
GraphXica: a Language for Graphical Animation of Models

T. Prosvirnova, M. Batteux, A. Maarouf & A. Rauzy
LIX
Ecole Polytechnique, Palaiseau, France

ABSTRACT: The objective of this article is to present GraphXica – a Domain Specific Language (DSL)
for graphical animation of models. GraphXica enables to describe graphical representations of models and
their animations. Given a graphical representation and animation description of the model, different kinds of
Graphical User Interfaces (GUIs) can be generated to simulate it, for example a web based interface, a Java
interface, etc.
This work is a part of AltaRica 3.0 project, which aims to propose a set of authoring, simulation and assessment
tools to perform Model-Based Safety Analyses. The new version of AltaRica modeling language is in the heart
of the project. It is a textual language but graphical representations can be easily associated to textual models.
GraphXica can be used to define graphical representations and animations of AltaRica 3.0 models. Then a GUI
can be generated to animate these models. Coupled with a stepwise simulator, it enables to perform virtual
experiments on systems, via models.
GraphXica is a generic DSL and can be used to describe graphical representations and animations of any kind
of models and data.

1 INTRODUCTION

The Model-Based approach for safety and reliabil-
ity analysis is gradually wining the trust of engineers
but is still an active domain of research. Safety engi-
neers master “traditional” risk modeling formalisms,
such as “Failure Mode, Effects and Criticality Anal-
ysis” (FMECA), Fault Trees (FT), Event Trees (ET),
Markov Processes. Efficient algorithms and tools are
available. However, despite of their qualities, these
formalisms share a major drawback: models are far
from the specifications of the systems under study.
As a consequence, models are hard to design and
to maintain throughout the life cycle of systems. A
small change in the specifications may require revisit-
ing completely safety models, which is both resource
consuming and error prone.

The high-level modeling language AltaRica Data-
Flow (Rauzy 2002, Boiteau et al. 2006) has been cre-
ated to tackle this problem. AltaRica Data-Flow mod-
els are made of hierarchies of reusable components.
Graphical representations are associated with compo-
nents, making models visually very close to Process
and Instrumentation Diagrams. It is in the core of sev-
eral Safety Analysis workshops and several success-
ful industrial experiments have been held using Al-
taRica Data-Flow (Bernard et al. 2007, Bieber et al.
2008).

However, more than ten years of experience
showed that both the language and the assessment
tools can be improved. AltaRica 3.0 is an entirely new
version of the language. Its underlying mathematical
model – Guarded Transition Systems (Rauzy 2008,
Prosvirnova and Rauzy 2012) – makes it possible to
design acausal components and to handle looped sys-
tems. The development of a complete set of freeware
authoring, simulation and assessment tools is planed,
so to make them available to a wide audience.

The success AltaRica, partially, comes from the
fact that graphical representations can be easily asso-
ciated to textual models. Thus, models can be graphi-
cally animated. The incident or accident scenarios can
be visualized and discussed. In a word, virtual experi-
ments on systems can be performed using these mod-
els.

As a part of AltaRica 3.0 project our team works
on the graphical representation and simulation of Al-
taRica 3.0 models. The goal of this communication is
to present a Model-Based approach for 2D-3D event
driven simulation. This approach consists in the def-
inition of a Domain Specific Language (DSL) for
graphical animation of models. This language enables
to describe graphical 2D-3D representations of mod-
els and their animations. Then, it can be used to gen-
erate a graphical user interface (GUI) to animate mod-
els. The major advantage of this approach is that given

a graphical representation and an animation descrip-
tion of the model, different kinds of GUIs can be gen-
erated to simulate it, for example, a web interface or
a java interface. The generated GUI can be coupled
with a stepwise simulator to perform graphical simu-
lations of models.

In fact, the main goal of such a DSL is to visual-
ize the (dynamical) behavior of physical models. This
visualization is particularly helpful during the de-
sign phases of complex systems. Until now, no com-
mon language dedicated to the graphical animation of
models (independent of the application domain) has
been designed. Our objective is to propose a DSL for
graphical animation of models.

