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Algorithms - Biology - Structure

. History
– Team created : July 2007

. Composition
– Permanent: D. Mazauric, F. Cazals
– (part time) Engineer: T. Dreyfus

– PhD students
A. Chevallier (Energy landscapes)
R. Tetley (Structural alignments)
D. Bulavka (Collective coordinates)
M. Simsir (Modeling drug efflux in cancer)

. Graduated over the past 4 years
D. Agarwal: Native mass spectrometry; Harvard med school
A. Lhéritier: Machine learning/Two-sample tests; Amadeus SA
S. Marillet: Modeling antibody-antigen complexes; CHU Poitiers



The structure-to-function relationship

. Protein complexes and biological functions

– Understanding the stability and the specificity
of macro-molecular interactions

– Exploiting structural information
crystallography, NMR, EM, SAXS,. . .

– Performing predictions
with little/no structural information
using remote homology information

. Structural information is scarce

.Ref: Janin, Bahadur, Chakrabarti; Quart. reviews of biophysics; 2008

.Ref: Levitt; PNAS 106; 2009



Emergence of macromolecular function(s) from
Structure – Thermodynamics – Dynamics

Structure: stable conformations i.e.
local minima of the PEL

Thermodynamics: meta-stable
conformations i.e. ensemble of con-
formations easily inter-convertible
into one - another.

Dynamics: transitions between
meta-stable conformations e.g.
Markov state model

Potential Energy Landscape

• large number of local minima

• enthalpic barriers

• entropic barriers



Vision: synergy computer science - structural biology

. Modeling: leveraging
experimental data

Biochemistry Biophysics

• Geometry

• Topology
• Robotics
• Combinatorial op-
timization

• Statistics
•Machine learning

Experimentation

Theory
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. Complementary approaches

– Machine learning approaches:
classification / regression

– Ab initio approaches:
structure / thermodynamics / dynamics

. Work-packages at a glance
– Modeling high-resolution structures
– Modeling large assemblies
– Modeling the flexibility of proteins
– Algorithmic foundations
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Estimating binding affinities

. Dissociation constant and
dissociation free energy:

Kd = [A][B]/[AB]

∆Gd = −RT lnKd/c
◦ = ∆H − T∆S .

. Problem statement: estimate the binding affinity of two partners from

– High resolution crystal structures of partners and complex
– Specific conditions (pH, ionic strength, . . . )
– Key difficulty:

enthalpy - entropy compensation (Kd is of thermodynamic nature)
(!) predictions with ∆Gd < 1.4 kcal/mol are hard

. State-of-the-art: numerous approaches

– Knowledge based approaches:
complex models face overfitting; sparse models may be overly restrictive

– Molecular mechanics based approaches:
require specific hypothesis. . . or massive calculations

.Ref: Kastritis et al, Protein science, 2011 (the SAB; 144 cases)

.Ref: Janin, Protein Science, 2014



Estimating binding affinities

Ic, SASA = 0

Ic, SASA > 0

I

(A) (C)(B) (D)

. Contributions: models combining novel parameters and supervised regression

– Novel variables coding enthalpic and entropic variations upon binding
– Model selection procedure based on cross validation
– State-of-the-art binding affinity estimates on the SAB:

whole SAB: Kd within one and two OOM in 48% and 79% of cases
high resolution (2.5Å): Kd within one and two OOM in 62% and 89%

. Assessment:

– Sensitivity to the resolution of crystal structures (cf Cruickshank’s formula)
– Sensitivity to coverage of model space by learning set (supervised regression)
– Predicting is not explaining

.Ref: Marillet, Boudinot, Cazals; Proteins 2015

.Ref: Marillet, Lefranc, Boudinot, Cazals; Frontiers in Immuno., 2017

.Ref: Vangone and Bonvin, eLIFE,2015
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Energy landscapes:
structure – thermodynamics – dynamics

. Problem statement: emergence of function from structure and dynamics
For proteins: understanding minimal frustration

. Three (overlapping) classes of ab initio approaches:
– Molecular dynamics (including REMD, metadynamics)

Model reduction: dimensionality reduction (PCA, Isomap, diffusion maps)
– Monte Carlo methods (MCMC, importance sampling, Wang-Landau)

Model reduction: Markov state model design via lumping
– Energy landscapes methods (the basin hopping lineage)

Model reduction: superposition approach via coarse-graining
. Bottleneck: massive calculations required

.Ref: Becker and Karplus, The Journal of Chemical Physics, 1997

.Ref: Wales; Energy Landscapes; 2003

.Ref: Chipot; Frontiers in free-energy calculations; 2014



Analysis of sampled energy landscapes
. Contributions: novel concepts and algorithms to

– Analyze conformational ensembles
– Analyze sampled energy landscapes: coarse graining with topological persistence
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. Assessment:

– State-of-the-art algorithms analysis/coarse-graining methods
– Most of the analysis geared towards potential energy landscapes

work ahead on free energy landscapes

.Ref: Cazals, Dreyfus, Mazauric, Roth, Robert; J. Comp. Chem., 2015

.Ref: Carr, Mazauric, Cazals, Wales; J. Chem. Phys.; 2016



Exploring Potential Energy Landscapes:
basin hopping

. Goal: enumerating low energy local minima

. Basin-hopping and the basin hopping transform
– Random walk in the space of local minima
– Requires a move set and an acceptance test (cf Metropolis)

and the ability to descend the gradient (quenching)
aka energy minizations

. Limitation: no built-in mechanism to escape traps

V

C
mimi+1m′

.Ref: Li and Scheraga, PNAS, 1987



Exploring energy landscapes:
a generic approach yielding BH, T-RRT,. . .

