
The AltaRica 3.0 project for Model-Based Safety
Assessment

Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy
LIX - Ecole Polytechnique

route de Saclay,
91128 Palaiseau cedex, FRANCE
Email: name@lix.polytechnique.fr

Leïla Kloul
PRISM - Université de Versailles St-Quentin-en-Yvelines

45 avenue des États-Unis, Bâtiment Descartes,
78035 Versailles Cedex, FRANCE
Email: leila.kloul@prism.uvsq.fr

Abstract—“Traditional” risk modeling formalisms (e.g.
FMEA, Fault Trees, Markov Processes, etc.) are well mastered
by safety analysts. Efficient algorithms and tools are available.
However, models designed with these formalisms are far from the
specifications of the systems under study. They are consequently
hard to design and to maintain throughout the life cycle of
systems. The high-level modeling language AltaRica has been
created to tackle this problem.

The objective of the AltaRica 3.0 project is to design a new
version of AltaRica, and to develop a complete set of authoring,
simulation and assessment tools to perform safety analyses:
virtual experiments on systems, via models, calculation of dif-
ferent kinds of reliability indicators, etc. AltaRica 3.0 improves
significantly the expressive power of AltaRica Data-Flow without
decreasing the efficiency of its assessment algorithms. Prototypes
of a Fault Tree compiler, a stochastic and a stepwise simulators
have been already developed. Other tools are under specification
or implementation.

I. INTRODUCTION

The Model-Based approach for Safety and Reliability
Analysis is gradually wining the trust of engineers but is
still an active domain of research. Safety engineers master
“traditional” risk modeling formalisms, such as “Failure mode,
effects and criticality analysis” (FMECA), Fault Trees (FT),
Event Trees (ET), Markov Processes. Efficient algorithms and
tools are available to assess these models. However, despite
of their qualities, these formalisms share a major drawback:
models are far from the specifications of the systems under
study. As a consequence, they are hard to design and to
maintain throughout the life cycle of systems. A small change
in the specifications may require revisiting completely the
safety models, which is both resource consuming and error
prone.

The high-level modeling language AltaRica Data-Flow
([1], [2]) has been created to tackle this problem. AltaR-
ica Data-Flow models are made of hierarchies of reusable
components. Graphical representations are associated with
components, making models visually very close to Process and
Instrumentation Diagrams. AltaRica Data-Flow is at the core
of several Integrated Modeling and Simulation Environments:
Cecilia OCAS (Dassault Aviation), Simfia (EADS Apsys),
and Safety Designer (Dassault Systèmes). Several successful
industrial experiments using AltaRica Data-Flow have been
reported ([3], [4], [5], [6]). For example, AltaRica Data-Flow
was used to certify the flight control system of the aircraft

Falcon 7X (Dassault Aviation). In a word, AltaRica Data-Flow
has reached an industrial maturity.

However, more than ten years of experience showed that
both the language and the assessment tools can be improved.
AltaRica 3.0 is an entirely new version of the language. Its
underlying mathematical model – Guarded Transition Systems
([7], [8]) – makes it possible to design acausal components and
to handle looped systems. A complete set of freeware authoring
and assessment tools is under development, so to make them
available to a wide audience.

The aim of this article is to present the AltaRica 3.0 project.
It is organized as follows.

Section II presents related works in order to position
the project. Section III introduces the AltaRica 3.0 project.
Section IV presents the new version of AltaRica modeling lan-
guage, AltaRica 3.0, and Section V introduces the underlying
formalism - Guarded Transition Systems (GTS). In Section VI,
an example of AltaRica 3.0 model and the associated GTS is
given. In Section VII, some assessment tools are presented.
Finally in the last part, a conclusion summarizes this AltaRica
3.0 project and outlines interesting directions for future works.

II. RELATED WORKS

Two approaches for (high-level) Model-Based Safety As-
sessment can be found in literature. The first one consists
in creating extensions of high-level modeling languages used
in other domains. The second approach consists in defining
domain specific languages, dedicated to Safety Analyses.

In the first category, we can find [9] which adds an Error
Model annex to the modeling formalism for embedded real-
time systems AADL. In the same way the HiP-HOPS work-
bench [10] enables to add reliability data to models imported
from different modeling tools: Matlab/SIMULINK, Eclipse-
based UML tools, etc., and then to automatically generate Fault
Trees and FMEA tables.

