
AltaRica 3.0 project: compile Guarded Transition Systems into Fault
Trees

T. Prosvirnova & A. Rauzy
LIX
Ecole Polytechnique, Palaiseau, France

ABSTRACT: The goal of this communication is to present an algorithm to compile Guarded Transition
Systems into Boolean equations (Fault Trees). This work is done as a part of AltaRica 3.0 project, which aims
to design a new version of AltaRica and to develop a complete set of authoring and assessment tools for this
new version of the language. AltaRica 3.0 improves significantly the expressive power of AltaRica Data-Flow
without decreasing the efficiency of its assessment algorithms. Its underlying mathematical model – Guarded
Transition Systems(GTS) – makes it possible to design acausal components and to handle looped systems.
GTS is a states/transitions formalism that generalizes classical safety formalisms, such as Reliability Block
Diagrams and Markov chains. The compilation of GTS into Fault Trees is of interest for several reasons. First,
some regulation authorities still require Fault Trees to support the certification process. Second, the automated
generation of Fault Trees from higher level representations makes easier their maintenance through the life cycle
of systems. Finally, assessment tools for Boolean models are much more efficient than those for states/transitions
models.

1 INTRODUCTION

Fault trees are widely used to perform Safety Anal-
yses and some regulation authorities require them to
support the certification process. Efficient algorithms
and tools are available to assess this kind of models.
However, despite of their qualities, these formalisms
share a major drawback: models are far from the spec-
ifications of the systems under study. As a conse-
quence, models are hard to design and to maintain
throughout the life cycle of systems. A small change
in the specifications may require revisiting completely
safety models, which is both resource consuming and
error prone.

The high-level modeling language AltaRica Data-
Flow (Rauzy 2002, Boiteau et al. 2006) has been cre-
ated to tackle this problem. AltaRica Data-Flow mod-
els are made of hierarchies of reusable components.
Graphical representations are associated with com-
ponents, making models visually very close to Pro-
cess and Instrumentation Diagrams. AltaRica Data-
Flow is at the core of several Integrated Modeling
and Simulation Environments. Successful industrial
experiments using AltaRica Data-Flow have been re-
ported (Bernard et al. 2007, Bieber et al. 2008). In a
word, AltaRica Data-Flow has reached an industrial
maturity.

However, more than ten years of experience

showed that both the language and the assessment
tools can be improved. AltaRica 3.0 is an entirely new
version of the language. Its underlying mathematical
model – Guarded Transition Systems (Rauzy 2008,
Prosvirnova and Rauzy 2012) – makes it possible to
design acausal components and to handle looped sys-
tems. The development of a complete set of freeware
authoring and assessment tools is planed, so to make
them available to a wide audience.

Guarded Transition Systems (GTS) is a
states/transitions formalism, that generalizes clas-
sical safety formalisms, such as Reliability Block
Diagrams, Markov chains and Petri Nets. From a
GTS model, it is possible to generate corresponding
Fault Trees (FT), i.e. to transform a states/transitions
model into a set of Boolean formulae. It may seem
inefficient at a first glance to use a states/transitions
formalism to end up with a Fault Tree. However
in practice, it is of great interest. It is easier and
less time consuming to automatically generate FT
from high-level models rather than create them from
scratch. High-level models improves greatly the
design, the sharing and the maintenance of models.
Moreover, to assess the generated Fault Trees a
calculation engine XFTA (Rauzy 2012) can be used.
XFTA relies on a powerful and original algorithm to
extract Minimal Cutsets and implements calculation
of usual reliability indicators, such as top-event



probabilities, importance factors, sensitivity analyses
and Safety Integrity Levels.

The algorithm of compilation to Fault Trees for Al-
taRica Data-Flow, described in Rauzy (2002), can be
extended to a general case of GTS. The objective of
this article is to present the extended algorithm. It is
organized as follows. Section 2 gives an overview of
the AltaRica 3.0 project. Section 3 introduces the for-
malism of Guarded Transition Systems (GTS). Sec-
tion 4 presents the algorithm of compilation of GTS to
Fault Trees. Section 5 presents related works. Finally
Section 6 concludes the article and outlines directions
for future works.

