

Bioinformatics and Biophysics team

Design of stable cyclic peptides for therapeutic applications

Guillaume Postic, PhD

MASIM workshop, Friday, November 17th, 2017 (Méthodes Algorithmiques pour les Structures et Interactions des Macromolécules)

Peptides as drugs

- Small and easily accessible to chemical synthesis \rightarrow Design of novel therapeutics
- Target selectivity and low toxicity
 → Excellent safety, tolerability, and efficacy
- Modifications
- \rightarrow Cyclizations, D-residues, *N*-methylation, etc.

Global sales, examples:

- Lupron[™] (Abbott Laboratories) US\$2.3 billion in 2011
- Lantus™ (Sanofi) US\$7.9 billion in 2013
- Victoza[™] (Novo Nordisk) US\$2.6 billion in 2013

Cyclic peptides

- Display a large surface area
- → High affinity and selectivity
- Limited conformational flexibility
- \rightarrow Reduced entropic penalty upon binding
- → Improved binding properties
- Over 40 cyclic peptide drugs are currently in clinical use
- \rightarrow ~1 new cyclic peptide drug enters the market every year
- → Vast majority are derived from natural products
 e.g. antimicrobials, human peptide hormones

Gao, M., Cheng, K., & Yin, H. (2015). Targeting protein-protein interfaces using macrocyclic peptides. *Peptide Science*, 104(4), 310-316.

Cyclic peptides

- Display a large surface area
- → High affinity and selectivity
- Limited conformational flexibility
- \rightarrow Reduced entropic penalty upon binding
- → Improved binding properties
- Over 40 cyclic peptide drugs are currently in clinical use
- \rightarrow ~1 new cyclic peptide drug enters the market every year
- → Vast majority are derived from natural products
 e.g. antimicrobials, human peptide hormones

Design of stable cyclic peptides for therapeutic applications

I) Stable cyclic peptides: Robotics-based approach
Maud Jusot PhD thesis (2015-2018)
Jacques Chomilier, Dirk Stratmann (IMPMC, UPMC)
Juan Cortés (LAAS)

II) Therapeutic applications: Caspase inhibitors

- Caspase-3: Jaysen Sawmynaden PhD thesis (2017-2020)
- Caspase-2: Guillaume Postic/Maxime Louet (postdoc)
 Jacques Chomilier, Dirk Stratmann (IMPMC, UPMC)
 Fabio Pietrucci (IMPMC, UPMC)
 Damien Laage (ENS)
 Chahrazade El Amri (IBPS, B2A, UPMC)

Mapping the energy landscape

Good candidates for binding:

 The favorable conformation is a stable conformation or is easily accessible

Search for:

- The **local minima**: more stable conformations
- The transition paths: conformational changes between minima

Robotics-based representation of the backbone

Dihedral angles ⇔ rotative joints

Fragment of 3 amino acids treated as a kinematic chain similar to a robotic manipulator

- → 6 degrees of freedom
- \rightarrow Given the terminal positions:
 - → Inverse kinematics (IK): 0 to 16 solutions (*i.e.* conformations) that satisfy the terminal positions

Exploration of the conformational space

Cyclic pentapeptide: 10 degrees of freedom = $5 \times (\Phi, \Psi)$ angles

Start from a dipeptide: $2 \times (\Phi, \Psi)$ angles \rightarrow Exhaustive exploration (grid search)

Exploration of the conformational space

Cyclic pentapeptide: 10 degrees of freedom = $5 \times (\Phi, \Psi)$ angles

Start from a dipeptide: $2 \times (\Phi, \Psi)$ angles \rightarrow Exhaustive exploration (grid search)

Add the "robotic" tripeptide

 \rightarrow Ring closure with IK (0 to 16 solutions)

Exploration of the conformational space

Cyclic pentapeptide: 10 degrees of freedom = $5 \times (\Phi, \Psi)$ angles

Start from a dipeptide: $2 \times (\Phi, \Psi)$ angles \rightarrow Exhaustive exploration (grid search)

Add the "robotic" tripeptide

 \rightarrow Ring closure with IK (0 to 16 solutions)

4-dimension exploration in a 10-dimension space

dipeptide

Sampling of Φ_1 , Ψ_1 , Φ_2 , Ψ_2 Grid search with $\Delta \Phi, \Delta \Psi = 10^\circ$

In theory: $(360/10)^4 \times \{0.16\} = 0$ up to 26,873,856 conformations *In practice*: ~800,000 conformations

Benchmark: energy landscape of cyclic pentapeptides

→ Set of 20 cyclic pentapeptides¹

c(RGDkV) c(RGDfV) c(RGDpV) c(RGDfV) c(RGDwV) c(RGDfV) c(RGDfK) c(RGDfV) c(RGDKv) c(RGDfV) c(RGDWv) c(RGDfV) c(RGDFV) c(RGDfV) c(VfdGr) c(RGDfV) c(vfdGR) c(RGDfV) c(vfdGr) c(GGGGG)

lower case: D-form, N-methyl

Cilengitide (cyclo(RGDf-[N -Me]V))²

UCSF-Chimera Tleap (Amber ff96, implicit solvent) RED Server (*N*-methylated residues)