Similarly, translations have been defined from specialized
UML/SysML models to Fault Trees or Petri nets [11]. In
[12], the functional design phase, using SysML, is combined
with commonly used reliability techniques (i.e. FMEA and
construction of AltaRica Data-Flow models).

In the second category, we can find Figaro [13], developed
by EDF R&D. It is a textual modeling language dedicated

to dependability assessment of complex systems. It combines
object-orientation languages features, such as inheritance, and
first order production rules (interaction and occurrence rules).
It is used as a description language to create knowledge
bases for the workbench KB3 [14], to automatically perform
systems dependability assessment: Monte-Carlo simulation,
Markov Chain generation, quantification and generation of
critical sequences, etc.

In between the two categories, we can find SAML (Safety
Analysis Modeling Language) [15], which is a synchronous
language. It expresses a model in terms of finite stochastic
state automata and its semantics is defined as Markov decision
process. S3E is a design and verification environment focused
on SAML models. It provides a stochastic simulator and trans-
lators to the input languages of the model-checkers PRISM and
NuSMV.

All of these proposals are interesting, however AltaRica
provides specific constructs and assessment tools that we shall
describe now.

III. OVERVIEW OF THE ALTARICA 3.0 PROJECT

The objective of the AltaRica 3.0 project is to provide a
set of authoring, simulation and assessment tools to perform
Safety Analyses. Figure 1 presents the overview of the project.

The new version of AltaRica modeling language is in
the heart of this project. It supports modeling of looped
systems and bidirectional flows. This new version significantly
increases the expressive power of the previous one without
decreasing the efficiency of its assessment algorithms.

Many high-level languages and tools for systems modeling
and simulation have been proposed: SysML/UML for system
architecture modeling, Modelica [16] or Matlab Simulink
for system dynamic behavior modeling, Lustre [17] for syn-
chronous systems modeling, AADL [18] for embedded real-
time systems modeling, etc. All of them are efficiently used
in their respective domains of application but do not really
correspond to the needs of Safety and Reliability engineers.
The attempts to extend these existing modeling languages for
Safety Analyses, such as, for example, those cited in Section II,
are interesting, but the idea of having a universal language
and a unique model encompassing all of the properties of
the system is not realistic and, from our point of view, is an
engineering dead-end. AltaRica 3.0 seeks to meet the needs
of Safety and Reliability engineers and proposes a good trade-
off between the expressive power and the efficiency of the
assessment algorithms.

AltaRica 3.0 models are compiled into a low-level formal-
ism: Guarded Transition Systems. Guarded Transition Systems
is a states/transitions formalism that generalizes classical safety
formalisms, such as Reliability Block Diagrams, Petri Nets and
Markov chains. It is a pivot formalism for Safety Analyses:
other safety models, not only AltaRica 3.0, can be compiled
into Guarded Transition Systems to take benefits from assess-
ment tools.

The assessment tools for Guarded Transition Systems in-
clude a Fault Tree compiler to perform Fault Tree Analysis
(FTA), a Markov chain generator, a stochastic and a stepwise

simulators, a model-checker, and a reliability allocation mod-
ule. Prototypes of three of them have been already developed.
They will be described later in Section VII. Other tools are
under specification or implementation.

These tools will be distributed under a free license. They
enable users to perform virtual experiments on systems, via
models, to compute different kinds of reliability indicators and,
also, to perform cross check calculations. Thanks to these tools
AltaRica models can be used to perform Preliminary System
Safety Analysis (PSSA) and System Safety Analysis (SSA).

In the context of certification process and safety critical
systems the ability to perform cross check verification of the
obtained results is of great interest. Also, Safety Analyses are
complex (in the sens of computational complexity theory).
Even the calculation of the top event probability is #P-hard.
Different assessment tools for Safety Analyses enable to push
the limits of this complexity.

