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Abstract. This article presents the high level, modeling language Al-
taRica 3.0 through the safety assessment of an electrical system. It shows
how, starting from a purely structural model, several variants can be de-
rived.Two of them target a compilation into Fault Trees and two others
target a compilation into Markov chains. Experimental results are re-
ported to show that each of these variants has its own interest. It also
advocates that this approach made of successive derivation of variants is
a solid ground to build a modeling methodology onto.
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1 Introduction

The increasing complexity of industrial systems calls for the development of so-
phisticated engineering tools. This is indeed true for all engineering disciplines,
but especially for safety and reliability engineering. Experience shows that tradi-
tional modeling formalisms such as Fault Trees, Petri nets or Markov processes
do not allow a smooth integration of risk analysis within the overall development
process. These analysis require both considerable time and expertise. The spe-
cialization and the lack of model’s structures make it difficult to share models
amongst stakeholders, to maintain them throughout the life-cycle of the systems,
and to reuse them from one project to another.

The AltaRica modeling language ([1],[2]) has been created at the end of the
nineties to tackle these problems. AltaRica makes it possible to design high-
level models with a structure that is very close to the functional or the physical
architecture of the system under study. Its constructions allow models to be
structured into a hierarchy of reusable components. It is also possible to asso-
ciate graphical representations to these components in order to make models
visually close to Process and Instrumentation Diagrams. The formal semantics
of AltaRica allowed the development of a versatile set of processing tools such
as compilers into Fault Trees ([2]), model-checkers ([3]) or stochastic simulators
([4]). A large number of successful industrial experiments with the language have
been reported (see e.g. [5], [6], [7], [8] and [9]). Despite its quality, AltaRica faced
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two issues of very different natures. First, systems with instant feedback’s loops
turned out to be hard to handle. Second, constructs of model’s structuring were
not fully satisfying.

AltaRica 3.0 [10] is a new version of the language that has been designed to
tackle these two issues. Regarding model structuring, AltaRica 3.0 implements
the prototype-oriented paradigm [11]. This paradigm fits well with the level
of abstraction reliability and safety analysis stand at. Regarding mathematical
foundations, AltaRica 3.0 is based on Guarded Transition Systems (GTS) [12].
GTS combine the advantages of state/event formalisms such as Petri nets and
combinatorial formalisms such as block diagrams. This combination is necessary
to model system patterns namely cold redundancies, cascading failures or remote
interactions.

AltaRica 3.0 comes with a variety of assessment tools. In this article, we show
how, starting from the same root model, different variants can be obtained by
successive refinements: a first series targeting a compilation into Fault Trees and
a second one targeting a compilation into Markov chains. Each of these variants
capture a particular aspect of the system under study. We advocate that this
approach made of successive derivation of variants is a solid ground to build a
modeling methodology onto.

The remainder of this article is organized as follows. Section 2 presents the
electrical system that is used as a red-wire example throughout the paper. Sec-
tion 3 discusses how to describe the architecture of the system with a purely
structural model. Section 4 proposes a first variant of this structural model
which targets a compilation into Fault Trees. Section 5 presents a second vari-
ant which targets a compilation into Markov Chains. Finally, section 6 concludes
this article.

2 Red Wire Example

Figure 1 shows a simple electrical system with cascade redundancies borrowed
from [13] (we present it here with some additional complexity).

In a normal operating mode, the busbar BB is powered by the grid GR either
through line 1 or through line 2. Each line is made of an upper circuit breaker
CBUi, a transformer TRi and a lower circuit breaker CBDi. The two lines are in
cold redundancy: Let’s assume for instance that line 1 was working and that it
failed either because one of the circuit breakers CBU1 or CBD1 failed, or because
the transformer failed. In this case, the line 2 is attempted to start. This requires
opening the circuit breaker CBD1 (if possible/necessary) and closing the circuit
breakers of line 2. Since line 2 was out of service, the circuit breaker CBD2 was
necessarily open.

