
PSN for the λs-calculus

Fabien Renaud

PPS, CNRS and University Paris 7-Paris Diderot

Abstract. The goal of this technical paper is to show preservation of
strong normalisation for the λs-calculus, a sub-calculus of the prismoid of
resources [KR11]. For that, we use a modular technique given in [Kes09],
which uses the labelling approach.

The modular technique requires Full Composition (proved in [KR11] inde-
pendently of PSN) and the (IE) property requiring that the normalisation of a
term with an implicit substitution implies normalisation of the same term with
an explicit substitution:

(IE) u ∈ SNλs
& t{x/u}vn ∈ SNλs

imply t[x/u]vn ∈ SNλs

To achieve this difficult goal, we proceed by doing the following steps:

1. Add to the grammar of λs (the s-terms) labelled substitutions to mark
strongly normalising s-terms used as parameters of substitutions. For in-
stance tJx/uK indicates that u is an s-term (without labels) s.t u ∈ SNλs

.
2. Enrich the reduction system→λs

with another system→s (thus obtaining a
new system→λs

) used only to propagate terminating labelled substitutions.

These two first points are developed in Section 1. After that, we can simplify
the (IE) property into two more elementary steps:

3. Show that u ∈ SNλs
& t{x/u}vn ∈ SNλs

imply tJx/uKvn ∈ SNλs
.

4. Show that tJx/uKvn ∈ SNλs
implies t[x/u]vn ∈ SNλs

.

These two last points are developed in Section 2. The modular approach implying
PSN from the (IE) property is finally shown in Section 3.

1 The Labelling Technique

In this section we introduce the set of labelled terms and their associated reduc-
tion systems. The key idea is that bodies of labelled substitutions are strongly
normalising terms, this invariant being kept during the reduction. The main
rewriting system →λs

associated to labelled terms is split in two relations →λsi

and →λse . The idea is that →λsi steps will be weakly projected (eventually
empty steps) into λs whereas→λse will be strongly projected (at least one step)
into λs. Formally if xc() is a function mapping labelled terms to s-terms, and
t, t′ are labelled terms then t →λsi t

′ implies xc(t) →∗λs
xc(t′) and t →λse t′

implies xc(t)→+
λs

xc(t′)
The key lemma of this section states that →λsi is terminating.

1.1 The Labelled Terms

Given a set of variables S, the S-labelled terms or S-terms (or simply labelled
terms if S is clear from the context), are given by:

TS ::= x | TS TS | λx.TS | TS[x/TS] | TSJx/vK(v ∈ T ∩ SNλs
& fv(v) ⊆ S)

Labelled substitutions can only contain λs-terms so in particular they cannot
contain other labelled substitutions inside them. Remark that for instance, if
S = {y} the S-term xJx/yK[y/u] is α-equivalent to xJx/zK[z/u], leading to a
term not in the grammar anymore. To be stable under α-conversion, we will
thus only consider S-terms where x /∈ S in the terms u[x/v], uJx/vK, and λx.v.

Bodies of labelled substitutions are normalising by definition and do not
loose this property thanks to the semantics of the rules propagating labelled
substitutions. Indeed, these rules guarantee that labelled substitutions can tra-
verse/commute normal substitutions but not the converse. The S-terms will thus
be trivially stable by the reduction defined by the following set of equations and
rules:

Equations :
t[x/u]Jy/vK ≡SSC tJy/vK[x/u] y /∈ fv(u) & x /∈ fv(v)

tJx/uKJy/vK ≡SSC tJy/vKJx/uK y /∈ fv(u) & x /∈ fv(v)

Rules :
tJx/uK →SGc t x /∈ fv(t)
xJx/uK →V u
(λy.t)Jx/uK →SL λy.tJx/uK
(t v)Jx/uK →SAL tJx/uK v x /∈ fv(v)

(t v)Jx/uK →SAR t vJx/uK x /∈ fv(t)

t[y/v]Jx/uK →SS t[y/vJx/uK] x ∈ fv(v) \ fv(t)
tJx/uK →SDup tx yJx/uKJy/uK |t|x > 1 & y fresh

The ⇒s (resp →s) reduction relation is generated by the previous reduction
rules (resp. modulo ≡SSC) conversion. They can be simulated by reduction on
their unlabelled corresponding s-terms. We also consider the relation→λs

=→λs

∪ →s on labelled terms.