The remainder of this article is organized as fol-
lows. Section 2 gives an overview of the AltaRica
3.0 project. Section 3 presents the motivations of this
work. Section 4 introduces GraphXica – a language
for graphical animation of models. Section 5 summa-
rizes the related works. Finally Section 6 concludes
the article and outlines directions for future works.

2 ALTARICA 3.0 PROJECT

The objective of the AltaRica 3.0 project is to propose
a set of authoring, simulation and assessment tools to
perform Model-Based Safety Analyses. The overview
of the project is presented Figure 1.

The new version of AltaRica modeling language,
AltaRica 3.0, is in the heart of this project. It sup-
ports modeling of looped systems and bidirectional
flows. This new version significantly increases the ex-
pressive power of the previous one without decreas-
ing the efficiency of the assessment algorithms. Al-
taRica 3.0 models are compiled into a low level for-
malism: Guarded Transition Systems (Rauzy 2008,
Prosvirnova and Rauzy 2012). Guarded Transition
Systems is a states/transitions formalism that gener-
alizes classical safety formalisms, such as Reliability
Block Diagrams, Petri Nets and Markov chains. It is
a pivot formalism for Safety Analyses: other safety
models, not only AltaRica 3.0, can be compiled into
Guarded Transition Systems to take benefits from the
assessment tools. The assessment tools for Guarded
Transition Systems already include prototypes of a
compiler to Fault Trees, a compiler to Markov chains,
a stochastic and a stepwise simulators. Prototypes of
a model-checker and a reliability allocation module
are planed to be developed. Distributed under a free
license, the assessment tools enable users to perform
virtual experiments on systems, via models, to com-
pute different kinds of reliability indicators and, also,
to perform cross check calculations.

3 MOTIVATIONS

As a part of AltaRica 3.0 Project our team works on
the graphical simulation of AltaRica models. Graph-

Figure 2: Graphical representation and animation of a water sup-
ply system

ical simulation of models has its own interest. First
of all, it enables to better understand the system be-
havior. Second, virtual experiments can be performed
on systems, via models, for example, it is possible to
play calculated failure scenarii. Finally, it helps to de-
bug and to validate the model.

Consider a simple water supply system, composed
of a pump and a tank. A pump can be in two states:
WORKING or FAILED. If the pump is in state
WORKING, then the tank is full, otherwise, it is
empty. This system is represented in AltaRica as fol-
lows:

domain PumpState {WORKING, FAILED}
class Pump
PumpState state (init = WORKING);
Real input (reset = 0.0), output (reset = 0.0);
event failure (delay = exponential(0.0005));
event repair (delay = exponential(0.02));
transition
failure: state==WORKING -> state := FAILED;
repair: state==FAILED -> state := WORKING;

assertion
output := if (state==WORKING) then input

else 0.0;
end
class Tank
Real input (reset = 0.0);

end
block WaterSupplySystem
Pump pump;
Tank tank;
Real input (reset = 1.0);
observer Boolean tank.isEmpty =

(tank.input == 0.0);
assertion
pump.input := input;
tank.input := pump.output;

end

Our goal is to perform graphical simulation of this
model. For that we need to define a graphical repre-
sentation of the model and its animation, i.e. how the
representation changes according to the values of sys-
tem variables (see for example Figure 2). Basically,
we would like to define the following animations:

1. If the pump is failed (pump.state == FAILED),
then change the outline color to red.

2. If the tank is empty (tank.input == 0.0), then
hide the blue rectangle.

To be able to perform graphical animations of mod-
els we will

Figure 1: Overview of the AltaRica 3.0 project

• First, define a Domain Specific Language (DSL)
to describe graphical representations and anima-
tions of models.

• Then, use this DSL to generate Graphical User
Interfaces (GUIs) for event-driven simulation of
models.

• Finally, couple the generated GUI with a step-
wise simulator of AltaRica.

3.1 DSL for graphical animation of models

DSL for graphical animation should provide specific
primitives to represent graphical objects (i.e. figures)
and to describe their animations.

