
Summary of PhD dissertation:�Une étude logique du ontr�le appliquée à laprogrammation fontionnelle et logique�∗Alexis SaurinDefended on the 30th of september 2008IntrodutionProof theory and Programming languages theory are strongly related ar-eas of study. Reent developments in proof theory have led to major advanesin the theory of programming languages. The modelling of omputation us-ing proofs impated deeply the foundational studies of programming languagesas well as many of their pratial issues by providing formal tools to analyzeprograms properties. Delarative programming languages have been relatedmainly in two ways to the mathematial theory of proofs: on the one hand,the �omputation as proof normalization� paradigm provided a foundation forfuntional programming languages through the well-known Curry-Howard or-respondene [How80℄. On the other hand the �omputation as proof searh�paradigm stands as a foundation for logi programming: the omputation of aprogram is the searh for a proof in some dedutive system.
• From the �omputation as proof normalization� viewpoint, ut-eliminationin natural dedution (and more reently in sequent alulus) provided apartiularly strong and useful theoretial foundation to funtional pro-gramming by drawing a orrespondene between (i) logi formulas anddata/program types, (ii) intuitionisti dedution and program, (iii) ut-redution and omputation step and �nally (iv) ut-free proof and resultsof the omputation, or values.This also allowed to transfer proof-theoretial results towards theory ofprogramming and was an opportunity to develop formal tools to analyzepreisely those languages by using well-established and powerful logialmethods. Crossing the bridge between proofs and omputations in theother diretion was also very fruitful by renewing many questions proof-theorists were onsidering with respet to ut-elimination results; for is-ntane, questions related to the e�ieny of those proof transformations

∗English title: A Logial Study of Control, Applied to Funtional Programming and LogiProgramming. 1



emerged, diretly related to onsiderations onneted to program om-plexity.
• In another kind of thoughts, questions related to the (automated, mehan-ial) searh for proofs have originated a programming paradigm in theseventies, namely logi programming, Prolog being its most well-knownexample. If the automated searh for proofs ould originally be motivatedby the will to help the mathematiian in its ativity, proof searh as amodel of omputation is muh more interested in the very struture ofproofs, the dynamis of proof onstrution and the way this may serve asa universal model of omputation.In the �eld of �omputation as proof searh�, one saw also ontribu-tions rossing the logi/omputation bridge in both diretions, in addi-tion to the fat that the very model of omputation was historially in-spired by logi. For instane, the introdution of the notion of uniformproofs [MNPS91℄ or foussed proofs in linear logi [And92℄ whih are fun-damental strutures in sequent alulus proof theory (very muh relatedto Kleene and Curry works on permutabilities of inferene rules in theearly �fties [Kle52, Cur52℄) were inspired by the will to better understandthe proedurality of proof searh.The two programming paradigms mentionned above, funtional programmingand logi programming, are also interesting beause their relationships with logiis of a di�erent kind and that this di�erene �nds its root with the notion ofut �rst introdued by Gentzen [Gen69℄:
• with funtional programming, or �omputation as proof normalization�, aprogram is a proof and the dynamis of omputation is to be found in theelimination of the uts (both in the frameworks biult on natural dedutionor on sequent alulus). On the other hand, the result of the omputationis a ut-free proof. This paradigm, whih is the one of (typed) λ-alulus,relies on the ut-elimination viewpoint of Gentzen's Hauptsatz;
• with logi programming, or �omputation as proof searh�, a program isa olletion of formulas (a sequent) and a omputation step is the redu-tion of a sequent into a (set of) sequent(s) by applying an inferene rule(bottom-up proof onstrution). Here, the dynamis of omputation is tobe found in the searh proess of a ut-free proof and the �nal result ofa omputation is proof. A proof searh has a hane to be e�etive onlyif ones never used the ut inferene rule whih is the only inferene rulein sequent alulus that truly requires the imagination of the mathemati-ian whih is re�eted in the non-analyity of the ut-rule. In this waytoo, proof searh relies in a fundamental way on Gentzen's Hauptsatz,but in the ut-admissibility viewpoint of the Hauptsatz: the result of aomputation is atually a ut-free proof.Another interesting di�erene between those two paradigms is the historialonnetion they have with logi: whereas logi programming originated fromlogial onsideration, the onnetion between logi and funtional programmingame afterwards. 2



