Fighting Fish: enumerative properties

Enrica Duchi

IRIF, Université Paris Diderot

Veronica Guerrini
\& Simone Rinaldi
DIISM, Università di Siena

GilLES SCHAEFFER

LIX, CNRS and École Polytechnique

FPSAC 2017, London

Summary of the talk

Fighting fish, a new combinatorial model of discrete branching surfaces

Exact counting formulas for fighting fish with a glipse of the proof

Fighting fish VS classical combinatorial structures a bijective challenge...

Fighting fish, definition

Cells

45° tilted unit square (of thin paper or cloth)

Build surface by gluing cells along edges in a coherent way: upper left with lower right or lower left with upper right.

These objects do not necessarily fit in the plane so my pictures are projections of the actual surfaces: Apparently overlapping cells are in fact independant.

Fighting fish, definition

Directed cell aggregation. Restrict to only three legal ways to add cells: by lower right gluing, upper right gluing, or simultaneous lower and upper right gluings from adjacent free edges.

Fighting fish, definition
Lemma. Single cell + aggregations
\Rightarrow a simply connected surface
Proposition. Such surfaces can be recovered from their boundary walk.
 (not used later)

Fighting fish, definition

Fighting fish

A fighting fish is a surface that can be obtained from a single cell by a sequence of directed cell agregations.

We are interested only in the resulting surface, not in the aggregation order (but type of aggregation matters)
 but

Fighting fish versus polyominoes

Polyomino = edge-connected set of cells of the planar square lattice

Fighting fish versus polyominoes

Polyomino = edge-connected set of cells of the planar square lattice

Directed polyominoes: there is a cell, the head, from which all cells can be reached by a left-to-right path.

Fighting fish versus polyominoes

Polyomino $=$ edge-connected set of cells of the planar square lattice

Directed polyominoes: there is a cell, the head, from which all cells can be reached by a left-to-right path.

Proposition.

A fighting fish is a directed polyomino iff its projection in the plane is injective.
\Rightarrow fighting fish do not all fit in the plane, ie they are not all polyominoes.

Fighting fish versus polyominoes

Polyomino $=$ edge-connected set of cells of the planar square lattice

Directed polyominoes: there is a cell, the head, from which all cells can be reached by a left-to-right path.

Proposition.

A fighting fish is a directed polyomino iff its projection in the plane is injective.
\Rightarrow fighting fish do not all fit in the plane, $i e$ they are not all polyominoes.

Fighting fish versus polyominoes

Polyomino $=$ edge-connected set of cells of the planar square lattice

Directed polyominoes: there is a cell, the head, from which all cells can be reached by a left-to-right path.

Proposition.

A fighting fish is a directed polyomino iff its projection in the plane is injective.
\Rightarrow fighting fish do not all fit in the plane, $i e$ they are not all polyominoes.

Conversely there are polyominoes that are not fighting fish:

Fighting fish versus polyominoes

Polyomino $=$ edge-connected set of cells of the planar square lattice

Directed polyominoes: there is a cell, the head, from which all cells can be reached by a left-to-right path.

Proposition.

A fighting fish is a directed polyomino iff its projection in the plane is injective.
\Rightarrow fighting fish do not all fit in the plane, $i e$ they are not all polyominoes.

Conversely there are polyominoes that are not fighting fish:
Proposition. A directed polyomino is a fighting fish iff its interior is simply connected.

Fighting fish versus polyominoes

Polyomino $=$ edge-connected set of cells of the planar square lattice

Directed polyominoes: there is a cell, the head, from which all cells can be reached by a left-to-right path.

Proposition.

A fighting fish is a directed polyomino iff its projection in the plane is injective.
\Rightarrow fighting fish do not all fit in the plane, $i e$ they are not all polyominoes.

Conversely there are polyominoes that are not fighting fish:
Proposition. A directed polyomino is a fighting fish iff its interior is simply connected.

Fighting fish versus polyominoes

Polyomino $=$ edge-connected set of cells of the planar square lattice

Directed polyominoes: there is a cell, the head, from which all cells can be reached by a left-to-right path.

Proposition.

A fighting fish is a directed polyomino iff its projection in the plane is injective.
\Rightarrow fighting fish do not all fit in the plane, $i e$ they are not all polyominoes.

Conversely there are polyominoes that are not fighting fish:
Proposition. A directed polyomino is a fighting fish iff its interior is simply connected.
In particular all directed convex polyominoes are fighting fish.