2 ALTARICA 3.0 PROJECT

The objective of the AltaRica 3.0 project is to pro-
pose a set of modeling and assessment tools to per-
form preliminary safety analyses. Figure 1 presents
the overview of the project.

AltaRica 3.0 is in the heart of the project. It sig-
nificantly increases the expressive power of AltaR-
ica Data-Flow without decreasing the efficiency of as-
sessment algorithms. Models are compiled into a low
level formalism: Guarded Transition Systems (GTS).
GTS is a states/transitions formalism generalizing
classical safety formalisms, such as Reliability Block
Diagrams and Markov Chains. It is a pivot formalism
for Safety Analyses: other safety models can be com-
piled into GTS to take benefits from assessment tools.
The assessment tools for GTS already include a Fault
Tree compiler to perform Fault Tree Analysis (FTA),
a Markov Chain generator, a stochastic and a step-
wise simulators. Other tools are under specification
or implementation: a model-checker and a reliabil-
ity allocation module. These tools will be distributed
under a free license in order to make them available
to a wide audience, especially in the academic com-
munity. They enable users to perform virtual exper-
iments on systems, to compute reliability indicators
and, also, to perform cross check calculations.

3 GUARDED TRANSITION SYSTEMS

3.1 Definition

A Guarded Transition Systems is formally a quintuple
〈V,E,T,A, ι〉, where:

• V = S ]F is a set of variables, divided into dis-
joint sets S of state variables and F of flow vari-
ables.

• E is a set of symbols, called events.

• T is a set of transitions.

• A is an assertion (i.e. an instruction built over V ).

• ι is the initial (or default) assignment of variables
of V .

GTS is thus a states/transitions formalism where
states are implicit, i.e. given by variables assignments
σ. A transition is a triple 〈e,G,P 〉, also denoted e :
G→ P , where e ∈ E is an event, G is a guard, i.e. a
Boolean formula built over V , and P is an instruction
built over V , also called an action or a post-condition.
A transition e : G→ P is said fireable in a given state
σ if its guard G is satisfied in this state.
Instructions
Both assertions and actions of transitions are de-
scribed by means of instructions. There are basically
four types of instructions:

• The empty instruction noted skip.

• The assignment v :=E, where v is a variable and
E is an expression built over variables from V .

• The conditional assignment if C then I , where
C is a Boolean expression and I is an instruction.

• The block {I1, . . . , In}, where I1, . . . , In are in-
structions.

State variables can be presented as the left member
of an assignment only in the action of a transition.
Flow variables can be presented as the left member of
an assignment only in the assertion.
Example
Consider a system composed of two pumps connected
in series (see Figure 2). This system is represented by
GTS as follows:

domain PumpState {WORKING, FAILED};
class TwoPumps

PumpState p1.state (init = WORKING);
PumpState p2.state (init = WORKING);
Boolean p1.input(reset = false), p1.output (reset = false);
Boolean p2.input(reset = false), p2.output (reset = false);
Boolean input(reset = false), output (reset = false);
event p1.failure, p2.failure;
transition

p1.failure: (p1.state==WORKING) -> p1.state := FAILED;
p2.failure: (p2.state==WORKING) -> p2.state := FAILED;

assertion
input := true;
p1.input := input;
p1.output := if p1.state==WORKING then p1.input else false;
p2.input := p1.output;
p2.output := if p2.state==WORKING then p2.input else false;
output := p2.output;

end

The states of the pumps are represented by state
variables p1.state and p2.state, which can be WORK-
ING or FAILED. Events p1.failure and p2.failure rep-
resent failures of the pumps, and transitions describe
how changes the state of the system. In the transition,
labeled by the event p1.failure, p1.state==WORKING
is the guard and p1.state := FAILED; is the action.
Assertion expresses how flow variables p1.output,
p2.output, p1.input, p2.input, output are calculated
according to the state variables of the system.



Figure 1: Overview of the AltaRica 3.0 project

Figure 2: Pumps connected in series and the corresponding
reachability graph

3.2 Reachability graph

Guarded Transition Systems are implicit represen-
tations of labeled Kripke structures, i.e. of graphs
whose nodes are labeled by variable assignments and
whose edges are labeled by events. The reachability
graph corresponding to the GTS given Section 3.1 is
illustrated Figure 2. For the sake of the clarity, flow
variables are not indicated on this picture, their value
is determined from the value of state variables.