If both lines fail, the diesel generator DG is expected to function, which re-
quires closing the circuit breaker CB3. Circuit breakers may fail to open and to
close on demand. The diesel generator may fail on demand as well. The grid GR
may be lost either because of an internal failure or because of a short circuit
in the transformer TRi followed by a failure to open the corresponding circuit
breaker CBUi.
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The two transformers are subject to a common cause failure.
There is a limited repair crew that can work on only two components at a

time. After maintenance, the components are as good as new, but may be badly
reconfigured.

Fig. 1. A small electrical system

The problem is to estimate the reliability and the availability of this sys-
tem. This example is small but concentrates on a number of modeling difficul-
ties (warm redundancies, on demand failures, short-circuit propagation, common
cause failures, limited resources), due to its multi-domains aspects.

3 Describing the Architecture of the System

The first step in analyzing a system consists of describing its functional and phys-
ical architecture. Figure 1 describes a possible decomposition of our electrical
system. This decomposition deserves three important remarks.

First, it mixes functional and physical aspects. In fact, due to the small size
of the example, only basic blocks (leaves of the decomposition) represent phys-
ical components. The others represent functions. We could consider functional
and physical architectures separately. However, considering both in the same
diagram simplifies things here. Moreover, it matches better with the usual way
of designing models for safety and dependability analysis. Note also that at this
step, we do not consider interactions between components.

Second, the underlying structure of this decomposition is not a tree, but a
directed acyclic graph for the external power supply is shared between Line 1
and Line 2. As we shall see, this has very important consequences in terms of
structuring constructs.
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Third, the system embeds five circuit breakers and two transformers. We
can assume that the circuit breakers on the one hand, the transformers on the
other hand are all the same. From a modeling point of view, it means that
we need to be able to define generic components and to instantiate them in
different places in our model. On the contrary, components like ”Primary Power
Supply”, ”Backup Power Supply” and ”Busbar Power Supply” are specific to
that particular system.

Fig. 2. Architecture of the Busbar Power Supply System

The structure of the AltaRica 3.0 model that reflects this architecture is
sketched in Figure 2. In AltaRica 3.0, components are represented by means of
blocks. Blocks contain variables, events, transitions, and everything necessary to
describe their behavior. At this step, the behavioral part is still empty. Blocks can
also contain other blocks and form hierarchies. The block ”BusbarPowerSupply”
contains two blocks: ”PrimaryPowerSupply” and ”BackupPowerSupply”. ”Bus-
barPowerSupply” is the parent block of ”PrimaryPowerSupply” and an ancestor
of ”CBU1”. Objects defined in a block are visible in all its ancestors. For instance,
if the class ”CircuitBreaker” defines an event ”failToOpen”, the instantiation of
this event in ”CBU1” is visible in the block ”BusbarPowerSupply” through the
dot notation, i.e. ”PrimaryPowerSupply.Line1.CBU1.failToOpen”.

An instance ”GR” of the class ”Grid” is declared in the block ”PrimaryPower-
Supply”. It is convenient to be able to refer to it as ”GR” as if it was declared in
”Line1”. This is the purpose of the ”embeds” clause. This clause makes it clear
that ”GR” is part of ”Line1”, even if it is probably shared with some sibling
blocks.

Classes in AltaRica 3.0 are similar to classes in object-oriented programming
languages (see e.g. [14], [15] for conceptual presentations of the object-oriented
paradigm). A class is a block that can be instantiated, i.e. copied, elsewhere
in the model. There are several differences however between blocks and classes.
AltaRica 3.0 makes a clear distinction between ”on-the-shelf”, stabilized knowl-
edge, for which classes are used, from the model itself, i.e. the implicit main block
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and all its descendants. Such a distinction has been conceptualized in C-K-theory
([16]). The implicit main block can be seen as the sandbox in which the analyst
is designing his model. Declaring a class is in some sense creating another sand-
box. Amongst other consequences, this means that it is neither possible to refer
in a class to an object which is declared outside of the class, nor to declare a
class inside another one or in a block. A class may of course contain blocks and
instances of other classes up to the condition that this introduces no circular
definition (recursive data types are not allowed in AltaRica 3.0). To summa-
rize, AltaRica 3.0 borrows concepts to both object-oriented programming and
prototype-oriented programming [11] - blocks can be seen as prototypes - so to
provide the analyst with powerful structuring constructs that are well suited for
the level of abstraction of safety analysis.