Fig. 1. Overview of the AltaRica 3.0 project

IV. ALTARICA 3.0 MODELING LANGUAGE

The previous version of AltaRica modeling language (i.e.
AltaRica Data-Flow) is a generalization of both Petri nets and
block diagrams. From the former, it has imported the notions
of states, events and guarded transitions; whereas the latter
inspired the notions of events synchronization, hierarchical
description and flows. This last notion makes it possible
to represent remote interactions in a simple way. However,
located synchronizations cannot be captured and bidirectional
flows, circulating through a network, cannot be modeled in
a natural way. Moreover, it remains difficult to model looped
systems. For these reasons AltaRica Data-Flow is not powerful
enough to model complex systems.

Thus, a new version of AltaRica, so-called AltaRica 3.0, is
currently under specification. It improves AltaRica Data-Flow
into two directions:

1) Its semantic is based on the new underlying mathe-
matical model: Guarded Transition Systems.

2) It provides new constructs to structure models.

The new underlying formalism makes it possible to handle
systems with instant loops and to define acausal components
(i.e. components for which the input and output flows are
decided at run time). It is much easier to model systems with
bidirectional flows (e.g. electrical systems).

AltaRica 3.0 is a prototype oriented modeling language
(see e.g. [19] for a discussion on objects versus prototypes).
We believe that prototype orientation is the paradigm that
corresponds the best with cognitive processes of engineers.
Prototype orientation makes it possible to separate the knowl-
edge into two distinct spaces: the stabilized knowledge which
is incorporated into libraries of on-the-shelf modeling compo-
nents; and the sandbox in which the system under study is
modeled. In the sandbox, many components are unique; some
others are instances of reusable components. With prototype-
orientation, models can be reused in two ways: at component
level by instantiating on-the-shelf components and at system
level by cloning and modifying a model designed for a
previous project.

V. PIVOT FORMALISM FOR SAFETY ANALYSES:
GUARDED TRANSITION SYSTEMS

Before any assessment, AltaRica models are “flattened”
(i.e. reduced to a single class without sub-classes). This “flat-
tened” class produces a GTS model. First introduced in [7],
GTS is a pivot formalism for Safety modeling and analyses.
It generalizes classical formalisms, such as Reliability Block
Diagrams, Markov chains and Petri Nets. The new semantics
of instructions ([8]) makes it possible to represent components
with bidirectional flows.

A. Definition

A Guarded Transition Systems, noted GTS, is formally a
quintuple 〈V,E, T,A, ι〉, where:

• V = S] F is a set of variables, divided into disjoint
sets S of state variables and F of flow variables.

• E is a set of symbols, called events.

• T is a set of transitions.

• A is an assertion (i.e. an instruction built over V).

• ι is an assignment of variables of V , so-called an
initial or default assignment.

A transition, denoted e : G → P , is a triple 〈e,G, P 〉
where e ∈ E is an event, G is a guard (i.e.: a boolean formula
built over V) and P is an instruction built over V , called an
action or a post-condition. A transition e : G → P is said
fireable in a given state σ (i.e. for a given variable assignment
σ) if its guard G is satisfied in this state.

B. Instructions

Both assertions and actions of transitions are described
by means of instructions. There are basically four types of
instructions:

• The empty instruction noted skip.

• The assignment v := E, where v is a variable and E
is an expression built over variables from V .

• The conditional assignment if C then I , where C is
a Boolean expression and I is an instruction.

• The block {I1, . . . , In}, where I1, . . . , In are instruc-
tions.

State variables can occur as the left member of an as-
signment only in the action of a transition. Flow variables
can occur as the left member of an assignment only in the
assertion. Instructions are interpreted in a slightly different way
depending they are used in the actions or in the assertion. Let
σ be the variable assignment before the firing of the transition
e : G→ P . Applying the instruction P to the variable assign-
ment σ consists in calculating a new variable assignment τ .
The right hand side of assignments and conditional expressions
are evaluated in the context of σ. Thus, the result does not
depend on the order in which instructions of a block are
applied. In other words, instructions of a block are applied in
parallel. Let denote by Update(P, σ) the variable assignment
τ resulting from the application of the instruction P to σ.

Let A be the assertion and let τ be the variable assignment
obtained after the application of the action of a transition.
Applying A consists in calculating a new variable assignment
(of flow variables) π as follows. We start by setting all state
variables in π to their values in τ : ∀v ∈ Sπ(v) = τ(v). Let D
be a set of unevaluated flow variables, we start with D = F .
Then,

• If A is an empty instruction, then π is left unchanged.