To describe how this graph is constructed, we
should first explain the way instructions are inter-
preted.

3.2.1 Instructions
Instructions are interpreted in a slightly different way
depending they are used in the actions or in the asser-
tion. Let σ be the variable assignment before the firing
of the transition e : G→ P . Applying the instruction
P to the variable assignment σ consists in calculat-
ing a new variable assignment τ . The right hand side
of assignments and conditional expressions are eval-
uated in the context of σ. Thus, the result does not
depend on the order in which instructions of a block
are applied. In other words, instructions of a block are
applied in parallel. Let denote by Update(P,σ) the
variable assignment τ resulting from the application
of the instruction P to σ.

Let A be the assertion and τ the variable assign-
ment obtained after the application of the action of a
transition. Applying A consists in calculating a new
variable assignment (of flow variables) π as follows.
We start by setting all state variables in π to their val-
ues in τ : ∀v ∈ Sπ(v) = τ(v). Let D be a set of un-
evaluated flow variables, we start with D = F . Then,

• If A is an empty instruction, then π is left un-
changed.

• IfA is an assignment v :=E, then if π(E) can be
evaluated in π, i.e. all variables ofE have a value
in π, then π(v) is set to π(E) and v is removed
from D. An error is raised if the value of v has
been already modified and is different from the
calculated one.

• If A is a conditional assignment if C then I and
π(C) can be evaluated in π and is true, then the
instruction I is applied to π. Otherwise, π is left
unchanged.

• If A is a block of instructions {I1, . . . , In} then
instructions I1, . . . , In are repeatedly applied to
π until there is no more possibility to assign a
flow variable.

If after applying A to π there are unevaluated vari-
ables in D, then all these variables are set to their de-
fault values ∀v ∈ Dπ(v) = reset(v) and A is applied
to π in order to verify that all assignments are satis-
fied. If that is not true an error is raised. Let denote
by Propagate(A,σ) the variable assignment result-
ing from the application of the instruction A to σ.

3.2.2 Calculation of the Reachability Graph
Assume that σ is the variable assignment just before
the firing of a transition. Then, the firing of the tran-
sition transforms σ into the assignment Fire(e : G→



P,A,σ) defined as follows:

Fire(e :G→ P,A,σ) = Propagate(A,Update(P,σ))

The so-called reachability graph Γ = (Σ,Θ) is the
smallest Kripke structure verifying:

1. σ0 = Propagate(A, ι, ι) ∈ Σ. σ0 is the initial
state of the Kripke structure.

2. If σ ∈ Σ and ∃t = 〈e,G,P 〉 ∈ T , such that the
guard G is verified in σ then the state τ =
Fire(P,A, ι, σ) ∈Σ and the transition (σ, e, τ) ∈
Θ,

In special cases, the calculation of Γ = (Σ,Θ) may
raise errors. A well designed GTS avoids this prob-
lem. Currently assessment tools detect modeling er-
rors at the execution of the model.

3.3 Stochastic models

A probabilistic time structure can be put on top of a
Guarded Transition System so to get timed/stochastic
models. The idea is to associate to each event:

• A delay which can be deterministic or stochastic
and may depend on the state. When a transition
labeled with the event becomes fireable at time t,
a delay d is calculated and the transition is actu-
ally fired at time t+ d if it stays fireable from t
to t+ d.

• a weight, called expectation, used to determine
the probability that the transition is fired in case
of several transitions are fireable at the same
date.

Let define an oracle o : N→ [0; 1] ⊂ R, an infinite
sequence of real numbers comprised between 0 and 1
(included). The only operation available on an oracle
is to consume its first element. This operation returns
the first element and the remaining of the sequence
(which is itself an oracle).

Formally, a Stochastic Guarded Transition System
is a tuple 〈V = S ∪F,E,T,A, ι, delay, expectation〉,
where

• 〈V = S ∪ F,E,T,A, ι〉 is a GTS;

• delay is a function from events and oracles to
non-negative real numbers delay :E×O→R+;

• expectation is function from events to positive
real numbers expectation : E → R+.