block BusbarPowerSupply

block PrimaryPowerSupply

Grid GR;

block Line1

embeds GR;

CircuitBreaker CBU1, CBD1;

Transformer TR1;

end

block Line2

embeds GR;

CircuitBreaker CBU2, CBD2;

Transformer TR2;

end

end

block BackupPowerSupply

DieselGenerator DG;

CircuitBreaker CB3;

end

end

class Grid

end

...

Fig. 3. Structure of the AltaRica 3.0 Model for the Electrical System (partial view)

4 Targeting Compilation into Fault Trees

4.1 A Simple Block-Diagram like Model

We shall consider first a very simple model, close to a block diagram, in which
basic blocks have a (Boolean) input, a (Boolean) output and an internal state
(WORKING or FAILED). This basic block changes its state, from WORKING
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Fig. 4. A Block Diagram for the electric supply system

to FAILED, when the event “failure” occurs. The diagram for the whole system
is pictured in Figure 4.

The AltaRica code for the diagram (with the architecture defined in the pre-
vious section) is sketched in Figure 5. The class “NonRepairableComponent”
declares a state variable “s” and two Boolean flow variables: “inFlow” and “out-
Flow”. “s” takes its value in the domain ”ComponentState” and is initially set
to WORKING. “inFlow” and “outFlow” are (at least conceptually) reset to false
after each transition firing. Their default value is false. The class also declares
the event “failure” which is associated with an exponential probability distribu-
tion of parameter “lambda”. This parameter has the value “1.0e-4” unless stated
otherwise.

After the declaration part, which consists in declaring flow and state variables,
events and parameters, comes the behavioral part. This behavioral part itself
includes transitions and assertions. In our example, there is only one transition
and one assertion. The transition is labeled with the event “failure” and can
be read as follows. The event “failure” can occur when the condition “s ==
WORKING” is satisfied. The firing of the transition gives the value FAILED to
the variable “s”.

The assertion describes the action to be performed to stabilize the system
after each transition firing (and in the initial state). In our example, the variable
“outFlow” takes the value true if “s” is equal to WORKING and “inFlow” is
true, and false otherwise. In the initial state, all components are working, so the
value true propagates from the input flow of the grid “GR” to the output flow of
the system. If the circuit breaker “CBU2” fails, then the value false propagates
from the output flow of “CBU2” to the output flow of the Line 2.

It would be possible to copy-paste the declaration of “NonRepairableCompo-
nent” in the declaration of the basic components of our model (“Grid”, “Cir-
cuitBreaker”, etc.). However, AltaRica 3.0 is an object-oriented language and
thus provides a much more elegant way to obtain the same result: inheritance. It
suffices to declare that the class “Grid” inherits from class “NonRepairableCom-
ponent”. This is done in the code of Figure 5. In the class “Grid” the default
value of the input flow is set to “true”. This change makes the grid a source
block. The remainder of the model consists in plugging inputs and outputs of
the components in order to build the system. Note that the resulting model is
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domain ComponentState { WORKING, FAILED }
class NonRepairableComponent

Boolean s (init = WORKING);

Boolean inFlow, outFlow (reset = false);

event failure (delay = exponential(lambda));

parameter Real lambda = 0.0001;

transition

failure: s == WORKING -> s := FAILED;

assertion

outFlow := s == WORKING and inFlow;

end

class Grid extends NonRepairableComponent(inFlow.reset = true);

end

...