Energy landscape explored by REMD (Replica-Exchange MD) Gromacs 5.1.2, 8 replicas, from 300 K to 450 K, 2.4 μ s × 8 = 19.2 μ s \rightarrow Comparison with our exhaustive exploration

¹Wakefield AE et al., J. Chem. Inf. Model 2015; ²Mas-Moruno et al., Angew. Chem. 2011

Benchmark: energy landscape of cyclic pentapeptides

→ Set of 20 cyclic pentapeptides¹

c(RGDkV) c(RGDpV) Cilengitide (cyclo(RGDf-[N -Me]V))²

Data generated for the benchmark

- 20 structures of cyclic peptides (pdb + topology files)
- ~500 µs of simulations
- 2 TB of data

c(RGDfV)

c(RGDfV)

RED Server (*N*-methylated residues)

Energy landscape explored by REMD (Replica-Exchange MD) Gromacs 5.1.2, 8 replicas, from 300 K to 450 K, 2.4 μ s × 8 = 19.2 μ s \rightarrow Comparison with our exhaustive exploration

Exhaustive vs REMD

Comparison of the explored areas

Penta-glycine c(GGGGG)

Exhaustive vs REMD

Comparison of the explored areas

REMD

Robotics-based sampling of cyclic peptides: <u>our current method</u>

- Exhaustive exploration of cyclic pentapeptides conformational landscape
- Importance of the ω angles sampling
- Method can treat:
 - Head-to-tail cyclization
 - N-methyl residues
 - D-residues

Robotics-based sampling of cyclic peptides: perspectives

Ψ

To handle longer cyclic peptides:

- Basin hopping for minima sampling of the backbone
- T-RRT *Transition-based Rapidly-exploring Random Trees* for transition path sampling:
 - → Explorative method intrinsically biased towards regions:
 - unexplored
 - energetically favorable(auto-adaptative temperatures)

Jaillet, J. Comput. Chem. 2011

Design of stable cyclic peptides for therapeutic applications

I) Stable cyclic peptides: Robotics-based approach
Maud Jusot PhD thesis (2015-2018)
Jacques Chomilier, Dirk Stratmann (IMPMC, UPMC)
Juan Cortés (LAAS)

II) Therapeutic applications: Caspase inhibitors

- Caspase-3: Jaysen Sawmynaden PhD thesis (2017-2020)
- Caspase-2: Guillaume Postic/Maxime Louet (postdoc)
 Jacques Chomilier, Dirk Stratmann (IMPMC, UPMC)
 Fabio Pietrucci (IMPMC, UPMC)
 Damien Laage (ENS)
 Chahrazade El Amri (IBPS, B2A, UPMC)

Target proteins: caspases

- Caspases: family of Cysteine-ASPartic proteASES
- Play essential roles in
 - Programmed cell death (apoptosis)
 - Inflammation
- Caspase-2 and -3
 - → Involved in CNS disorders (Alzheimer)
 - \rightarrow Active as multimers, with allosteric regulation
 - → No specific inihibitor
 - Caspase active site conserved
 - Multimerization interface specific

Peptide (cyclized)

- Large interaction surface
- High affinity

Target the narrow pocket at the interchain interface with a cyclic pentapeptide

Target the narrow pocket at the interchain interface with a cyclic pentapeptide

Caspase-3: strategy

Caspase-3: Conformational stability of cyclized peptide in REMD

40 ns

Caspase-3: protein-peptide binding with metadynamics

Metadynamics: principles

The choice of the biased CV is crucial

- Caspase-peptide distance
- Water molecules at the interface
- Hydrophobic contacts
- Polar contacts

Use all 4 CV simultaneously with bias-exchange metadynamics

Preliminary results on short trajectories

Bias-exchange metadynamics

- 4.5 ns simulation; NPT; Amber 96
- 21,117 water molecules (TIP3P)
- 4 replicas (because 4 biased collective variables)

4 biased collective variables

Caspase-3: Perspectives

- Different sets of biased CV
- Longer simulations
- Other peptides/chemical modifications
- Estimate binding affinity and kinetics: rank peptide designs
- Binding to other caspases: specificity to caspase-3
- → Experimental assays

Peptide (cyclized)

- Large interaction surface
- High affinity

Sequences:

- GXGXG $(n=20^2)$
- GGGXX (n=20²)
- GXXGX (n=20³)
- GGXXX (n=20³)
- X = any residue type

Design of cyclic pentapeptides for the inhibition of caspase-2

• <u>Step 1</u>: Identification of candidates with good affinity for the pocket \rightarrow <u>Molecular docking</u>

- <u>Step 2</u>: Dynamic study of the binding to the pocket
- → Metadynamics simulations (PLUMED 2)

• <u>Step 3</u>: *in vitro* assays (Prof. C. El Amri, UPMC)

Thank you for your attention

IMPMC

Jacques Chomilier Dirk Stratmann Maud Jusot Jaysen Sawminaden Maxime Louet Fabio Pietrucci Eric Ngo Matthias Lerbinger Théo Torcq

IBPS

Chahrazade El Amri

ENS

Damien Laage

CINES

LAAS

Juan Cortés Marc Vaisset Kevin Molloy Alejandro Estaña Laurent Dénarié Amélie Barozet Antoine Charpentier

Émergence UPMC