Even though the two paradigms have muh to do with Gentzen's Hauptsatzand despite the fat that the results of a omputation are similar ut-free proofs,it is di�ult to draw a link between their dynamis.The onnetions between logi and omputation atually beomes muhmore omplex when ertain omponents of real programming languages areonerned.Most of programming languages allow the programmer to user onstrutionsto ontrol the exeution �ow:
• in funtional programming one may think of exeptions management (on-strutions suh as try ... with and raise), or managing the ontinu-ation of the omputation (one may think of the all/ for instane);
• in logi programming one may think of baktraking mehanisms, utprediate (! in Prolog), or other extra-logial prediates that may alterthe baktraking behaviour.One just show the example of all/:

E[(call/cc)λk.t] −→ E[t {⋆E/k}]
E[(⋆E′)t] −→ E′[t]where E is the omputational environment. The e�et of all/, by the re-ation of ⋆E an be understood as a rei�ation of the omputational environmentwithin the programming language.This very fat is part of the explanation why it has revealed to be so di�ult tounderstand logially the ontrol onstrutions. However, ontrol onstrutionsare often auses of errors in programming and it is thus partiularly importantthat the formal analysis of programs an treat these elements. The di�ul-ties in providing a logial aound of ontrol in programming laguages an beunderstood as follows:

• it took over twenty years to extend the Curry-Howard orrespondenefrom intuitionisti logi to lassial logi, this extension being the key ofa start of logial understanding of ontrol in those languages (see gri�n'swork [Gri90℄ or Parigot's λµ-alulus [Par92℄).
• there is no satisfying solution to adress baktraking and ut prediateproof-theoretially in proof searh.The researh we present in this dissertation are at the border of proof theoryand programming languages theory and we present ontributions both in puretheory and in theoretial omputer siene.The dissertation is organized in three parts:
• the �rst part is dediated to the �omputation as proof normalization�approah. We study Λµ-alulus, an extension of Parigot's λµ-alulus.
• the seond part is dediater to the �omputation as proof searh� approahwith ontributions to the understanding of foalization in linear logi.3



• the last and third part suggests a radially new look by introduing aframework for �proof searh by ut-elimination� in whih we an onnetthe two approahes of the Hauptsatz. This study is arried out in thesetting of Ludis [Gir01℄.There are several themes that are in�uenial all along the dissertation:
• First and foremost, the understanding of ontrol mehanism is our �rstmotivation for this study;
• Separation property is originally a topologial property that entered the�eld of proof theory and omputation with the work of Böhm on λ-alulusin the late sixties [Bö68℄. This is ertainly an in�uential notion: beingour starting point on λµ-alulus, separation is also an essential propertyin the development of Ludis theory. Moreover, separation is related toanoniity of formal system and thus with foalization property (whih isatually one of the key of the Separation theorem in Ludis);
• The understanding of the relationships between the ut-elimination andproof-searh apporahes is also one of the deep struturing ideas of ourwork.Introdutory PartChapter 1: Notions de théorie de la démonstrationTitle: Introdution to proof theoryChapter 2: Notions de λ-alul et de λµ-alulTitle: Introdution to λ-alulus and λµ-alulusIn these two introdutory hapters, we provide the reader with the neessarybakground on proof theory (espeially sequent alulus theory) and Churh's

λ-alulus [Chu41℄. In the �rst hapter, we emphasize the study of sequent al-ulus (lassial sequent alulus LK, intuitionisti sequent alulus LJ and linearsequent alulus LL) and we emphasize the presentation of several key-onepts:onstrutive proofs, ut rule and ut-elimination, Kleene/Curry permutabilitiesof inferenes, and proof searh through a presentation of Gödel ompletenesstheorem for �rst-order LK. The seond hapter, dealing with λ-alulus, is alsointroduing Parigot's λµ-alulus [Par92℄, an extension of λ-alulus that al-lows to arry the Curry-Howard orrespondene between proofs and programsto lassial logi. This seond hapter also ontains a detailed aount of sepa-ration property in pure λ-alulus (also known as Böhm theorem [Bö68℄) whihwill be a ruial notion in the rest of the dissertation.Part I: Λµ-alulTitle: Λµ-alulus 4