block BusbarPowerSupply

Boolean outFlow(reset = false);

Grid GR;

block PrimaryPowerSupply

Boolean outFlow (reset = false);

block Line1

Boolean outFlow (reset = false);

embeds GR;

CircuitBreaker CBU1, CBD1;

Transformer TR1;

assertion

CBU1.inFlow := GR.outFlow;

...

end

block Line2

... // similar to Line1

end

assertion

outFlow := Line1.outFlow or Line2.outFlow;

end

...

assertion

outFlow := PrimaryPowerSupply.outFlow or BackupPowerSupply.outFlow;

end

Fig. 5. A simple model targeting a compilation into Fault Trees (partial view)

not just a flat block diagram, but a hierarchical one. The compilation of this
model into Fault Trees is performed according to the principle defined in [2].
The idea is to build a Fault Tree such that:

– The basic events of this Fault Tree are the events of the AltaRica model.
– There is (at least) an intermediate event for each pair (variable, value) of
the AltaRica model.
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– For each minimal cutset of the Fault Tree rooted by an intermediate event
(variable, value), there exists at least one sequence of transitions in the
AltaRica model labeled with events of the cutset that ends up in a state
where this variable takes this value. Moreover, this sequence is minimal in
the sense that no strict subset of the minimal cutsets can label a sequence
of transitions ending up in a state where this variable takes this value.

For technical reasons, the Fault Trees generated by the AltaRica compiler are
quite different from those an analyst would write by hand. The minimal cutsets
are however the expected ones. For instance, the minimal cutsets for the target
“(BusbarPowerSupply.outFlow, false)”, i.e. the busbar is not powered, with our
first model are as follows.

GR.failure DG.failure GR.failure CB3.failure
CBU1.failure CBU2.failure DG.failure CBU1.failure TR2.failure DG.failure
CBU1.failure CBU2.failure CB3.failure TR1.failure CBD2.failure DG.failure
CBU1.failure CBD2.failure CB3.failure TR1.failure CBU2.failure DG.failure
CBU1.failure CBD2.failure DG.failure TR1.failure CBU2.failure CB3.failure
CBD1.failure CBU2.failure DG.failure TR1.failure TR2.failure CB3.failure
CBU1.failure TR2.failure CB3.failure TR1.failure CBD2.failure CB3.failure
CBD1.failure CBU2.failure CB3.failure TR1.failure TR2.failure DG.failure
CBD1.failure CBD2.failure DG.failure CBD1.failure TR2.failure CB3.failure
CBD1.failure CBD2.failure CB3.failure CBD1.failure TR2.failure DG.failure

4.2 Taking into Account Common Cause Failures

We shall now design a second model in order to take into account the common
cause failure of the two transformers (due for instance to fire propagation). To
do so, we have to model that transformers fail simultaneously when the common
cause failure occurs. AltaRica provides powerful synchronization mechanisms to
make transitions simultaneous. The idea is to create an event “CCF” and a
transition at the first common ancestor of the two transformers, i.e. “Prima-
ryPowerSupply”. The new code for the “PrimaryPowerSupply” is sketched in
Figure 6. The operator & synchronizes the transitions “failure” defined for each
transformer. The operator & is associative and commutative. Any number of
transitions can be thus synchronized. To fire the synchronizing transition, at
least one of the synchronized transitions must be fireable. If the synchroniz-
ing transition is fired, then all the possible synchronized transitions are fired
simultaneously. The modality ? indicates that the corresponding synchronized
transition is not mandatory to fire the synchronizing transition. The modality !
indicates that the corresponding transition is mandatory.

Note that the synchronized transitions continue to exist independently of
the synchronizing transition. It is possible to hide transitions by means of a
special clause “hide”. Our second model has the following two additional minimal
cutsets.

