ 1 even, j odd vertices)
(Del Lungo, Del Ristoro, Penaud, late XXth century)

#

{
fighting fish

with semi-perimeter n+ 1

}
=

2

(n+ 1)(2n+ 1)

(
3n

n

)
1, 2, 6, 91, 408, 1938...



Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

• vertex with label i ⇒ left child i− 1,
central child i, right child i+ 1.

• root vertex has label 0
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1

2
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Natural embedding of a ternary tree:
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Left ternary trees and further equidistributions

Theorem (DGRS 2016): The number of fighting fish with size
n+ 1 and fin length k equals the number of left ternary trees
with n nodes and core size k.

Natural embedding of a ternary tree:

• vertex with label i ⇒ left child i− 1,
central child i, right child i+ 1.

Left ternary tree = ternary tree
without negative labels.

• root vertex has label 0

0

0
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Core = binary subtree of the root
after pruning all right edges
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Left ternary trees and further equidistributions
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Core = binary subtree of the root
after pruning all right edges

#{ fighting fish, size n+ 1, fin length k }
= #{ left ternary trees, n nodes, core size k}

Theorem (DGRS 16)



Left ternary trees and further equidistributions
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Proof by an explicit guess and check à la Di Francesco for the tree GF:

Core = binary subtree of the root
after pruning all right edges

#{ fighting fish, size n+ 1, fin length k }
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Theorem (DGRS 16)



Left ternary trees and further equidistributions
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Theorem (Di Francesco 05, Kuba 11) The size GF of ternary trees
with label at least −i is

Proof by an explicit guess and check à la Di Francesco for the tree GF:

Core = binary subtree of the root
after pruning all right edges

#{ fighting fish, size n+ 1, fin length k }
= #{ left ternary trees, n nodes, core size k}

τj = τ (1−Xj+5)
(1−Xj+4)

(1−Xj+2)
(1−Xj+3)

where
{

τ = 1 + tτ3

X = (1 +X +X2) τ−1
τ

.

Theorem (DGRS 16)
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Left ternary trees and further equidistributions
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Theorem (Di Francesco 05, Kuba 11) The size GF of ternary trees
with label at least −i is

Tj(u) = T (u)
Hj(u)

Hj−1(u)
1−Xj+2

1−Xj+3 where

{
T (u) = 1 + tuT (u)3τ
Hj(u) = (1−Xj+1)XT (u)

−(1 +X)(1−Xj+2)
.

Proof by an explicit guess and check à la Di Francesco for the tree GF:

Core = binary subtree of the root
after pruning all right edges

#{ fighting fish, size n+ 1, fin length k }
= #{ left ternary trees, n nodes, core size k}

τj = τ (1−Xj+5)
(1−Xj+4)

(1−Xj+2)
(1−Xj+3)

where
{

τ = 1 + tτ3

X = (1 +X +X2) τ−1
τ

.

Case j = 0 of this thm gives formula for left ternary trees of size n

Theorem (DGRS16) The bivariate size and core size GF of ternary trees
with label at least −i is

Theorem (DGRS 16)



Left ternary trees and further equidistributions

Conjecture (DGRS 2016): The previous computation can be refined
to prove joined equidistribution of:

fin length ↔ core size
number of tails ↔ number of right branches
number of left/right free edges ↔ number of even/odd labels
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Core = binary subtree of the root
after pruning all right edges

#{ fighting fish, size n+ 1, fin length k }
= #{ left ternary trees, n nodes, core size k}

Theorem (DGRS 16)
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THANK YOU