• If A is an assignment v := E, then if π(E) can be
evaluated in π, i.e. all variables of E have a value in
π, then π(v) is set to π(E) and v is removed from
D. If the value of v has been already modified and
is different from the calculated one, then an error is
raised.

• If A is a conditional assignment if C then I and
π(C) can be evaluated in π and π(C) is true, then
the instruction I is applied to π. Otherwise, π is left
unchanged.

• If A is a block of instructions {I1, . . . , In} then
instructions I1, . . . , In are repeatedly applied to π until
there is no more possibility to assign a flow variable.

If after applying A to π there are unevaluated variables in
D, then all these variables are set to their default values
∀v ∈ Dπ(v) = reset(v) and A is applied to π in order to
verify that all assignments are satisfied. If that is not true an
error is raised. Let denote by Propagate(A, σ) the variable
assignment resulting from the application of the instruction A
to σ.

C. Reachability graph

Guarded Transition Systems are implicit representations of
Kripke structures, i.e. of graphs whose nodes are labeled by
variable assignments and whose edges are labeled by events.
This graph is constructed in the following way.

Assume that σ is the variable assignment just before
the firing of a transition. Then, the firing of the transition

transforms σ into the assignment Fire(e : G → P,A, σ)
defined as follows:

Fire(e : G→ P,A, σ) = Propagate(A,Update(P, σ))

The so-called reachability graph Γ = (Σ,Θ) is the smallest
Kripke structure, such that the following is verified:

1) σ0 = Propagate(A, ι, ι) ∈ Σ. σ0 is the initial state
of the Kripke structure.

2) If σ ∈ Σ and ∃t = 〈e,G, P 〉 ∈ T , such that
the guard G is verified in σ then the state τ =
Fire(P,A, ι, σ) ∈ Σ and the transition (σ, e, τ) ∈ Θ,

The calculation of Γ = (Σ,Θ) may raise errors. A well
designed Guarded Transition Systems avoids this problem.

D. Timed/Stochastic Guarded Transition Systems

A probabilistic time structure can be put on top of a
Guarded Transition System so to get timed/stochastic models.
The idea is to associate to each event a delay and a weight,
called expectation.

A delay can be deterministic or stochastic and may depend
on the state. When a transition labeled with the event becomes
fireable at time t, a delay d is calculated and the transition is
actually fired at time t+ d if it stays fireable from t to t+ d.

An expectation is used to determine the probability that the
transition is fired in case of several transitions are fireable at
the same date.

As an illustration, in the example given in Section VI, the
transition failure is a timed stochastic transition that obeys
to the exponential distribution with a failure rate lambda.

VI. EXAMPLE

As example, we consider a sub-system composed of two
valves connected together in series. Figure 2 shows this exam-
ple. rightFlow and leftFlow express flows of the component
(we will see later that each valve contains its own flows from
left and from right). They are bidirectional flows, so we do
not name them with words “input” or “output”.

Fig. 2. The component TwoValves.

A. AltaRica 3.0 model of a valve

A valve is represented by a class. It will be used as a
piece to build the component TwoValves. We consider a valve
that can be opened or closed (it corresponds to the normal
behavior). It can also be blocked (it is the failure behavior).
The AltaRica 3.0 model of a valve is the following:

class Valve
Boolean closed (init = true), blocked (init = false);
Real rightFlow (reset = 0), leftFlow (reset = 0);
parameter Real lambda = 0.001;

event open, close;
event failure (delay = exponential(lambda));
transition
open: closed and not blocked -> closed := false;
close: not closed and not blocked -> closed := true;
failure: not blocked -> blocked := true;

assertion
if not closed then leftFlow :=: rightFlow;

end

A class Valve contains two state variables closed and
blocked; and two flow variables rightFlow and leftFlow. Events
open, close and failure are declared and then used to define
transitions. The event failure occurs according to an exponen-
tial delay with a parameter lambda. The behavior of a valve
is then defined by transitions (to update its state) and the
assertion (to propagate flows). The operator “:=:” expresses
a bidirectional flow circulating through the valve.