Parameters of fighting fish

Area $=\#$ cells
Size $=$ semi-perimeter
$=\#\{$ upper free edges $\}$
$=\#\{$ upper left free edges $\}+\#\{$ upper right free edges $\}$
The fin length $=\#\{$ lower free edges from head to first tail $\}$

Parameters of fighting fish

Area $=\#$ cells
Size $=$ semi-perimeter
$=\#\{$ upper free edges $\}$
$=\#\{$ upper left free edges $\}+\#\{$ upper right free edges $\}$
The fin length $=\#\{$ lower free edges from head to first tail $\}$
Fighting fish with exactly 1 tail

Parameters of fighting fish

The fin length $=\#\{$ lower free edges from head to first tail $\}$
Fighting fish with exactly 1 tail
$=$ parallelogram polyominoes aka staircase polygons

in this case, fin length $=$ semi-perimeter

Fighting fish as random branching surfaces

Let F_{n} be a fighting fish taken uniformly at random among all fighting fish of size n. (F_{n} is called a URF of size n)

Fighting fish as random branching surfaces

Let F_{n} be a fighting fish taken uniformly at random among all fighting fish of size n. (F_{n} is called a URF of size n)

Theorem (Duchi, Guerrini, Rinaldi, S., J. Physics A, 2016) The expected area of F_{n} is of order $n^{5 / 4}$

Fighting fish as random branching surfaces

Let F_{n} be a fighting fish taken uniformly at random among all fighting fish of size n. (F_{n} is called a URF of size n)

Theorem (Duchi, Guerrini, Rinaldi, S., J. Physics A, 2016) The expected area of F_{n} is of order $n^{5 / 4}$

Compare to the known expected area $n^{3 / 2}$ of random parallelogram polyominoes of size n

Fighting fish as random branching surfaces

Let F_{n} be a fighting fish taken uniformly at random among all fighting fish of size n. (F_{n} is called a URF of size n)

Theorem (Duchi, Guerrini, Rinaldi, S., J. Physics A, 2016) The expected area of F_{n} is of order $n^{5 / 4}$

Compare to the known expected area $n^{3 / 2}$ of random parallelogram polyominoes of size n

The Uniform Random fighting Fish of size n (URF) yields a new model of random branching surfaces with original features.

Enumerative results

Enumerative results

Theorem (folklore)
$\#\left\{\begin{array}{c}\text { parallelogram polyominos } \\ \text { with semi-perimeter } n+1\end{array}\right\}=\frac{1}{2 n+1}\binom{2 n}{n}$
$\#\left\{\begin{array}{l}\text { parallelogram polyominos with } \\ i \text { top left and } j \text { top right edges }\end{array}\right\}=\frac{1}{i+j-1}\binom{i+j-1}{i}\binom{i+j-1}{j}$

Enumerative results

Theorem (folklore)

fighting fish with 1 tail

$\#\left\{\begin{array}{c}\text { parallelogram polyominos } \\ \text { with semi-perimeter } n+1\end{array}\right\}=\frac{1}{2 n+1}\binom{2 n}{n}$
$\#\left\{\begin{array}{l}\text { parallelogram polyominos with } \\ i \text { top left and } j \text { top right edges }\end{array}\right\}=\frac{1}{i+j-1}\binom{i+j-1}{i}\binom{i+j-1}{j}$

Enumerative results

Theorem (folklore)

fighting fish with 1 tail

$\#\left\{\begin{array}{c}\text { parallelogram polyominos } \\ \text { with semi-perimeter } n+1\end{array}\right\}=\frac{1}{2 n+1}\binom{2 n}{n}$
$\#\left\{\begin{array}{l}\text { parallelogram polyominos with } \\ i \text { top left and } j \text { top right edges }\end{array}\right\}=\frac{1}{i+j-1}\binom{i+j-1}{i}\binom{i+j-1}{j}$

Theorem (Duchi, Guerrini, Rinaldi, S. 2016)
$\#\left\{\begin{array}{c}\text { fighting fish } \\ \text { with semi-perimeter } n+1\end{array}\right\}=\frac{2}{(n+1)(2 n+1)}\binom{3 n}{n}$
$\#\left\{\begin{array}{c}\text { fighting fish with } \\ i \text { top left and } j \text { top right edges }\end{array}\right\}=\frac{1}{(2 j+j-1)(2 j+i-1)}\binom{2 i+j-1}{i}\binom{2 j+i-1}{j}$

A glipse of the proof

Extend the wasp-waist decomposition of parallelogram polyominoes: remove one cell at the bottom of each diagonal, from left to right along the fin, until this creates a cut

(A)

(B1)

(B2)

A glipse of the proof

Extend the wasp-waist decomposition of parallelogram polyominoes: remove one cell at the bottom of each diagonal, from left to right along the fin, until this creates a cut

(B1)

(C2)

(B2)

(C3)

Two more cases must be considered for fighting fish...