In this part, we investigate Λµ-alulus, an extension of Parigot's λµ-aluluthat satis�es a separation property. We develop the meta-theory of the alu-lus (on�uene, simple types) and propose an analysis of omputations in Λµ-alulus thanks to extensions of proof nets [Gir87, Lau03℄. Finally, we developa stream interpretation for Λµ-alulus and related this alulus with delimitedontrol operators.Chapter 3: de λµ à ΛµTitle: From λµ to ΛµDavid and Py [DP01℄ proved that separation property whih holds in λ-alulus is not satis�ed in Parigot's λµ-alulus. Indeed, they ould witness twoanonial λµ-normal forms whih are not λµ-equivalent but whih annot beseparated by any ontext.In this hapter, we start by studying the non-separation result of λµ-alulusand by disussing whih heuristis an be adopted when separation fails in aalulus suh a λ-alulus or λµ-alulus. Our analysis then leads us to proposean extension of Parigot's λµ-alulus, whih we all Λµ-alulus, for whih sep-arability is reovered. Indeed, Λµ-alulus will have more separating ontextsthan λµ-alulus. This new alulus is introdued in the last part of the hapterwhile the proof of separation is left for the following hapter.Chapter 4: Théorème de Böhm pour le Λµ-alulTitle: Böhm Theorem for Λµ-alulusThis hapter is dédiated to the proof of the analogous of Böhm theorem in
Λµ-alulus. Our proof is inspired by Joly's proof [Jol00℄ for λ-alulus ratherthan by more standard proofs [Kri90℄. The key element in the separation proofis the more liberal syntax of Λµ-alulus whih allows to onsider terms of theform:

〈t, u〉k = µα1 . . . µαk.λx.((x)(t)α1 . . . αk)(u)α1 . . . αkwhih are used in the separation proess.We also disuss other heuristis that ould be used in order to obtain sepa-ration in λµ-alulus.Chapter 5: Con�uene du Λµ-alulTitle: Con�uene theorem for Λµ-alulusIn this hapter, we establish a on�uene theorem for Λµ-alulus. It isindeed important to have on�uene for the separation of the previous hapterto be signi�ant.The proof uses ommutations arguments and a labelling tehnique (a poten-tial of fst-expansion) whih ensure that the fst-redution terminates.A by-produt of our proof is a simpli�ed proof of on�uene for λµη-alul.It is also an oasion to develop the syntatial meta-theory of Λµ-alulus.5



Chapter 6: Λµ-alul simplement typéTitle: Simply typed Λµ-alulusIn hapter 6, we study type systems for Λµ-alul. We �rst onsider a typesystem whih uses a lassial logi typing derived from the one for λµ-alulus.However, this approah is questionnable by onsidering that whole lassesof terms, among whih are terms whih are ruial in the proof of separation,annot be typed. We thus propose another type system, an extended typesystem, ΛS , whih allows to type more Λµ-terms. In partiular, ΛS allows totype terms of the shape whih is used in the proof of separation of hapter 4and that ould not be typed in the lassial type system. This type system ispeuliar in several aspet and in partiular in the fat that there is an equivalenerelation on the grammar of types orresponding to an assoiativity property ontype onstrutors and that express the fat that some terms an both be appliedto a term and a stream variable. We study relationships between ΛS and a typesystem independantly developped by Herblin and Ghilezan [HG08℄ whih doesnot use assoiativity.Finally, we pursue the investigation of ΛS by proving that the standardtheorems hold, namely type preservation and strong normalization of the typedalulus and we onlude by proposing some remarks on a type system withseond-order quanti�ation.Chapter 7: Une analyse du Λµ-alul via des réseauxTitle: An analysis of Λµ-alulus Computations Through Proof-NetsWe study in this hapter the redutions of Λµ-alulus via an enodingina partiular lass of proof nets, Streams Assoiative Nets (SANE). One �rstde�ne Streams Assoiative Nets, whih are intermediate nets in between usual
MELLproof nets [Gir87℄ and Laurent's polarized nets [Lau02℄. The onnetionbetween MELL nets and polarized nets is obtained by an assoiativity relationsalready mentionned above about the type system ΛS . Here, it will onsist ina real assoivity rule between two sorts of O onnetive. We study propertiesof redutions in Streams Assoiative Nets whih is atually on�uent (in a waywhih is more loal than Λµ-alulus) and we then enode pure Λµ-alulususing a proess whih is similar to the one used to enode pure λ-alul using
MELLnets; this enoding allows us to obtain a simulation result of Λµ-alulby Streams Assoiative Nets. We �nally prove a separation theorem for StreamsAssoiative Nets.Chapter 8: λµ-aluls, streams et ontr�leTitle: λµ-aluli, Streams and ontrolIn this last hapter dealing with Λµ-alulus, we disuss several results therelationships between Λµ-alulus and other λµ-aluli, results whih are builton the results of the previous hapters.First, we shall ompare di�erent version of all-by-name λµ-aluli that weenoutered throughout the dissertation: λµ, λµη, λµǫ and Λµ. We also shall6