1.2 Internal and External Reductions

We now split→λs
in two disjoint relations⇒λsi and⇒λse which will be projected

into λs-reduction sequences differently.

Definition 1. The internal reduction relation →λsi is taken as the following
reduction relation ⇒λsi on ≡SSC,SSC-equivalence classes:

– If u⇒λs
u′, then tJx/uK⇒λsi tJx/u′K.

– If t⇒s t
′, then t⇒λsi t

′.
– If t ⇒λsi t

′, then t u ⇒λsi t
′ u, u t ⇒λsi u t

′, λx.t ⇒λsi λx.t
′, t[x/u] ⇒λsi

t′[x/u], u[x/t]⇒λsi u[x/t′], tJx/uK⇒λsi t
′Jx/uK.

The external reduction relation →λse is taken as the following reduction re-
lation ⇒λse on ≡SSC,SSC-equivalence classes:

– If t⇒λs
t′ occurs outside a labelled substitution, then t⇒λse t

′.
– If t ⇒λse t′, then tu ⇒λse t′u, ut ⇒λse ut′, λx.t ⇒λse λx.t′, t[x/u] ⇒λse

t′[x/u], u[x/t]⇒λse u[x/t′], tJx/uK⇒λse t
′Jx/uK.

Lemma 1. →λs
=→λsi ∪ →λse

Proof. As in [Kes09].

1.3 Termination of →λsi

As →λsi will only be weakly projected into λs, we need to guarantee that there
are no infinite→λsi reductions starting from a labelled term. This will be useful
in Section 2 to relate termination of λs to that of →λs

.
We show termination of →λsi using several measures that will be combined

using a lexicographic order.
The first one counts the number of free occurrences of variables, giving to

them more weight if they appear in the body of labelled substitutions.

Definition 2.

afx(z) = 0 afx(λy.t) = afx(t)
afx(x) = 1 afx(tJy/uK) = afx(t) + afy(t).afx(u)
afx(tu) = afx(t) + afx(u) afx(t[y/u]) = afx(t) + afx(u)

Remark that afx(t) = 0 if x /∈ fv(t) and thus afx(tJy/uK) = afx(t) if
x /∈ fv(u). We also have afx(t) = afy(t{x/y}) for any y fresh.

Lemma 2. afx(uJxK) = afx(uJyK) + afy(uJyK) with y fresh.

Proof. By induction on |u|x.

We now define another function which counts the number of variables and
give more weight to those appearing inside bodies of labelled substitution.

Definition 3. Let exp(k) = 22
k

.

dep(x) = 1 dep(t[x/u]) = dep(t) + dep(u)
dep(λy.t) = dep(t) dep(tu) = dep(t) + dep(u)
dep(tJx/uK) = dep(t) + exp(afx(t)).dep(u)

Let φ(t) = 1 + ηλs
(t) + maxkλs

(t) where maxkλs
(t) = max{k(t′)|t→∗λs

t′} with
the following definition for the function k:

k(x) = 1 k(t[x/u]) = k(t).(k(u) + 1)
k(λx.t) = k(t) + 1 k(tJx/uK) = k(t).φ(u)
k(tu) = k(t) + k(u) + 1

Remark that k and φ are not mutually recursive because in the case of the
labelled substitution of k, there are no labelled substitutions in the subterm u so
when φ(u) calls one more time k(), the case of the labelled substitution cannot
be reached.

We have the following properties on the previous functions:

– φ(v) ≥ 2
– v →λs

v′ implies ηλs
(v) > ηλs

(v′) and maxkλs
(v) ≥ maxkλs

(v′) so that φ(v) >
φ(v′).

Furthermore, we need extra properties concerning the non-deterministic re-
placement:

Lemma 3. Let x, z be distinct variables, and y a fresh variable s.t. y /∈ S.