PrimaryPowerSupply.CCF, BackupPowerSupply.DG.failure
PrimaryPowerSupply.CCF, BackupPowerSupply.CB3.failure
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block PrimaryPowerSupply

...

event CCF (delay = exponential(lambdaCCF));

parameter Real lambdaCCF = 1.0e-5;

...

transition

CCF: ?Line1.TR1.failure & ?Line2.TR2.failure;

assertion

...

end

Fig. 6. Synchronization mechanism to model the Common Cause Failures

5 Targeting Compilation into Markov Chains

In this section we consider repairs of components, reconfigurations and limited
resources. First, we assume that there is an unlimited number of repairers. Then,
we refine our model to take into account a limited number of repairers. Both
models are compiled into Markov chains.

5.1 Unlimited Number of Repairers

All components are repairable. The AltaRica code in this case is similar to the
one of the “NonRepairableComponent” (see Figure 5), except that a new event
“repair”, the corresponding parameter mu and the corresponding transition are
added to the previous model. Instead of the ”NonRepairableComponent”, the
classes ”Transformer” and ”Grid” of this model, will inherit from a ”Repairable-
Component”.

The on demand failures of the circuit breakers and the diesel generator are
also considered. The automata describing the behavior of the diesel generator,
the transformer, the grid and the circuit breakers are figured in 7 and 8. The solid
lines correspond to the stochastic transitions, whereas the dashes correspond to
the immediate ones.

Figure 9 represents the AltaRica 3.0 model of the spare component corre-
sponding to the left automaton depicted in Figure 7. Transitions ”stop”, ”start”
and ”failureOnDemand” are immediate (their delays are equal to 0). When the
state variable ”s” is equal to STANDBY and the flow variable ”demanded” is
true, the event ”start” may occur with the probability ”1-gamma” and the event
”failureOnDemand” may occur with the probability ”gamma”. The values of the
probabilities are given through the attribute ”expectation”.

In this example, we also take into consideration the short circuit case (see
the automaton in the right hand side of the Figure 8). For the transformer, the
event failure is considered as a short circuit, that will propagate into the whole
line and make it instantly fail. If the short circuit is in the ”Grid”, the whole
”Primary Power Supply” system will eventually fail, inducing the spare block
(the ”Backup Power Supply” system) to take over. The structure of the whole
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Fig. 7. Two automata describing the behavior of the Diesel Generator and the Trans-
former

Fig. 8. Two automata describing the behavior of the Circuit Breaker and the Grid

model remains the same as in Figure 3. Some additional assertions are added
in order to represent the propagation of the short circuit from the transformers
to the grid and the reconfigurations (orders to open/close circuit breakers, to
start/stop the diesel generator).

The semantics of AltaRica 3.0 are a Kripke structure (a reachability graph)
with nodes defined by variable assignments (i.e. variables and their values) and
edges defined by transitions and labeled by events. If the delays associated to
the events are exponentially distributed, then the reachability graph can be
interpreted as a continuous time Markov chain. In the case when the graph
contains immediate transitions, they are just collapsed using the fact that an
exponential delay with rate λ followed by an immediate transition of probability
p is equivalent to a transition with an exponential delay of rate pλ.
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domain SpareComponentState { STANDBY, WORKING, FAILED }
class SpareComponent

Boolean s (init = WORKING);

Boolean demanded, inFlow, outFlow (reset = false);

event failure (delay = exponential(lambda));

event repair (delay = exponential(mu));

event start (delay = 0, expectation = 1 - gamma);

event failureOnDemand (delay = 0, expectation = gamma);

event stop(delay = 0);

parameter Real lambda = 0.0001;

parameter Real mu = 0.1;

parameter Real gamma = 0.001;

transition

failure: s == WORKING -> s := FAILED;

repair: s == FAILED -> s := STANDBY;

start: s == STANDBY and demanded -> s := WORKING;

failureOnDemand: s == STANDBY and demanded -> s := FAILED;

stop: s == WORKING and not demanded -> s := STANDBY;

assertion

outFlow := s == WORKING and inFlow;

end

Fig. 9. AltaRica 3.0 model of a spare component (Diesel generator)

The generated Markov Chain contains 7270 states and 24679 transitions. The
tool XMRK calculates the unavailability for different mission times. For λ =
10−4, γ = 10−3 and µ = 10−1, the probabilities are represented in Figure 12.