A glipse of the proof

Let $P(u)=\sum_{f} t^{|f|} u^{\operatorname{fin}(f)} y^{\operatorname{tail}(f)}$ be the GF of fighting fish according to the size, fin length and number of extra tails. Then

$$
P(u)=t u(1+P(u))^{2}+y t u P(u) \frac{P(1)-P(u)}{1-u}
$$

A glipse of the proof

Let $P(u)=\sum_{f} t^{|f|} u^{\operatorname{fin}(f)} y^{\text {tail(f) }}$ be the GF of fighting fish according to the size, fin length and number of extra tails.
Then

$$
P(u)=t u(1+P(u))^{2}+y t u P(u) \frac{P(1)-P(u)}{1-u}
$$

Case $y=0$. Fish with one tail, ie parallelogram polyominoes:
boils down to the algebraic equation for the GF of Catalan numbers.

A glipse of the proof

Let $P(u)=\sum_{f} t^{|f|} u^{\text {fin }(f)} y^{\text {tail }(f)}$ be the GF of fighting fish according to the size, fin length and number of extra tails.
Then

$$
P(u)=t u(1+P(u))^{2}+y t u P(u) \frac{P(1)-P(u)}{1-u}
$$

Case $y=0$. Fish with one tail, ie parallelogram polyominoes: boils down to the algebraic equation for the GF of Catalan numbers.
General case. A polynomial equation with one catalytic variable: easily solved using Bousquet-Mélou-Jehanne approach.
\Rightarrow an algebraic equation that generalizes the equation for parallelogram polyominoes to an arbitrary number of tails.

Corollary (DGRS 2016). The gf of fighting fish with k tails for any fixed k is a rational function of the Catalan GF.

Bijections and parameter equidistributions?

Sloane's OEIS...

$\#\left\{\begin{array}{c}\text { fighting fish } \\ \text { with semi-perimeter } n+1\end{array}\right\}=\frac{2}{(n+1)(2 n+1)}\binom{3 n}{n}$

$$
1,2,6,91,408,1938 \ldots
$$

This integer sequence was already in Sloane's !
The number of fighting fish of size $n+1$ (with i left and j down top edges) is equal to the number of:

- Two-stack sortable permutations of $\{1, \ldots, n\}$ (i ascending and j descending runs) (West, Zeilberger, Bona, 90's)
- Rooted non separable planar maps with n edges ($i+1$ vertices, $j+1$ faces) (Tutte, Mullin and Schellenberg, 60's)
- Left ternary trees with n edges ($i+1$ even, j odd vertices) (Del Lungo, Del Ristoro, Penaud, late XXth century)

Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

- root vertex has label 0
- vertex with label $i \Rightarrow$ left child $i-1$, central child i, right child $i+1$.

Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

- root vertex has label 0
- vertex with label $i \Rightarrow$ left child $i-1$, central child i, right child $i+1$.

Left ternary tree $=$ ternary tree without negative labels.

Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

- root vertex has label 0
- vertex with label $i \Rightarrow$ left child $i-1$, central child i, right child $i+1$.

Left ternary tree $=$ ternary tree without negative labels.
Core $=$ binary subtree of the root after pruning all right edges

Left ternary trees and further equidistributions

Natural embedding of a ternary tree:

- root vertex has label 0
- vertex with label $i \Rightarrow$ left child $i-1$, central child i, right child $i+1$.

Left ternary tree $=$ ternary tree without negative labels.
Core $=$ binary subtree of the root after pruning all right edges

Theorem (DGRS 2016): The number of fighting fish with size $n+1$ and fin length k equals the number of left ternary trees with n nodes and core size k.