B. AltaRica 3.0 model of the sub-system TwoValves

The component TwoValves contains two instances of the
class Valve. It can be failed because of failures of both valves
v1 or v2. The AltaRica 3.0 model of this component TwoValves
is the following:

class TwoValves
Valve v1, v2;
Real rightFlow (reset = 0), leftFlow (reset = 0);
event ccf;
transition
ccf: ?v1.failure & ?v2.failure;

assertion
leftFlow :=: v1.leftFlow;
rightFlow :=: v2.rightFlow;
v1.rightFlow :=: v2.leftFlow;

end

Operator “&” expresses synchronizations between events.
The event ccf represents the common cause failure of the two
valves. It is expressed by means of the synchronization of the
events v1.failure and v2.failure. The event ccf may occur when
at least one of two valves is working. Operator “?” means that
the event is optional for the synchronization.

C. The GTS model

The following “flattened” class encodes the GTS of the
component TwoValves:

class TwoValves
variable
Boolean v1.closed (init = true);
Boolean v2.closed (init = true);
Boolean v1.blocked (init = false);
Boolean v2.blocked (init = false);
Real v1.rightFlow (reset = 0);
Real v2.rightFlow (reset = 0);
Real v1.leftFlow (reset = 0);
Real v2.leftFlow (reset = 0);
Real rightFlow (reset = 0);
Real leftFlow (reset = 0);

parameter
Real v1.lambda = 0.001;
Real v2.lambda = 0.001;

event
v1.open;
v2.open;
v1.close;
v2.close;
v1.failure (delay = exponential(v1.lambda));
v2.failure (delay = exponential(v2.lambda));
ccf;

transition

v1.open: v1.closed -> v1.closed := false;
v1.close: not v1.closed -> v1.closed := true;
v2.open: v2.closed -> v2.closed := false;
v2.close: not v2.closed -> v2.closed := true;
ccf: not v1.blocked or not v2.blocked ->

{
if not v1.blocked then v1.blocked := true;
if not v2.blocked then v2.blocked := true;

}
v1.failure: not v1.blocked -> v1.blocked := true;
v2.failure: not v2.blocked -> v2.blocked := true;

assertion
leftFlow := v1.leftFlow;
v1.leftFlow := leftFlow;
rightFlow := v2.rightFlow;
v2.rightFlow := rightFlow;
v1.rightFlow := v2.leftFlow;
v2.leftFlow := v1.rightFlow;

end

Note that this GTS model is more bigger than the previous
AltaRica 3.0 model. Nevertheless, users never use this formal-
ism to describe a system. A specific tool is devoted to compile
AltaRica 3.0 models to GTS.

VII. ASSESSMENT TOOLS

The AltaRica 3.0 project includes a set of assessment tools.
All these tools take, as input, a GTS model. Thus, the user first
designs an AltaRica 3.0 model. Then, this model is compiled
into its flattened version: the corresponding GTS model.

As shown by the previous figure 1, the set of assessment
tools includes a Fault Tree compiler to perform Fault Tree
Analysis, a Markov chain generator, a stochastic and a step-
wise simulators, a sequence generator, a model-checker and
a reliability allocation module. Prototypes of a compiler to
Fault Trees, of a stepwise and a stochastic simulators have
been already developed. In the sequel, we will present them.

A. Compiler to Fault Trees

Fault trees are widely used to perform Safety Analyses
and some regulation authorities require to use them to support
the certification process. From a GTS model, it is possible
to generate corresponding Fault Trees (FT), i.e. to transform
a states/transitions model into a set of Boolean formulae. It
may seem inefficient at a first glance to use a states/transitions
formalism to end up with a Fault Tree. However in practice,
it is of great interest. It is easier and less time consuming
to automatically generate Fault Trees from high-level mod-
els rather than create them from scratch. High-level models
improves greatly the design, the sharing and the maintenance
of models. The algorithm of compilation to Fault Trees for
AltaRica Data-Flow, described in [1], can be extended to a
general case. As it is illustrated Figure 3, it includes 3 steps:

1) The GTS model is partitioned into independent GTS
and an independent assertion.

2) Reachability graphs of each independent GTS are
calculated.

3) Reachability graphs and the assertion are separately
compiled into Boolean equations.

Partitioning is a key point of the algorithm that ensures its
efficiency. In practice, components of a system fail in general
in a relatively independent way. In that case the partitioning is
possible. If the GTS is combinatorial, its compilation to Fault
Trees is efficient and does not loose information.