Graphical primitives Graphical objects give the
static representation of the model (i.e. its 2D or 3D
representation). The language should include at least
the following graphical objects:

• Basic geometric figures: Rectangle, Ellipsoid,
Line, etc.

• Links: Line, Point (to represent connections be-
tween graphical objects).

• Text (to display textual annotations of models).

• Bitmap (to use predefined pictures).

All graphical primitives should have some shared
attributes, such as size, color, hidden, opacity, etc.

Composition It should be possible to design li-
braries of reusable graphical components (i.e. figures
and their animations) and to assemble them in order
to create graphical representations and animations of
systems. In the example given Figure 2, one should
be able to create graphical representations of a pump

and a tank, their animations and to use them to create
the graphical representation of the system, composed
of the pump and the tank connected together.

Animation The ability to describe the animations
of the model, i.e. how changes the graphical repre-
sentation of the model in time, is the most important
part of the language. Graphical animations of models
should be done in two ways:

• Depending on external variables.

• According to user actions.

In the first case, the animation may depend on some
external variables. When these variables change their
values, the graphical representation is updated ac-
cording to the defined animation rules. The values of
these variables may be obtained from a model sim-
ulator, such as, for example, the stepwise simulator
of AltaRica 3.0, from a file or a database, etc. The
second way of animation is done through a Graphical
User Interface (GUI) that gives the user the ability to
interact with the model.

Animations are related to previously defined graph-
ical primitives (figures). We should consider at least
the following animations for them:

• Move.

• Hide or Show.

• Modify attribute values (e.g. color, size, etc.).

3.2 Graphical user interfaces for simulation

The generated GUI for simulation can be imple-
mented in different programming languages, for ex-
ample:

Figure 3: DSL for graphical animation of models

• All programming languages with Graphical li-
braries: C++ with Qt, C with SDL, Java with its
standard graphics library, etc.

• Html and CSS to use with a web browser.

• Visual basic to use with the presentation program
PowerPoint.

The GUI generator takes a graphical representation
and animation of an AltaRica 3.0 model, generates a
GUI that displays graphical animations of the model,
as illustrated Figure 3.

3.3 Graphical animation of AltaRica 3.0 models

The stepwise simulator of AltaRica can be coupled
with a graphical simulator in order to perform graphi-
cal simulation of models (e.g. see Perrot et al. (2010)).
The link between the stepwise simulator and simula-
tion GUI is done by a communication protocol.

Given an AltaRica model, it will be possible to de-
fine its graphical representation and animation using
the DSL. Then a simulation GUI will be generated; it
will be linked with a stepwise simulator by a commu-
nication protocol in order to perform graphical sim-
ulation of AltaRica models. The procedure is illus-
trated Figure 4.

4 GRAPHXICA

In this section we present GraphXica – a Domain
Specific Language (DSL) for graphical animation of
models. As shown figure 4, we use GraphXica with
the stepwise simulator of the AltaRica 3.0. The gener-
ated simulation GUI, so called GraphXica Displayer,
is implemented in Java. It takes a GraphXica model,
corresponding to the graphical representation of the
AltaRica 3.0 model. According to fired transitions,
the stepwise simulator emits a vector of variables val-
ues. The GraphXica Displayer receives this vector
and performs animations of figures. These animations
are defined by the animation rules and depend on the
values of variables received from the stepwise simu-
lator.

GraphXica is, like AltaRica 3.0, a prototype ori-
ented modeling language, see e.g. Noble et al. (1999)
for a discussion on objects versus prototypes. Pro-
totype orientation makes it possible to separate the
knowledge into two distinct spaces: the stabilized
knowledge, incorporated into libraries of on-the-shelf
modeling components; the sandbox in which the sys-
tem under study is modeled. In the sandbox, many
components are unique and some others are instances
of reusable components. With prototype-orientation,
models can be reused in two ways: at component
level by instantiating on-the-shelf components; at sys-
tem level by cloning and modifying a model designed
for a previous project. Classes represent the stabilized
knowledge: they can be instantiated and extended like
in object-oriented languages. Blocks model unique
components, that cannot be instantiated. The system
is always represented by a block.