5.2 Limited Number of Repairers

In this part, we consider the case of a limited number of repairers, namely
lower than the number of failures. Counter to the previous model, in order for
a repair to take place, the repairer should be available and not used by another
component. In this case, some changes in the behavior of the system take place.
We will not only be interested in the ”repair” transition, but also in the time it
starts and ends at. Therefore, the ”repair” transition is replaced by a whole set
of transitions: startRepair and endRepair (see for example the automaton in the
right hand side of the Figure 8). Besides, a new class called ”RepairCrew” that
defines when a job can start is added to the previous model (see Figure 10).

The transitions ”startRepair” and ”startJob”, as well as ”endRepair” and
”endJob” are synchronized using the operator & as shown in Figure 11.

Compared to the definition of the common cause failure (see Figure 6), here
the modality ! is used in the synchronization, which means that both synchro-
nized events should be fireable to be able to fire the synchronizing transitions.
In this example, the synchronized events are hidden explicitly using the clause
”hide”.
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class RepairCrew

Integer numberOfBusyRep (init = 0);

parameter Integer totalNumberOfRepairers = 1;

event startJob, endJob;

transition

startJob: numberOfBusyRep < totalNumberOfRep ->

numberOfBusyRep := numberOfBusyRep + 1;

endJob: numberOfBusyRep > 0 ->

numberOfBusyRep := numberOfBusyRep - 1;

end

Fig. 10. AltaRica model of the Repair Crew

block BusbarPowerSupply

RepairCrew R;

block PrimaryPowerSupply

...

end

block BackupPowerSupplySystem

...

end

event PPS GR startRepair, PPS GR endRepair;

...

transition

PPS GR startRepair: !R.startJob & !PrimaryPowerSupply.GR.startRepair;

PPS GR endRepair: !R.endJob & !PrimaryPowerSupply.GR.endRepair;

hide R.startJob, PrimaryPowerSupply.GR.startRepair;

hide R.endJob, PrimaryPowerSupply.GR.endRepair;

...

end

Fig. 11. A model targeting a compilation into Markov Chains (partial view)

In order to make the results more interesting, two numbers of repairers n = 1
and n = 3 are considered. This will allow us to compare the two graphs of
unavailability. The same parameters mentioned in the first subsection are used
here as well. The Markov Chain consists of 29332 states and 98010 transitions.
The graph in Figure 12 shows indeed that the unavailability is lower when the
number of repairers is bigger, and even lower when it is unlimited.

6 Conclusion

In this paper we showed, using an electrical system as a red-wire example, how
AltaRica 3.0 can be used to model complex phenomena. A purely structural
model was designed. Then, we derived four variants from it: two of them target-
ing a compilation into Fault Trees and two others targeting a compilation into
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Fig. 12. Unavailability for a different number of repairers

Markov chains. Each variant, or subset of variants, was tailored for a particular
assessment tool, i.e. to capture a particular aspect of the system under study.
Based on this experience (and several others we have performed), we are con-
vinced that this approach, consisting of deriving models by means of successive
refinements, is a solid ground to build a modeling methodology. The calcula-
tions to be performed are actually very resource consuming. Therefore, a model
is always a trade-off between the accuracy of the description and the ability to
perform calculations. Refining a model in successive variants is a good way to
seek a good trade-off. Moreover, the trade-off depends on the characteristics of
the system to be observed. Therefore, different tools must be applied. As a con-
sequence, the refinement process should not be linear, but rather have a tree-like
structure.
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