1. dep(t) = dep(tx y)
2. afz(tx y) = afz(t)
3. afx(t) = afx(tx y) + afy(tx y)

Proof. The first point is true since dep() does not directly take into account
variables, the only way there could be a difference would be a call to a call to
afx() or afy() which is impossible by α-conversion.

The other points are straightforward.

We show that afx(t) is stable under reduction, and that dep() and k()
decrease in such a way that we can prove that →λsi terminates:

Lemma 4. Let t, u be S-terms and let z /∈ S.

1. t ≡PC t
′ implies afz(t) = afz(t

′), dep(t) = dep(t′), and k(t) = k(t′).
2. t→SL,SAL,SAR,SS t

′ implies afz(t) = afz(t
′), dep(t) = dep(t′), and k(t) > k(t′).

3. t→V,SGc,SDup t
′ implies afz(t) = afz(t

′) and dep(t) > dep(t′).

Proof. We only show the interesting cases, as the other ones are straightforward:

– If t = t1Jx/uKJy/vK ≡SSC t1Jy/vKJx/uK = t′, with y /∈ fv(u) & x /∈ fv(v),
then

•

afz(t1Jx/uKJy/vK) =
afz(t1Jx/uK) + afy(t1Jx/uK).afy(v) =
afz(t1) + afx(t1).afz(u) + afy(t1Jx/uK).afz(v) =
afz(t1) + afx(t1).afz(u) + (afy(t1) + afx(t1).afy(u)).afz(v) =
afz(t1) + afx(t1).afz(u) + afy(t1).afz(v) =
afz(t1) + afy(t1).afz(v) + (afx(t1) + afy(t1).afx(v)).afz(u) =
afz(t1Jy/vK) + afx(t1Jy/vK).afz(u) =
afz(t1Jy/vKJx/uK)

•
dep(t1Jx/uKJy/vK) =
dep(t1Jx/uK) + exp(afy(t1Jx/uK)).dep(v)) =
dep(t1) + exp(afx(t1)).dep(u) + exp(afy(t1Jx/uK)).dep(v) =
dep(t1) + exp(afx(t1)).dep(u) + exp(afy(t1)).dep(v) =
dep(t1Jy/vK) + exp(afx(t1Jy/vK)).dep(u) =
dep(t1Jy/vKJx/uK)

• k(t) = k(t1).φ(u).φ(v) = k(t′)

– If t1[y/t2]Jx/vK→SS t1[y/t2Jx/vK] = t′ with x /∈ fv(t1) & x ∈ fv(t2)

•
afz(t1[y/t2]Jx/vK) =
afz(t1[y/t2]) + afx(t1[y/t2]).afz(v) =
afz(t1[y/t2]) + afx(t2).afz(v) =
afz(t1) + afz(t2) + afx(t2).afz(v) = afz(t

′)

•
dep(t) = dep(t1) + dep(t2) + exp(afx(t2)).dep(v) = dep(t′)

•
k(t1[y/t2]Jx/vK) =
k(t1[y/t2]).φ(v) =
k(t1).(k(t2) + 1).φ(v) =
k(t1).(k(t2).φ(v) + φ(v)) >
k(t1).(k(t2Jx/vK) + 1) = k(t′)

– If t = xJx/vK→V v = t′, then

•
afz(xJx/vK) =
afz(x) + afx(x).afz(v) =
afz(v)

•
dep(xJx/vK) =
dep(x) + exp(afx(x)).dep(v) =
1 + 4.dep(v) >
dep(v)

– tJx/uK→SDup tx yJx/uKJy/uK with |t|x > 1

•
afz(tJx/uK) =
afz(t) + afx(t).afz(u) =L. 3

afz(t) + (afx(tx y) + afy(tx y)).afz(u) =L. 3

afz(tx y) + afx(tx y).afz(u) + afy(tx y).afz(u) =
afz(tx yJx/uK) + afy(tx y).afz(u) =(y/∈fv(u))
afz(tx yJx/uK) + afy(tx yJx/uK).afz(u) = afz(t

′)

•
dep(tJx/uK) =
dep(t) + exp(afx(t)).dep(u) =L. 3

dep(t) + exp(afx(tx y) + afy(tx y)).dep(u) =L. 3

dep(tx y) + exp(afx(tx y) + afy(tx y)).dep(u) >
dep(tx y) + exp(afx(tx y)).dep(u) + exp(afy(tx y)).dep(u) =
dep(tx yJx/uK) + exp(afy(tx y)).dep(u) =(y/∈fv(u))
dep(tx yJx/uK) + exp(afy(tx yJx/uK)).dep(u) = dep(t′)

– All inductive cases easily hold because the measures take into account all
the subterms.