A GraphXica model is made up of declarations.
It is possible to declare global variables, variable
domains (i.e. enumerated types) and components
(i.e. classes or blocks) to describe figures and their
animation rules. In the following, we present the
grammar in extended BNF.

Model ::= (Declaration)* ;
Declaration ::=

DomainDeclaration
| ExternVariableDeclaration
| VariableDeclaration
| ClassDeclaration
| BlockDeclaration
;

4.1 Domains

Domains are named sets of symbolic constants. They
are defined in the following way:

DomainDeclaration ::=
’domain’ Identifier ’{’ Identifier (’,’ Identifier)* ’}’ ;

An identifier is a letter followed (not necessary) by a
sequence of letters or numbers. The special character
‘ ’ is also included to define an identifier. The rule
Identifier is the following:

Identifier ::=
(Letter | ‘ ’) (Letter | Number | ‘ ’)* ;

Letter ::= ‘a’ | ... | ‘z’ | ‘A’ | ... | ‘Z’ ;
Number ::= ‘0’ |... | ‘9’ ;

Declared domains can be used as a type for vari-
ables anywhere in the model. In the example given
Figure 2, domains expressing the state of the pump
and the tank are declared as follows:

domain PumpState {WORKING, FAILED}
domain TankLevel {FULL, EMPTY}

Figure 4: Graphical simulation of models

4.2 Global variables

Variables are declared in the following way:

ExternVariableDeclaration ::=
‘extern’ VariableDeclaration ;

VariableDeclaration ::=
Type Variable (‘,’ Variable)* ‘;’ ;

Type ::=
NumericalType’
| FigureType
| Identifier
;

NumericalType ::=
‘Boolean’
| ‘Integer’
| ‘Real’
;

Variable ::=
Identifier [‘(’ Attributes ‘)’] ;

Attributes ::=
Attribute (‘,’ Attribute)* ;

Attribute ::=
Identifier ‘=’ Expression ;

The rule Expression defines formulas built over vari-
ables and parameters using common arithmetic, com-
parison and logical operators. We will not detail it
here. Global variables can only have numerical or user
defined type. Thus, the rule FigureType will be de-
fined later.

Global variables have the same sense like in the
programming languages C, C++ or Java. A global
variable can be used anywhere in the model. The key-
word extern can be added to the declaration of a
variable. It expresses the fact that the variable will be
linked to a variable coming from the vector of val-
ues (from an assessment tool linked to the GraphXica
Displayer). When a variable is declared, a set of at-
tributes (e.g. its initial value) can also be declared. In

the example given Figure 2, we will declare two exter-
nal variables ext pumpState and ext tankInput,
corresponding to variables from AltaRica 3.0 model:

extern PumpState ext_pumpState (init = WORKING);
extern Boolean ext_tankInput (reset = false);

4.3 Classes and Blocks

Classes are used to create libraries of reusable graph-
ical representations and animations. Blocks are used
to design graphical representations of systems using
libraries of reusable components. They represent
clearly the separation between stabilized knowledge,
incorporated into libraries of on-the-shelf modeling
components, and the sandbox in which the system
under study is modeled. Classes are declared as
follows:

ClassDeclaration ::=
‘class’ Identifier

(ComponentDeclaration)*
[Animations]

‘end’ ;

Blocks are declared as follows:

BlockDeclaration ::=
‘block’ Identifier

(ComponentDeclaration)*
[Animations]

‘end’ ;

Components are declared as follows:

ComponentDeclaration ::=
VariableDeclaration
| ParameterDeclaration
;

Classes may embed instances of other classes so
to get hierarchical representations of systems under
study. Blocks may be composed of other blocks and
instantiated classes. Blocks and classes may contain
variables, parameters, figures and animation rules.
Here, types of variables can be figures type (e.g.: rect-
angle, oval, line, etc.) or user declared classes.