For the sake of simplicity we made delay depend only
on the event and the oracle. It is however possible that
delay depends on the current state and the elapsed
time since the beginning of the mission. When sev-
eral transitions are scheduled to be fired at the same
date, i.e. ∃e1, e2, . . . , ek such that dn(e1) = 0, dn(e2) =

Figure 3: Spare pumps

0, . . . , dn(ek) = 0, one is picked at random by us-
ing the oracle and according to their expectations.
The probability p(ek : Gk → Pk) to fire the transition
ek : Gk → Pk, is defined as follows.

p(ek : Gk → Pk) =
expectation(ek)∑

ei:dn(ei)=0

expectation(ei)
(1)

The semantics of Stochastic Guarded Transition
Systems is defined in terms of extended Reachabil-
ity Graph, where states are defined by couples (σ,d)
with σ being a variable assignment and d being a vec-
tor of dates, when each transition t∈ T should be fired
(d : T → R+). The semantics of Stochastic Guarded
Transition Systems can also be defined in terms of ex-
ecution runs.
Example
Consider now a system, composed of two pumps in
cold redundancy (see Figure 3). When the primary
pump fails, the spare one starts working. Moreover,
the spare pump may fail to start with a probability γ.

The corresponding GTS is as follows:

domain PumpState {STOPPED, WORKING, FAILED};
class SparePumps

PumpState p1.state (init = WORKING);
PumpState p2.state (init = STOPPED);
Boolean p1.input(reset = false), p1.output (reset = false);
Boolean p2.input(reset = false), p2.output (reset = false);
Boolean p1.active(reset = false), p2.active (reset = false);
Boolean input(reset = false), output (reset = false);
parameter Real p1.lambda = 0.0001;
parameter Real p2.lambda = 0.0001;
parameter Real p1.gamma = 0.01;
parameter Real p2.gamma = 0.01;
event p1.failure(delay = exponential(p1.lambda));
event p2.failure(delay = exponential(p2.lambda));
event p1.start(delay = 0, expectation = 1 - p1.gamma);
event p1.failureOnDemand(delay = 0, expectation = p1.gamma);
event p2.start(delay = 0, expectation = 1 - p2.gamma);
event p2.failureOnDemand(delay = 0, expectation = p2.gamma);
transition

p1.failure: (p1.state==WORKING) -> p1.state := FAILED;
p2.failure: (p2.state==WORKING) -> p2.state := FAILED;
p1.start: (p1.state==STOPPED) and p1.active ->

p1.state := WORKING;
p1.failureOnDemand: (p1.state==STOPPED) and p1.active ->

p1.state := FAILED;
p2.start: (p2.state==STOPPED) and p2.active ->

p2.state := WORKING;
p2.failureOnDemand: (p2.state==STOPPED) and p2.active ->

p2.state := FAILED;
assertion

input := true;
p1.input := input;
p2.input := input;
p1.output := if p1.state==WORKING then p1.input else false;
p2.output := if p2.state==WORKING then p2.input else false;
output := p1.output or p2.output;
p1.active := true;
p2.active := (p1.state == FAILED);

end



In this example we deal with two types of events:

• Timed stochastic events: p1.failure and
p2.failure. Their delays are exponentially
distributed random variables.

• Immediate events: p1.start and
p1.failureOnDemand, p2.start and
p2.failureOnDemand. They should occur
immediately, when the guard of the transition is
satisfied.

Transitions, labeled by immediate events, are repre-
sented by dashed lines and those, labeled by timed
stochastic events, are represented by plane lines (see
Figure 3). The immediate events also have an attribute
expectation. If several transitions are fireable at the
same moment, the value of expectation determines the
probability for each transition to be fired.

4 COMPILATION INTO FAULT TREES

It is possible to transform a Guarded Transition Sys-
tem into a set of Boolean formulae (a Fault Tree). This
compilation is of interest for several reasons: first, it is
easier and less time consuming to automatically gen-
erate Fault Trees from high-level models rather than
create them from scratch, second, high-level mod-
els improves greatly the design, the sharing and the
maintenance of models, finally, assessment tools for
Boolean models are much more efficient than those
for states/transitions models. However, the price to
pay is the loss of sequencing among events: sequences
of events are compiled into conjuncts of events. If the
GTS is combinatorial, its compilation to Fault Trees
is efficient and does not loose information. Many real-
life models are relatively simple extensions of Relia-
bility Block Diagrams and, thus, can be compiled ef-
ficiently into Fault Trees.