Lemma 5. The reduction relation →s is terminating.

Proof. Since t →s t
′ implies 〈dep(t), k(t)〉 >lex 〈dep(t′), k(t′)〉 by Lemma 4 and

>lex is a well-founded relation, then →s terminates.

We can now conclude this section:

Lemma 6. The reduction relation →λsi is terminating.

Proof. The proof which uses Lemma 4 is exactly the same as in [Kes09].

2 The IE Property

We can now prove the first elementary step of the (IE) property, connecting
the normalisation of an implicit substitution in the reduction system λs to the
normalisation of a labelled substitution in λs:

u ∈ SNλs
& t{x/u}vn ∈ SNλs

imply tJx/uKvn ∈ SNλs

This requires, in addition to the termination of the reduction system →λsi ,
to project the steps of the labelled reductions in →λs

-steps.

2.1 Projection

We define a function xc which maps labelled terms to s-terms.

xc(x) = x xc(t[x/u]) = xc(t)[x/xc(u)]
xc(tu) = xc(t) xc(u) xc(tJx/vK) = xc(t){x/v}
xc(λy.t) = λy.xc(t)

Lemma 7. Let t be a labelled term. If t→s t
′, then xc(t) = xc(t′)

Proof. The interesting case is t = t1[y/t2]Jx/vK →SS t1[y/t2Jx/vK] = t′ with
x ∈ fv(t2) \ fv(t1):

xc(t) =
xc(t1)[y/xc(t2)]{x/v} =
xc(t1){x/v}[y/xc(t2){x/v}] =
xc(t1)[y/xc(t2){x/v}] = xc(t′)

Lemma 8 (Projecting →λs
). Let t, t′ be labelled terms. Then,

1. t ≡SSC t
′ or t ≡SSC t

′ implies xc(t) = xc(t′)
2. t⇒λsi t

′ implies xc(t)→∗λs
xc(t′)

3. t⇒λse t
′ implies xc(t)→+

λs
xc(t′)

Proof. As xc() does not alter application, lambda and substitution, the proof
is the same that the one in [Kes09].

Lemma 9. Let t be a labelled term. If xc(t) ∈ SNλs
then t ∈ SNλs

Proof. The proof is the same one in [Kes09] and uses Lemma 8, Lemma 1, and
Lemma 6.

Corollary 1. Let t, u, vn be s-terms. If u ∈ SNλs
and t{x/u}vn ∈ SNλs

then
tJx/uKvn ∈ SNλs

Proof. Take S = fv(u). The hypothesis u ∈ SNλs
allows us to construct the

S-labelled term tJx/uKvn. Moreover xc(t) = t so that xc(tJx/uKvn) = t{x/u}vn
and we thus conclude by Lemma 9.

We can now prove the last elementary step, connecting the normalisation of
a labelled substitution in the reduction system λs to the normalisation of an
explicit substitution in λs:

tJx/uKvn ∈ SNλs
implies t[x/u]vn ∈ SNλs

This requires to perform an unlabelling, transforming labelled substitutions
into regular explicit substitutions.

2.2 Unlabelling

We define a function U which maps S-terms to ex-terms.

Definition 4.
U(x) = x
U(tu) = U(t)U(u)
U(λx.t) = λx.U(t)
U(t[x/u]) = U(t)[x/U(u)]
U(tJx/uK) = U(t)[x/U(u)]

Remark that fv(U(t)) = fv(t).

Lemma 10. Let t1 be labelled term s.t. U(t1)→λs
u2. Then there exists a labelled

term u1 s.t. t1 →λs
u1 and U(u1) = u2.