The following classes describe the graphical repre-
sentations of the pump and the tank from the system
given Figure 2.

class PumpRep
parameter PumpState state = WORKING;
Oval cir (x = 0, y = 0, width = 5, height = 5,

color = blue, lineColor = black,
thickness = 2);

Line delta1 (x = 1.5, y = 8.5, width = 7,
height = -7, color = black, thickness = 2);

Line delta2 (x = 1.5, y = 1.5, width = 7,
height = 7, color = black, thickness = 2);

animation
state == FAILED ->
{
delta1.color := red;
delta2.color := red;
cir.lineColor := red;

}
state == WORKING ->
{
delta1.color := green;
delta2.color := green;
cir.lineColor := green;

}
end

class TankRep
parameter TankLevel level = FULL;
Line horLeft (x = 0 ,y = 0, width = 14,

height = 0, color = black,
thickness = 2);

Line horRight (x = 10 ,y = 0, width = 14,
height = 0, color = black,
thickness = 2);

Line base (x = 0 ,y = 14, width = 0,
height = 10, color = black,
thickness = 2);

Rectangle rectFull (x = 0, y = 2,
width = 10, height = 12,
color = blue, thickness = 0,
visible = true);

animation
level == EMPTY -> rectFull.visible := false;
level == FULL -> rectFull.visible := true;

end

Graphical primitives GraphXica contains specific
primitives to represent figures and to define their ani-
mations. Figures are declared as variables: they have
a type, a name and a list of attributes. Different types
of figures are included, such as, for example, Line,
Rectangle, Oval, Bitmap, Text, etc. Each type of
figure has its own list of attributes. However, there are
some common attributes, such as the color of the fig-
ure, its position (with two dimensions), its size (with
two dimensions), its visibility and its opacity. The

idea is to consider a figure inscribed inside an ”imagi-
nary” rectangle (it is not a figure of the language) and
positions are according to the left-top corner.

In the example given above a pump is represented
by a circle (an oval) cir and two lines delta1 and
delta2 and a tank is described by three lines horLeft,
horRight, base and a rectangle rectFull. A line is de-
fined by the coordinates of its source and its target, by
its color and its thickness. A rectangle is defined by
the coordinates of its left-top corner, its size, its color
and the thickness of its border. Note, that users don’t
have to fill in all the attributes, GraphXica Displayer
gives a default value for all unspecified attributes.

Parameters Parameters are introduced by a key-
word parameter, followed by the type, the name and
the value (i.e. an expression depending on variables
and other parameters). They are declared in the
following way:

ParameterDeclaration ::=
‘parameter’ NumericalType Identifier ‘=’ Expression ‘;’ ;

In the example given earlier we declare two pa-
rameters: level in the class TankRep and state in the
class PumpRep. The values of this parameters can be
changed when the classes are instantiated. Parameters
can be used in different manners: they can be linked to
external variables or they can define constant values,
such as circle radius, rectangle height, etc.

Variables Local variables within a class or a block
can be declared in the same way as global variables.

Animations Animations are defined by a set
of rules. Each rule is represented by a condition
followed by a set of instructions. Animations are
declared in the following way:

Animations ::=
‘animation’ (Animation)* ;

Animation ::=
Condition ‘→’ Instruction ;

Condition ::=
LogicalExpression ;

Instruction ::=
Assignment
| Block
;

Assignment ::= Identifier ‘:=’ Expression ‘;’ ;
Block ::= ‘{’ Instruction+ ‘}’ ;

Conditions are Boolean expressions, built over
variables and parameters of the model (e.g. state
== FAILED) or user actions (e.g. click on a figure).
Boolean expressions are evaluated according to the
vectors of values, received from a linked assessment

tool. Instructions enable to modify the values of at-
tributes of figures (e.g. change the color or visibility
of a figure, move or enlarge a figure, etc.). Of course,
the modifications of attribute values are defined ac-
cording to the considered figures. For example, it is
possible to change the color of a Rectangle, but it is
not possible to modify the color of a Bitmap.