In this section we introduce the algorithm of com-
pilation of Guarded Transition Systems to Fault Trees.
This algorithm is an extension of the compilation al-
gorithm of AltaRica Data-Flow, described in (Rauzy
2002).

4.1 Principle of the compilation

Each hierarchical AltaRica 3.0 model can be flattened
into a unique Guarded Transition System. From now,
we assume that the GTS G = 〈V,E,T,A, ι〉, obtained
by flattening an AltaRica 3.0 model, describes a sys-
tem that may fail. The graph Γ = (Σ,Θ) is the reach-
ability graph of G. The initial state, or initial variable
assignment, σ0 ∈ Σ represents the nominal state of
the system. Events from E represent failures of sys-
tem components. Some states (variables assignments)
σ ∈ Σ represent failure states. Paths from σ0 to these
states represent scenarios of failure. The compilation
captures failure scenarios into a set of Boolean equa-
tions. It produces a Boolean formula φv,c for each pair

Figure 4: Algorithm of compilation of GTS to FT

(v, c), where v is a variable from V and c is its value,
c ∈ dom(v), such that the variables of φv,c are events
from E, if {e1, . . . , ek}, ei ∈ E∀i = 1..k is a minimal
cutset of φv,c, then there is a path in the reachabil-
ity graph Γ, such that (σ0, e1, σ1) ∈ Θ, (σ1, e2, σ2) ∈
Θ, . . . , (σk−1, ek, σk) ∈ Θ, and σk(v) = c.

The algorithm of compilation of GTS into Fault
Trees includes 4 steps (see Figure 4):

1. The GTS model is partitioned into independent
GTS and an independent assertion.

2. Reachability graphs of each independent GTS
are calculated.

3. Each reachability graph is separately compiled
into Boolean equations.

4. The independent assertion is compiled into
Boolean equations.

Each of these steps is described in details in the
following sections.

The generated Fault Tree could be assessed with
any Fault Tree calculation engine supporting Open-
PSA format (Hibti et al. 2012). For example, the cal-
culation engine XFTA (Rauzy 2012) can be used to
calculate minimal cutsets, events probabilities, impor-
tance factors, etc.

4.2 GTS partitioning

Partitioning is a key point of the algorithm that
ensures its efficiency. In practice, components of a
system fail in general in a relatively independent way.
In that case a partitioning is possible. Partitioning of
a GTS G = 〈V,E,T,A, ι〉 consists in representing G
in the following way (see Figure 5 as an illustration):

G = G1 ]G2 ] ...]Gn ∪ 〈Ṽ , Ã, ι̃〉,
where
Gi = 〈Vi,Ei, Ti,Ai, ιi〉 are independent Guarded
Transition Systems, and
〈Ṽ , Ã, ι̃〉 is an assertion, also called a glue. The
last part (the glue) does not contain any behavior.
Variables in Ṽ are only flow variables, they depend



Figure 5: Partitioning of GTS

on state variables and flow variables of independent
GTSs Gi. A similar idea can be found in Gössler and
Sifakis (2005).

Let denote by var(E) variables used in the expres-
sion E, and by var(I) variables used in the instruction
I . Let denote by Vt variables used by the transition t=
〈e,G,P 〉: Vt = var(G) ∪ var(P ) ∪ V ′, where V ′ are
variables, such that variables from var(G) ∪ var(P )
depend on them via the assertion A. We say that two
transitions t1 and t2 are independent if Vt1 ∩ Vt2 = ∅.

Consider an undirected graph with nodes labeled
by GTS transitions. There is an edge between two
nodes of this graph if the transitions labeling the
nodes are dependent (in the sense of the definition
given earlier). The connected components of this
graph give us a partition of GTS transitions and, there-
fore, of variables and events. The dependency graph
built from the assertion A enables to detect flow vari-
ables, belonging to each independent GTS, and to par-
tition the assertion A. The remaining flow variables
and instructions fromA constitute the independent as-
sertion < Ṽ , Ã, ι̃ >, also called the glue.

