

GT MASIM

RNA bioinformatics

folding/interaction, stability/dynamics, thermodynamics/kinetics, ...

Fabrice Leclerc fabrice.leclerc@u-psud.fr

I2BC - Dept. M2GB Genomics, Molecular Genetics, Bioinformatics

Team: RNA Sequence, Structure & function - D. Gautheret

- RNA discovery: genomics, transcriptomics (cancer) D.
 Gautheret
- RNA structure & interactions: snoRNAs, ribozymes-viroids, RNA-RNA interactions, RNA-protein interactions - F. Leclerc
- RNA function & processing: genetic code, RNA-based regulations - J. Lehmann
- 4 senior researchers (C. Toffano: vice-director of the eBio platform), 2 Ph.D. students, 2 CDI IE, (1 invited professor)

Some recurrent problems & issues

- 2D&3D modeling of RNA variants/mutants from 3D structures
 - sparse structural data
 - experimental 3D structures & biological-physiological conditions

2D&3D modeling of RNA-RNA interactions

- dense RNA-RNA interactome
- predict RNA interactions; 2D to 3D transposition
- 3D modeling of RNA/protein interactions
 - RNA binding ? binding interface binding mode binding specificity (modeling/design)

Structural/biochemical data inconsistencies

Wang *et al.,* Biochem., 1999 de la Peña *et al.,* EMBO J., 2003 Khvorova et al., Nat. Struct. Biol., 2003

Canny et al., JACS, 2004

2D&3D structures of H/ACA box s(no)RNAs (guide) Kloop guide 20 – U 5' guide sequence 3' guide sequence **Internal Loop** target 3′¹⁰ ⁵⁰rRNA (tRNA) ANA Loop -A-C-A 3

Toffano-Nioche et al., 2013;

Toffano-Nioche et al., 2015

2D(3D) structural&energetic rules to classify "productive" guide RNAs

2D aligned structures of archaeal H/ACA box s(no)RNAs

Af4 1

Af4.2a

HACAprodfold

Af190

Af4.2b

12 subfamilies

RNA-RNA interactions

2D structure of Hammerhead RNA

3D Modeling of HHR variant

11

SANS* & Modeling $R_{g}^{exp} = 31\text{\AA}$ $R_{g}^{calc} = 29 (26)\text{\AA}$

SANS: Small Angle Neutron Scattering Institut Laue-Langevin (ILL), Grenoble

 $d^{exp} = 96.0$ Å $d^{calc} = 96.7 \text{\AA}$

HHR self-association

HHR self-association & loss of catalytic activity

3D Model of HHR selfassembly

Α

HII

HII

3' ^{79'}

HIII

0000000000

HIII

ΗΙ

3'

HI

Leclerc et al., 2016

Dynamics of HHR(-) dimer

RNA Binding Proteins (RBPs): Modularity, dsRNA/ssRNA

17 Lunde et al., Nat. Rev. Mol. Cell Biol., 2007

Naive approach for modeling ssRNA ligands (fragment-linking) MCSS A U **TIS11d (CCCH)** Molpy **Zinc Finger** contraint $n \ge 8$ CHARMM 2.2Å ≤ RMSD ≤ 3.6Å **3D/NMR** PDB ID: 1RGO

Proof of concept: fragmentbased modeling of RNA Ligands

19

Binding strength & specificity in RBPs: RNase A

Ligand	Ν	ΔH	TΔS	K _d (µM)
5' -AMP	0.89	-17.1	-11.6	124
5' -GMP	1.14	-10.9	-6.4	568
3'-CMP	0.99	-13.5	-7.5	51.6
3' - TMP	0.99	-14.3	-7.6	15
3'-UMP	NA	NA	NA	9.7

Doucet et al., Proteins, 2010

Predict "strong" nucleotide binding sites: (fragment-growing)

box setting & fragment distribution (MCSS)

Predict nucleotide binding sites specificity

nucleobases

A, U, C, G

(PDB ID: 1RCN)

ribose, phosphate

ribose-phosphate

Predict nucleotide binding preferences in "hotspots"

focusing on high density regions

Clustering & scoring nucleotide binding preferences

PDB ID: 1RCN

Ligand	ΔH	n _{clust}	T∆S	ΔG	ΔG_{exp}
5'-AMP	-16	15	7.5	-24	-
5'-GMP	-19	21	11	-30	-
5'-CMP	-18	29	15	-33	-6.0
5'-UMP	-21	52	26	-47	-6.7

Ligand	ΔH	n _{clust}	T∆S	ΔG	ΔG_{exp}
5'-AMP	-23	27	14	-37	-5.5
5'-GMP	-24	19	10	-34	-4.5
5'-CMP	-18	31	16	-34	-
5'-UMP	-20	25	13	-33	-

Acknowledgments

2BC

FOR SCIENCE

STRASBOURG

UNIVERSITÉ DE

- Claire Toffano-Nioche, Daniel Gautheret: I2BC
- Marie-Christine Maurel, Jacques Vergne: MNHN, Univ. Paris 6
- Giuseppe Zaccai & Anne Martel, ILL, Grenoble
- Nicolas Chevrollier, I2BC, Univ. Paris 11
- Manuel Simoes, Ph. D., Université de Strasbourg
- Martin Karplus, Prof. emeritus, Harvard University Univ. Strasbourg