In the example given above, the class Pump defines
the following animation rules: if the value of the pa-
rameter state is WORKING, then the color of lines
is green, otherwise it is red. In the class Tank if the
value of the parameter level is EMPTY then the rect-
angle rectFull is hidden.

Composition To create a GraphXica model of the
water supply system, given Figure 2, we use the pre-
viously defined classes PumpRep and TankRep. The
block WaterSupplySystemRep is composed of an in-
stance of class PumpRep and an instance of class
TankRep. The parameter state of the pumpRep is set
to the external variable ext pumpState (this variable
comes from AltaRica model of the system). The pa-
rameter level of the tankRep is calculated according
to the external variable ext tankInput coming from
the AltaRica model.

block WaterSupplySystemRep
TankRep tankRep (posX = 1, posY = 8,

level = if ext tankInput then FULL
else EMPTY);

PumpRep pumpRep (x = 35, y = 2,
state = ext pumpState);

Line hLineLeft (x = 0, y = 5, width = 10,
height = 0, color = blue, thickness = 6);

Line vLineLeft (x = 30, y = 5, width = 0,
height = 7, color = blue, thickness = 6);

Line hLineRight (x = 20, y = 5, width = 10,
height = 0, color = blue, thickness = 6);

end

The animation rules of the block are executed in the
following way: first, animation rules of all instantiated
classes and nested blocks are executed in the same
order as they are declared in the block, then animation
rules of the main block are performed.

5 RELATED WORKS

In this section we introduce some existing languages
for graphical representation and animation of models.

Modelica (Fritzson 2004) is an object-oriented lan-
guage based on equations for modeling continuous
or discrete event behavior of physical systems. The
grammar of Modelica, amongst others, defines anno-
tations used to store additional information about the
model, such as its graphical representation. They are
used to graphically represent a model and its compo-
nents by means of graphical objects (rectangles, cir-
cles, etc.), component icons and connection lines. Al-
though Modelica’s annotations define all the neces-
sary properties and primitives to represent a model

in a graphical way. These representations are purely
static. There is no animation of models and also no
interaction between the user and a model.

Some existing languages are specifically dedicated
to animation of algorithms: JAWAA (Rodger 2002),
XAAL (Karavirta 2005), AnimalScript (Rößling and
Freisleben 2001), JSamba (Stasko 1998), JHAVÉ
(Naps et al. 2000). They are scripting languages for
creating animation of algorithms. They contain prim-
itives to represent graphical objects such as circles,
rectangles, lines, etc.; and to animate them. The main
principle is to write, or automatically generate, a
script from an algorithm. This script corresponds to
a translation from the algorithm to its graphical rep-
resentation and animation. The script is then used by
a ”displayer”, e.g. a web browser for JAWAA. Nev-
ertheless, no communication is possible between the
”displayer” and the user or another tool. For example,
if one want to change the value of a variable, he has
to rewrite the script.

SVG, for Scalable Vector Graphics (Eisenberg
2002), is a language for describing two-dimensional
graphics in XML. SVG allows to create graphical
forms (e.g.: circles, polygon, etc.), images and texts.
SVG representations (i.e. drawing) are interactive.
They can react to user’s actions such as pressed button
by the mouse.

The study of existing languages containing a part
dedicated to graphical animation and the limited do-
main of use of these languages give us the reason to
create a new language of graphical animation of mod-
els (GraphXica).

6 CONCLUSION AND PERSPECTIVES

In this article, we introduced GraphXica – a high-
level modeling language for graphical animation of
models. GraphXica enables to describe graphical rep-
resentations of models and their animations. Anima-
tions are defined according to values of external vari-
ables and user actions. GraphXica models can be used
to generate different types of Graphical User Inter-
faces (e.g. a Java interface, a web based interface,
etc.). The generated GUI, so called GraphXica dis-
player, can be coupled with simulators in order to per-
form graphical simulations of models. GraphXica is a
prototyped based modeling language. Thus, it is pos-
sible to create libraries of reusable graphical compo-
nents and to use them to design graphical representa-
tions and animations of complex systems.