develop more formally the stream interpretation of Λµ-alul and of the paral-lelism with delimited ontrolvia the orrespondene with λµt̂p. In partiular,this is established via the de�nition of an abstrat mahine for Λµ, that we all
Λµ-KAM, and a variant of λ-alulus whih possess a onstrution of streams,the ΛS-alulus.Part II: Foalisation en Logique LinéaireTitle: Foalization in Linear LogiThis part is dediated to the investigation of the foalization property in Lin-ear Logi whih is a fundamental theorem of linear logi with many appliationsand most importantly, to omputation-as-proof-serah and to Ludis. We �rstpropose a proof of the foalization theorem that is strutured in suh a way thatit an be esaily extended to broader setting; this is ahieved by de�ning an ab-stration on linear logi sequent proofs, foalization graphs. Foalization graphsnaturally lead us to introduing an generalization of the foalization disiplin,whih we all multifoalization and for whih we study anoniity properties byomparing this approah to MLL proof nets.Chapter 9: Une preuve modulaire de la foalisationTitle: A Modular Proof of FoalizationIn this hapter, we propose a new proof of Andreoli's foalization theoremin linear logi [And90, And92℄. Our method is modular and relies on a preiseanalysis of the properties of permutabilities of inferene rules in linear logi.The proof is built on the notion of foalization graphs, whih are an abstra-tion of linear logi proof retaining only the relevant information to determinewht an be taken as a fous. Using this abstration, it beomes simple to arrythe proof. moreover, one an develop a detailed study of how to polarize theatomi biases in order to treat them in a foussed way.We illustrate the modularity of this proof in two ways: we �rst establish theresult for MALL and then extend it full linear logi. On the other hand, weexplain how to obtain a foalization result for Elementary Linear Logi.Chapter 10: MultifoalisationTitle: MultifoalizationIn this hapter we onsider an extension to the foussed system whih isnaturally suggested by the use of foalization graphs: multifoalization. Thebasi idea is to replae the using foussing disiplin by a disiplin in whih onemay fouss on several formulas:
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tion of the previous fat by enlightening the relationships between maximallymultifoussed proofs and MLL proof nets.Part III: Programmation LudiqueTitle: Ludis ProgrammingWe present a setting for proof searh by ut-elimination: proof searh willnot anymore be guided by a seuqent alulus and an enoding of a program asa sequent, but as a series of tests that will onstrain the onstrution of a proofobjet whih is required to interat with all the tests (that is the ut-eliminationhave to normlize). This investigation is developped in Ludis [Gir01℄ and thisapproah by proofs and ounter-proofs allows us to treate interatively, that islogially, the baktraking phenomenon.Chapter 11: Introdution à la LudiqueTitle: Introdution to LudisWe introdue in this hapter the basi notion a Ludis, an interative theoryintrodued by Girard in 2001 [Gir01, Gir06℄. Ludis is built on an abstration ofMALL foussed proofs, the designs, whih are equipped with an orthogonalityrelation. The equivalents of formulas, in Ludis, are behaviours, that is sets ofdesigns whih are losed by bi-orthogonality.Chapter 10: Vers une Programmation Ludique: Reherhede Preuve InterativeTitle: Towards Ludis Programming: Interative Proof SearhWe propose in this hapter a framework for a �interative proof searh� thatis a proof searh whih is not guided by a sequent and by searh instrutionsanymore, but guided by an interation: this is proof searh by ut-elimination.We �rst motivated our approah by the will to obtain a uniform approah toproof searh and then give informal examples in a alulus whih is obtained byslightly modifying MALL sequent alulus before moving to Ludis and de�ningan abstrat mahine for an interative onstrution of designs, the SLAM.In partiular, using the SLAM allors to treat the baktraking in an inter-ative way, ie. by using only proof objets.Referenes[And90℄ Jean-Mar Andreoli. Proposition pour une synthèse des paradigmesde la programmation logique et de la programmation par objets.Thèse de dotorat, Université Paris VI, June 1990.[And92℄ Jean-Mar Andreoli. Logi programming with fousing proofs inlinear logi. Journal of Logi and Computation, 2(3):297�347, 1992.8
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