. Goal: crawl down the potential
energy landscape

. Strategy: force the exploration of
empty space
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. Hybrid algorithm: alternate BH and
T-RRT extensions

. Key ingredients:

I Boosting the identification of low
lying minima with the Voronoi bias

I Favoring spatial adaptation—local
exploration parameters

I Handling distances efficiently

.Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2016



Exploring energy landscapes: performances of Hybrid

. Contributions: enhanced exploration of low lying regions of a complex landscape

. Protocol: on BLN69, a model protein with 207 d.o.f:
– Contenders: BH, T-RRT, Hybrid for various parameter values b

• Algorithm • BBox ∅: low lying mins • Median energies: all mins
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. Assessment:
– PEL exploration:

– doubled the num. of local mins. (458,082 minima to 1,044,118)
– explored lower regions of the PEL

– Combines critical building blocks:
minimization, spatial exploration boosting, nearest neighbor searches

– Ongoing: bridging the gap to thermodynamics via DoS calculations

.Ref: Oakley et al; J. of Physical Chemistry B; 2011

.Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015
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Large Assemblies: Native Mass Spectroscopy

. Input: mass spectrum of oligomers of a (large) assembly

ionization

ions accelerate through
an electric field

magnetic field:
deflection depends on
mass/charge ratio

ion separation yields
mass/charge (m/z) spectrum

molecules: sprayed
from solution
to gas sample

(1) Disrupting an assembly into oligomers (from sub-units to bigger complexes)
(2) Mass spectrometry yields a m/z spectrum then a mass spectrum
(3) Decomposing an individual mass yields the list of proteins in a sub-complex

. Problem: reconstructing pairwise contacts from the composition of oligomers
NB: coarse structural information (contacts) from combinatorial information

. State-of-the-art
– Experiments: recent techniques mastered by few groups (Robinson, Hecht)
– Data analysis: heuristics

.Ref: Taverner, Robinson et al; Accounts of chemical research; 2008



Native Mass Spectrometry: Connectivity Inference from oligomers

(B)
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List of proteins / subunits:

Cyan Gray Green Orange Purple

Enforced and forbidden contacts:

Purple Cyan: Forbidden

Likelihood of contacts – default is 0.5:

Orange Green: 0.9

Gray Purple: 0.1

Oligomers:

Green Orange Purple

Gray Green Purple
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Contacts

. Contributions
– Hardness: problem is NP-complete and APX-hard (P 6= NP: no PTAS)
– Exact algorithm based on Mixed Integer Linear Programming (MILP)

→ generates all solutions for OPT + k (k ≥ 0)
– Greedy polynomial algorithm with controlled approximation factor:

→ 2(log n + κ), with κ max. # oligomers of a vertex
– Experiments on four of the biggest systems know to date:

– more parsimonious solutions (than those of contenders)
– edges reported in (almost) perfect agreement with known contacts

. Assessment: doubled the quality of predictions by contenders

.Ref: Inria ABS + Inria COATI, European Symp. on Algorithms, 2013

.Ref: Agarwal, Caillouet, Coudert, Cazals, Molecular and Cellular

Proteomics, 2015



Connectivity inference with biophysical constraints

. Graph constraints reflecting biophysical and structural biology properties:

– subunit with limited number of neighbors → bounded maximum degree
– subunit with known contacts → family of admissible subgraphs
– presence of symmetries → symmetries of admissible graphs

. Generalized inference as minimum F-Overlay: given a graph family F :
Input: a hypergraph H = (V , E) – with E the oligomers
Output: a graph G = (V ,E) with minimum | E(G) | such that:

I ∀S ∈ E : induced graph G [S ] has a spanning subgraph in F
NB: F ≡ all trees ⇔ G [S ] is connected ⇔ previous inference problem

. Our results:

I Complexity dichotomy: for every F , we can tell whether Minimum
F-Overlay is Polynomial or NP-complete.

I Parameterized algorithms: for almost every F for which the problem is
NP-complete, we can tell whether the problem is FPT or W[1]-hard.

.Ref: D. Mazauric et al, IWOCA 2017
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The Structural Bioinformatics Library
http://sbl.inria.fr

.Ref: Cazals and Dreyfus; Bioinformatics, 2017

http://sbl.inria.fr


The Structural Bioinformatics Library: Architecture

End-User

Models/Modules

Contributor

Core

Algorithmic packages

Applications

Programs

Developer

Where ?

What ?

Who ?

SBL

Applicative packages
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Modeling the flexibility of macro-molecules

. Task: Enhanced sampling algorithms
– Application(s): energy landscape exploration
– Punchline: atomic move sets (correlated moves, collective coordinates)

. Task: Enhanced thermodynamics sampling algorithms
– Application(s): thermodynamic sampling
– Punchline: multi-canonical sampling DoS calculations (adaptive Wang-Landau)



Modeling large assemblies
Modeling high-resolution structures

. Task: Reconstruction in integrative modeling (Xtallography, cryo-EM)
– Punchline: continuous dynamic programming, enumerative algorithms

. Task: Enhanced functional annotations of proteins in sequence - structure studies
– Punchline: probabilistic sequence HMM, biased with structural information

. Task: Towards understanding dynamics mechanisms
– Punchline: identifying meta-stable states of dynamic molecular machines

Example: class II fusion proteins, functions of the influenza polymerase



Algorithmic foundations
Software

. Task: Density of states calculations – high dimensional integration
– Punchline: improve (polytope) volume calculations / Wang-Landau sampling

. Task: Graph algorithms techniques for structural biology
– Punchline: graph decompositions, algorithms, guarantees

. Task: Structural Bioinformatics Library
– Punchline: continue development + leverage the impact
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