Proof. By induction on →λs
.

– The new interesting case w.r.t [Kes09] is when t1 = tJx/uK and:

U(t1) = U(t)[x/U(u)]→SDup U(t)x y[x/U(u)][y/U(u)] = u2

Notice that we can apply →SDup thanks to the preservation of free variables
of U(). We can conclude with t1 →SDup tx yJx/uKJy/uK = u1.

– The case where U(t1) = t[x/u][y/v] → t[x/u[y/v]] with y ∈ fv(u) \ fv(t)
is the case which justifies the need of the set S. Indeed there are several
ways to label the s-term U(t1). For instance the labelling tJx/uKJy/vK (with
y ∈ fv(u)) cannot reduce on tJx/uJy/vKK. However thanks to the fact that
y /∈ S we have a contradiction.

Lemma 11. Let t ∈ TS. If t ∈ SNλs
, then U(t) ∈ SNλs

Proof. To show that U(t) ∈ SNλs
, we have to show that all reducts are in SNλs

i.e. ∀t′U(t) ≡ t1 ⇒λs
t2 ≡ t′ ⇒ t′ ∈ SNλs

. This is done by induction on ηλs
(t)

using Lemma 10.

Taking S = fv(u) and transforming the s-term s[x/u]un into the S-term
sJx/uKun we have the following special case:

Corollary 2. If sJx/uKun ∈ SNλs
, then we get s[x/u]un ∈ SNλs

.

We can finally conclude this section:

Lemma 12 ((IE) Property). If u ∈ SNλs
and s{x/u}un ∈ SNλs

then s[x/u]un ∈
SNλs

.

Proof. By Corollaries 1 and 2.

3 The PSN Proof

The modular approach of [Kes09] allows to deduce from the (IE) property that
the following inductive definition gives exactly the set of strongly normalising
s-terms:

Definition 5. The inductive set ISN is defined as follows:

t1, ..., tn ∈ ISN n ≥ 0

xt1..tn ∈ ISN
(var)

u[x/v]t1...tn ∈ ISN n ≥ 0

(λx.u)vt1...tn ∈ ISN
(app)

u{x/v}t1...tn ∈ ISN v ∈ ISN n ≥ 0

u[x/v]t1...tn ∈ ISN
(subs) u ∈ ISN

λx.u ∈ ISN (abs)

Lemma 13. ISN = SNλs

Proof. It is guaranteed by the (IE) property [Kes09].

We can also use the inductive definition for strongly normalising λ-terms:

Definition 6 (Inductive definition of SNβ[vR96]).

u ∈ SNβ

λx.u ∈ SNβ
(absβ)

t1, ..., tn ∈ SNβ n ≥ 0

xt1..tn ∈ SNβ
(varβ)

u{x/v}t1...tn ∈ SNβ n ≥ 0 v ∈ SNβ

(λx.u)vt1...tn ∈ SNβ
(appβ)

Theorem 1 (PSN for λ-terms). If t ∈ SNβ, then t ∈ SNλs
.

Proof. As the inductive set ISN By induction on the definition of SNβ , using
Definition 5 thanks to Lemma 13.

– If t = xt1...tn with ti ∈ SNβ , then ti ∈ SNλs
by the i.h. so that the (var)

rule allows to conclude.
– The case t = λx.u is similar.
– If t = (λx.u)vt1...tn with u{x/v}t1...tn ∈ SNβ and v ∈ SNβ , then both

terms are in SNλs
by the i.h. so that the (subs) gives u[x/v]t1...tn ∈ SNλs

and the (app) rule gives (λx.u)vt1...tn ∈ SNλs
.

References

Kes09. Delia Kesner. A theory of explicit substitutions with safe and full composition.
Logical Methods in Computer Science, pages 1–29, 2009.

KR11. Delia Kesner and Fabien Renaud. A prismoid framework for languages with
resources. Theoretical Computer Science, In Press, Accepted Manuscript, 2011.

vR96. Femke van Raamsdonk. Confluence and Normalization for Higher-Order
Rewriting. PhD thesis, Amsterdam University, Netherlands, 1996.

	PSN for the s-calculus