Fig. 3. Algorithm of compilation of GTS to FT

The generated Fault Tree can be assessed with any Fault
Tree calculation engine supporting Open-PSA format [20]. For
example, it will be possible to use XFTA [21] to calculate
minimal cutsets, events probabilities, importance factors for
the generated Fault Tree.

B. Stepwise simulator

The stepwise simulator enables to perform an interactive
step by step simulation of a GTS model. This interactive tool
can be very useful to debug models, to play different failure
scenarios, etc. The stepwise simulator can be coupled with a
graphical simulator as illustrated in [22]. The graphical simu-
lation of models can be used to perform virtual experiments on
systems via models, helping to better understand the system
behavior.

The first version of the interactive stepwise simulator
supports commands:

• to display the information about the simulated model
(variables and their values, observers and their values,
transitions fireable in the current state, history of fired
transitions since the beginning of the simulation, etc.);

• to perform action on the simulated model (fire a
transition, cancel the last fired transition, restart the
simulation from the initial state, etc.).

C. Stochastic simulator

Stochastic simulation is a basic tool for safety analyses
of systems. It provides fine results to calculate reliability
indicators, even with complex systems. The principle is to
run many pseudo-random histories of the behavior of the
system and to make statistics on these histories. The stochastic
simulator of the AltaRica 3.0 project has been designed by
taking into account original features.

We use compilation techniques to reduce computation time
of simulations. In fact, the only limit of stochastic simulation
is the number of histories, and their length, necessary to
stabilize the measures. But with nowadays computers, it is
relatively easy to perform up to several millions of histories
(of reasonable length). Beyond, the computation time gets an
issue and with that respect, compilation technique may be of a
great help. Thus the considered GTS model is translated into

Fig. 4. Overview of the stochastic simulator

C++ classes, representing a set of instructions for the simulator
engine. Then, combined with this simulator engine, they are
compiled to constitute the stochastic simulator of the system
to study. Figure 4 illustrates this purpose.

We have implemented a generic mechanism to allow users
to define specific delays. In general, simulation tools offer
a lot of stochastic delays. Users have to choose the best
matching one and fill out parameters. A few ones are widely
used for safety/reliability analyses (e.g. exponential, Weibull,
etc.), but others are generally difficult to use: difficult to
understand or to fill out parameters. Due to this fact, the
stochastic simulator implements the widely used delay func-
tions (previously mentioned). For other specific ones, a generic
mechanism allows to describe them by means of a set of
points interpolated in a triangular way. For a set of points
Del = {(t0, p0); (t1, p1); · · · ; (tn, pn)}, in R+ × [0, 1] (Del
meaning "delay") and a probability p ∈ [0, 1], the associated
delay dDel ∈ R+ is done by:

(ti+1−ti)
(pi+1−pi)

· (p− pi) + ti

if it exists i ∈ [0;n[\ pi ≤ p ≤ pi+1. Otherwise it is done by
+∞.

VIII. CONCLUSION

In this article, we have presented the AltaRica 3.0 project.
The aim of this project is to develop a complete set of
tools (distributed under a free license) to create, edit, check,
simulate, debug and assess AltaRica 3.0 models, thus making
them available to a large (industrial and academic) community.

AltaRica 3.0 modeling language increases the expressive
power of the previous one without decreasing the efficiency
of assessment algorithms. It makes it possible to model
looped systems and components with bidirectional flows. First
versions of assessment tools include: a Fault Tree compiler,
stepwise and stochastic simulators.

Forthcoming works will focus, amongst others, on the
implementation of other assessment tools and on the redaction
of pedagogical materials, including benchmark tests.

REFERENCES

[1] A. Rauzy, “Modes automata and their compilation into fault trees,”
Reliability Engineering and System Safety, vol. 78, pp. 1–12, 2002.

[2] M. Boiteau, Y. Dutuit, A. Rauzy, and J.-P. Signoret, “The altarica
data-flow language in use: Assessment of production availability of a
multistates system,” Reliability Engineering and System Safety, vol. 91,
pp. 747–755, 2006.