4.3 Reachability graph generation

The reachability graph is constructed according to the
definition given in Section 3.2. In case of Stochas-
tic models the algorithm is slightly modified. First of
all we need to abstract from dates of transition fir-
ings. We consider only two possible cases: immediate
events and timed stochastic events. For all immedi-
ate events the date of firing is set to 0, for all other
transitions it is set to∞. Then a reachability graph is
constructed.

The reachability graph corresponding to the Spare
pumps system in Section 3.3 is given Figure 6. Imme-
diate transitions are represented by dashed lines and
timed transitions by plane lines.

By bisimulation it is possible to transform this
reachability graph into an equivalent one keep-
ing only timed transitions. In that way we ob-
tain another reachability without immediate transi-
tions for the Spare pumps system (see Figure 7).
Transitions p1.failure and p2.start are replaced by
one timed transition labeled with a sequence of
events p1.falure, p2.start. Transitions p1.failure and
p2.failureOnDemand are replaced by one timed tran-
sition labeled with a sequence of events p1.failure,
p2.failureOnDemand.

Figure 6: Reachability graph of two spare pumps

Figure 7: Reachability graph of two spare pumps obtained by
bisimulation



Figure 8: Boolean formulae associated with each state of the
Reachability Graph

4.4 Compilation of Reachability Graphs into
Boolean formulae

For each independent GTS G its reachability graph
Γ = (Σ,Θ) is constructed. First of all, we search for
all paths π from the initial state σ0 to each state of the
graph σ. These paths are transformed into the con-
junction of events that label π. In order to avoid con-
flicts raised by the composition of components (for
more details, see Rauzy (2002)) we need to consider
not only events occurring along the path but also those
that do not. Let denote by φπ the conjunction of events
that occur along the path and the negation of those
that do not occur. We associate with each state σ ∈ Σ
the disjunction of φπ over all paths π from the initial
state σ0 to the state σ. Finally, we associate with each
pair (v, c), where v is a variable and c ∈ dom(v) is its
value, the disjunction of formulae that are associated
with the states σ ∈ Σ, such that σ(v) = c.

The example of simplified Boolean formulae asso-
ciated with each state of a Reachability Graph for the
Spare pumps system is given Figure 8.

4.5 Compilation of the assertion into Boolean
formulae

The assertion < Ṽ , Ã, ι̃ > is also transformed into a
set of Boolean formulae. For each pair (v, c), where
v ∈ Ṽ is a flow variable and c ∈ dom(v) is its value
we construct a Boolean formula φv,c according to the
instructions in the assertion Ã and Boolean formulae
φv′,c′ obtained from the compilation of independent
GTS.

As an illustration, the Fault Tree generated for the
Spare pumps system is given Figure 9. As it was men-
tioned earlier, the sequencing between events is lost
during the compilation: for example, the sequence
of events p1.failure, p2.failureOnDemand is trans-
formed into the conjunction of events p1.failure and
p2.failureOnDemand.

5 RELATED WORKS

The HiP-HOPS workbench (Pasquini et al. 1999)
enables to add reliability data to models imported

Figure 9: Generated Fault Tree

from different modeling tools: Matlab/SIMULINK,
Eclipse-based UML tools, etc., and then to auto-
matically generate Fault Trees and FMEA tables.
The underlying formalism of Hip-HOPS is a pseudo-
Boolean formalism in which the system is described
by hierarchies of blocks and the outputs of the blocks
are written as a discrete function of internal failures
and inputs. Guarded Transition Systems generalize
this kind of models and the algorithm described in this
article is very efficient on them.

In Bozzano et al. (2007) authors analyze different
algorithms of symbolic model-checking techniques in
order to automatically generate Fault Trees by calcu-
lating minimal cutsets.

In Bouissou et al. (1991) authors mention the auto-
matic generation of Fault Trees from high-level mod-
els, using Figaro modeling language. Figaro is a tex-
tual modeling language dedicated to dependability
assessment of complex systems, developed by EDF
R&D. It combines object-orientation languages fea-
tures, such as inheritance, and first order production
rules (interaction and occurrence rules) and is used
as a description language for the workbench KB3
(Bouissou 2005), to automatically perform systems
dependability assessment.