Left ternary trees and further equidistributions

Core $=$ binary subtree of the root after pruning all right edges

Theorem (DGRS 16)
$\#\{$ fighting fish, size $n+1$, fin length $k\}$ $=\#\{$ left ternary trees, n nodes, core size $k\}$

Left ternary trees and further equidistributions

Core $=$ binary subtree of the root after pruning all right edges

Theorem (DGRS 16)
$\#\{$ fighting fish, size $n+1$, fin length $k\}$ $=\#\{$ left ternary trees, n nodes, core size $k\}$

Proof by an explicit guess and check à la Di Francesco for the tree GF:

Left ternary trees and further equidistributions

Core $=$ binary subtree of the root after pruning all right edges

Theorem (DGRS 16)
$\#\{$ fighting fish, size $n+1$, fin length $k\}$ $=\#\{$ left ternary trees, n nodes, core size $k\}$

Proof by an explicit guess and check à la Di Francesco for the tree GF:
Theorem (Di Francesco 05, Kuba 11) The size GF of ternary trees with label at least $-i$ is

$$
\tau_{j}=\tau \frac{\left(1-X^{j+5}\right)}{\left(1-X^{j+4}\right)} \frac{\left(1-X^{j+2}\right)}{\left(1-X^{j+3}\right)} \quad \text { where }\left\{\begin{aligned}
\tau & =1+t \tau^{3} \\
X & =\left(1+X+X^{2}\right) \frac{\tau-1}{\tau}
\end{aligned}\right.
$$

Left ternary trees and further equidistributions

Core $=$ binary subtree of the root after pruning all right edges

Theorem (DGRS 16)
$\#\{$ fighting fish, size $n+1$, fin length $k\}$ $=\#\{$ left ternary trees, n nodes, core size $k\}$

Proof by an explicit guess and check à la Di Francesco for the tree GF:
Theorem (Di Francesco 05, Kuba 11) The size GF of ternary trees with label at least $-i$ is

$$
\tau_{j}=\tau \frac{\left(1-X^{j+5}\right)}{\left(1-X^{j+4}\right)} \frac{\left(1-X^{j+2}\right)}{\left(1-X^{j+3}\right)} \quad \text { where }\left\{\begin{aligned}
\tau & =1+t \tau^{3} \\
X & =\left(1+X+X^{2}\right) \frac{\tau-1}{\tau}
\end{aligned}\right.
$$

Case $j=0$ of this thm gives formula for left ternary trees of size n

Left ternary trees and further equidistributions

Core $=$ binary subtree of the root after pruning all right edges

Theorem (DGRS 16)
$\#\{$ fighting fish, size $n+1$, fin length $k\}$ $=\#\{$ left ternary trees, n nodes, core size $k\}$

Proof by an explicit guess and check à la Di Francesco for the tree GF:
Theorem (Di Francesco 05, Kuba 11) The size GF of ternary trees with label at least $-i$ is

$$
\tau_{j}=\tau \frac{\left(1-X^{j+5}\right)}{\left(1-X^{j+4}\right)} \frac{\left(1-X^{j+2}\right)}{\left(1-X^{j+3}\right)} \quad \text { where }\left\{\begin{aligned}
\tau & =1+t \tau^{3} \\
X & =\left(1+X+X^{2}\right) \frac{\tau-1}{\tau}
\end{aligned}\right.
$$

Case $j=0$ of this thm gives formula for left ternary trees of size n
Theorem (DGRS16) The bivariate size and core size GF of ternary trees with label at least $-i$ is

$$
T_{j}(u)=T(u) \frac{H_{j}(u)}{H_{j-1}(u)} \frac{1-X^{j+2}}{1-X^{j+3}} \text { where }\left\{\begin{aligned}
T(u) & =1+t u T(u)^{3} \tau \\
H_{j}(u)= & \left(1-X^{j+1}\right) X T(u) \\
& -(1+X)\left(1-X^{j+2}\right)
\end{aligned}\right.
$$

Left ternary trees and further equidistributions

Core $=$ binary subtree of the root after pruning all right edges

Theorem (DGRS 16)
$\#\{$ fighting fish, size $n+1$, fin length $k\}$
$=\#\{$ left ternary trees, n nodes, core size $k\}$

Conjecture (DGRS 2016): The previous computation can be refined to prove joined equidistribution of:
fin length \leftrightarrow core size
number of tails \leftrightarrow number of right branches
number of left/right free edges \leftrightarrow number of even/odd labels

Bijections?

fighting fish

2SS-permutations
left ternary trees
ns planar maps

Bijections?

fighting fish

2SS-permutations

ns planar maps

recursive decomposition + GF

Bijections?

fighting fish

ns planar maps
4 Tutte
recursive decomposition + GF

Bijections?

fighting fish

left ternary trees

Bijections?

fighting fish

Bijections?

fighting fish

2SS-permutations

ns planar maps

recursive decomposition + GF

Bijections?

recursive decomposition + GF
 today's talk

 fighting fish

2SS-permutations

ns planar maps

recursive decomposition + GF

Bijections?

Bijections?

Bijections?

Bijections?