[3] R. Bernard, J.-J. Aubert, P. Bieber, C. Merlini, and S. Metge, “Exper-
iments in model-based safety analysis: flight controls,” in Proceedings
of IFAC workshop on Dependable Control of Discrete Systems, Cachan,
2007.

[4] P. Bieber, J.-P. Blanquart, G. Durrieu, D. Lesens, J. Lucotte, F. Tardy,
M. Turin, C. Seguin, and E. Conquet, “Integration of formal fault
analysis in assert: Case studies and lessons learnt,” in Proceedings of
4th European Congress Embedded Real Time Software, ERTS 2008,
Toulouse (France), January 2008.

[5] X. Quayzin and E. Arbaretier, “Performance modeling of a surveillance
mission,” in European Safety and Reliability Conference, ESREL 2009,
Praha (Czech Republic), September 2009.

[6] R. Bernard, S. Metge, F. Pouzolz, P. Bieber, A. Griffault, and
M. Zeitoun, “Altarica refinement for heterogeneous granularity model
analysis,” in Actes du congrès Lambda-Mu’16, Avignon (France),
October 2008.

[7] A. Rauzy, “Guarded transition systems: a new states/events formalism
for reliability studies,” Journal of Risk and Reliability, vol. 222, no. 4,
pp. 495–505, 2008.

[8] T. Prosvirnova and A. Rauzy, “Guarded transition systems: Pivot
modelling formalism for safety analysis,” in Actes du Congrès Lambda-
Mu 18, J. Barbet, Ed., Octobre 2012.

[9] P. Feiler and A. Rugina, “Dependability modeling with the architecture
analysis & design language (aadl),” Carnegie Mellon University, Tech.
Rep., 2007.

[10] A. Pasquini, Y. Papadopoulos, and J. McDermid, “Hierarchically
performed hazard origin and propagation studies,” Computer Safety,
Reliability and Security, vol. 1698 of LNCS, pp. 688–688, 1999.

[11] S. Bernardi, S. Donatelli, and J. Merseguer, “From uml sequence dia-
grams and statecharts to analyzable petri net models,” in In Proceedings
of the Third International Workshop on Software on Performance, 2002.

[12] P. David, V. Idasiak, and F. Kratz, “Reliability study of complex physical
systems using sysml,” pp. 431–450, 2010.

[13] M. Bouissou, H. Bouhadana, M. Bannelier, and N. Villatte, “Knowledge
modelling and reliability processing: presentation of the figaro mod-
elling language and associated tools,” in Proceedings of Safecomp’91,
1991.

[14] M. Bouissou, “Automated dependability analysis of complex systems
with the kb3 workbench: the experience of edf r&d,” in Proceedings of
the International Conference on Energy and Environment, 2005.

[15] M. Güdemann and F. Ortmeier, “A framework for qualitative and
quantitative model-based safety analysis,” in Proceedings of 12th High
Assurance System Engineering Symposium, 2010, p. 132âĂŞ141.

[16] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. John Wiley & Sons Inc, 2004.

[17] P. R. N. Halbwachs, P. Caspi and D. Pilaud, “The synchronous dataflow
programming language lustre,” Proceedings of the IEEE, vol. 79, no. 9,
pp. 1305–1320, 1991.

[18] P. Feiler, D. Gluch, and J. Hudak, “The architecture analysis & design
language (aadl): An introduction,” Carnegie Mellon University, Tech.
Rep., 2006.

[19] J. Noble, A. Taivalsaari, and I. Moore, Prototype-Based Programming:
Concepts, Languages and Applications. Springer-Verlag, 1999.

[20] M. Hibti, T. Friedlhuber, and A. Rauzy, “Overview of the open
psa platform,” in Proceedings of International Joint Conference
PSAM’11/ESREL’12, R. Virolainen, Ed., June 2012.

[21] A. Rauzy, “Anatomy of an efficient fault tree assessment engine,” in
Proceedings of International Joint Conference PSAM’11/ESREL’12,
R. Virolainen, Ed., June 2012.

[22] B. Perrot, T. Prosvirnova, A. Rauzy, J.-P. S. d’Izarn, and R. Schoening,
“Expériences de couplages de modèles AltaRica avec des interfaces
métiers,” in Actes du congrès LambdaMu’17 (actes électroniques),
E. Fadier, Ed. IMdR, October 2010.