6 CONCLUSIONS

In this article, we introduced an algorithm of compila-
tion of Guarded Transition Systems into Fault Trees.
This algorithm is a generalization of the algorithm for
AltaRica Data-Flow. The compilation of GTS to Fault
Trees is of interest for two reasons: first, assessment
tools for Boolean models are much more efficient than
those for states/transitions models; second, the auto-
mated generation of Fault Trees from high-level mod-
els makes easier their maintenance through the life
cycle of systems under study.

This work is a part of AltaRica 3.0 project which
aims to propose a set of authoring, simulation and
assessment tools for high-level Model-Based Safety
Analyses. AltaRica 3.0 is in the heart of this project.
It is an entirely new version of the language. It im-
proves AltaRica Data-Flow into two directions:



1. Its semantic is based on the new underlying
mathematical model – Guarded Transition Sys-
tems (GTS) – that makes it possible to represent
acausal components and to handle looped sys-
tems.

2. It provides new constructs to structure models,
that greatly improves its capacity of reuse and
knowledge capitalization.

The development of a complete set of freeware au-
thoring and assessment tools is planed, so to make
them available to a wide audience. The assessment
tools already include prototypes of a compiler to Fault
Trees, a compiler to Markov chains, a stochastic and
a stepwise simulators.

Out future works will focus on testing and improve-
ment of the algorithm (and its implementation) for in-
dustrial scale models and also on its adaption for gen-
eration of critical sequences of events.

REFERENCES

Bernard, R., J.-J. Aubert, P. Bieber, C. Merlini, & S. Metge
(2007). Experiments in model-based safety analysis:
flight controls. In Proceedings of IFAC workshop on
Dependable Control of Discrete Systems, Cachan.

Bieber, P., J.-P. Blanquart, G. Durrieu, D. Lesens, J. Lu-
cotte, F. Tardy, M. Turin, C. Seguin, & E. Conquet
(2008, January). Integration of formal fault analysis in
assert: Case studies and lessons learnt. In Proceedings
of 4th European Congress Embedded Real Time Soft-
ware, ERTS 2008, Toulouse (France).

Boiteau, M., Y. Dutuit, A. Rauzy, & J.-P. Signoret (2006).
The altarica data-flow language in use: Assessment of
production availability of a multistates system. Relia-
bility Engineering and System Safety 91, 747–755.

Bouissou, M. (2005). Automated dependability analysis of
complex systems with the kb3 workbench: the expe-
rience of edf r&d. In Proceedings of the International
Conference on Energy and Environment.

Bouissou, M., H. Bouhadana, M. Bannelier, & N. Villatte
(1991). Knowledge modelling and reliability process-
ing: presentation of the figaro modelling language and
associated tools. In Proceedings of Safecomp’91.

Bozzano, M., A. Cimatti, & F. Tapparo (2007). Symbolic
fault tree analysis for reactive systems. In Proceedings
of the 5th international conference on Automated tech-
nology for verification and analysis, Berlin, Heidelberg,
pp. 162–176. Springer-Verlag.

Gössler, G. & J. Sifakis (2005). Composition for
component-based modeling. Science of Computer Pro-
gramming 55(1-3), 161–183.

Hibti, M., T. Friedlhuber, & A. Rauzy (2012, June).
Overview of the open psa platform. In R. Virolainen
(Ed.), Proceedings of International Joint Conference
PSAM’11/ESREL’12.

Pasquini, A., Y. Papadopoulos, & J. McDermid (1999). Hi-
erarchically performed hazard origin and propagation
studies. Computer Safety, Reliability and Security 1698
of LNCS, 688–688.

Prosvirnova, T. & A. Rauzy (2012, Octobre). Guarded tran-
sition systems: Pivot modelling formalism for safety
analysis. In J. Barbet (Ed.), Actes du Congrès Lambda-
Mu 18.

Rauzy, A. (2002). Modes automata and their compila-
tion into fault trees. Reliability Engineering and System
Safety 78, 1–12.

Rauzy, A. (2008). Guarded transition systems: a new
states/events formalism for reliability studies. Journal
of Risk and Reliability 222(4), 495–505.

Rauzy, A. (2012, June). Anatomy of an efficient fault tree
assessment engine. In R. Virolainen (Ed.), Proceedings
of International Joint Conference PSAM’11/ESREL’12.