This work is done as a part of AltaRica 3.0 Project
which aims to propose a complete set of authoring,
simulation and assessment tools to perform Model-
Based Safety Analyses. The idea is to couple GraphX-
ica displayer with AltaRica 3.0 stepwise simulator in
order to perform graphical simulation of models.

GraphXica displayers, implemented in Java and in
C++ Qt, are currently under development. We also

plan to implement a web based GraphXica displayer
using HTML 5 and CSS. Forthcoming papers will
completely present the grammar of GraphXica and its
semantic. Furthermore, our future works will focus on
the definition and on the implementation of the com-
munication protocol between GraphXica displayers
and stepwise simulator. The redaction of pedagogical
materials for GraphXica, including a primer, a best
practices guide and a book of exercises is also an im-
portant part of the project. These materials will help
interested persons to quickly understand and learn
how to use GraphXica. Another interesting tools will
be a generator of GraphXica models from AltaRica
3.0 models and an authoring tool for GraphXica.

REFERENCES

Bernard, R., J.-J. Aubert, P. Bieber, C. Merlini, & S. Metge
(2007). Experiments in model-based safety analysis:
flight controls. In Proceedings of IFAC workshop on
Dependable Control of Discrete Systems, Cachan.

Bieber, P., J.-P. Blanquart, G. Durrieu, D. Lesens, J. Lu-
cotte, F. Tardy, M. Turin, C. Seguin, & E. Conquet
(2008, January). Integration of formal fault analysis in
assert: Case studies and lessons learnt. In Proceedings
of 4th European Congress Embedded Real Time Soft-
ware, ERTS 2008, Toulouse (France).

Boiteau, M., Y. Dutuit, A. Rauzy, & J.-P. Signoret (2006).
The altarica data-flow language in use: Assessment of
production availability of a multistates system. Relia-
bility Engineering and System Safety 91, 747–755.

Eisenberg, J. (2002, February). SVG Essentials. O’Reilly
Media.

Fritzson, P. (2004). Principles of Object-Oriented Model-
ing and Simulation with Modelica 2.1. John Wiley &
Sons Inc.

Karavirta, V. (2005). Xaal - extensible algorithm animation
language. Master’s thesis, Helsinki University of Tech-
nology.

Naps, T., J. Eagan, & L. Norton (2000). JHAVÉ: An envi-
ronment to actively engage students in web-based al-
gorithm visualizations. 31st ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE
2000), Austin, Texas, 109–113.

Noble, J., A. Taivalsaari, & I. Moore (1999). Prototype-
Based Programming: Concepts, Languages and Appli-
cations. Springer-Verlag.

Perrot, B., T. Prosvirnova, A. Rauzy, J.-P. S. d’Izarn, &
R. Schoening (2010, October). Expériences de cou-
plages de modèles AltaRica avec des interfaces métiers.
In E. Fadier (Ed.), Actes du congrès LambdaMu’17
(actes électroniques). IMdR.

Prosvirnova, T. & A. Rauzy (2012, Octobre). Guarded tran-
sition systems: Pivot modelling formalism for safety
analysis. In J. Barbet (Ed.), Actes du Congrès Lambda-
Mu 18.

Rauzy, A. (2002). Modes automata and their compila-
tion into fault trees. Reliability Engineering and System
Safety 78, 1–12.

Rauzy, A. (2008). Guarded transition systems: a new
states/events formalism for reliability studies. Journal

of Risk and Reliability 222(4), 495–505.
Rodger, S. (2002, June). Using hands-on visualizations to

teach computer science from beginning curses to ad-
vanced courses. In Proceeding of the Second Program
Visualization Workshop.

Rößling, G. & B. Freisleben (2001). Animalscript: An ex-
tensible scripting language for algorithm animation.

Stasko, J. (1998). Smooth continuous animation for por-
traying algorithms and processes. In Software Visual-
ization, pp. 103–118. MIT Press.

