

Peptide modeling in isolation and in interaction : steps towards rational peptide design

Pierre Tufféry

GT MASIM Paris, 17 novembre 2017

de la santé et de la recherche mé

-les-Moulineaux

Montrouge

lyry-sur-Seine

Equipe 2 : "Computational approaches applied to pharmacological profiling" (Pr A-C. Camproux, Pr O. Taboureau)

Equipe 3 : "Virtual screening and rational design of protein-protein interaction modulators with balanced ADME-Tox properties"

(Dr M. Miteva)

Virtualization

Galaxy Mobyle

Service publication, workflows

cloud

Therapeutic peptides: why ?

Drug Discovery Today

Griesenauer et al., Drug. Discov. Today, 2017

Bacteria Peptide Database

Last production update (15/10/2015) :

- Prokaryotes genomes :
 - ~ 100 orders
 - ~ 200 families
 - ~ 700 genera
 - ~ 1,500 species
 - ~ 2,700 strains
- Total : ~ 2,000,000 peptides
 - ~ 70 % of newcomers
 - ~ 200,000 (~ 20 %) of new intergenic SCSs are conserved to some extent : consistent with genes found in RefSeq

Rey et al., Database, 2014

Towards rational peptide design

De novo peptide structure modeling

HMM derived Structural alphabet

>HMM-SA

NLHWAAAAAVWAVDOQUSUFSLHBBVWAAAVZZFFFSPBS XTLNHZDSNLNJFZDRLPECCILGDEQLUGPRGBDSKHBB BBQHEGOWAVWAAAVWABQHZRUEEEGWAAZCCQUQYGEB BVSUSP

W D 0 B 0 U H G N M

A. C. Camproux et al., Prot. Eng, 1999, J Mol Biol 339, 591-605 (2004)

HMM derived Structural alphabet

R hidden states $\{S_1,...,S_R\}$ emitting the vectors of descriptors of each fragment ~ R multigaussian densities $f_{xi}(y, \theta_i)$ with $\theta_i = (\mu_i, \sigma_i^2)$

N states of a protein $(X_1, ..., X_L) \sim \mathbb{R}$ states Markov chain (order 1) Transition Matrix $(\mathbb{R}^*\mathbb{R})$: $\Pi_{jl} = P(X_i = S_j | X_{i-1} = S_L), 1 < j, l < R$ Initial law of the chain (\mathbb{R}) : $\upsilon_j = P(X_1 = S_j), 1 < j < R$

SA letters Phi/Psi

HMM-SA letter "O"

Generating models

2. Monte-Carlo (~30 000 steps)

Maupetit et al., J Comput Chem., 2010 Maupetit et al.,, Nucleic acids Res., 2009 Tuffery et al., J Comput Chem., 2005 Tuffery and Derreumaux, Proteins., 2005

De novo peptide structure modeling

Generating models

 $E = E_{\text{local}} + E_{\text{nonbonded}} + E_{\text{H-bond}}$

$$E_{\text{HB1}} = w_{\text{hb1}-4} \sum_{ij,j=i+4} \varepsilon_{\text{hb1}-4} \mu(r_{ij}) \nu(\alpha_{ij}) + w_{\text{hb1}>4} \sum_{ij,j>i+4} \varepsilon_{\text{hb1}>4} \mu(r_{ij}) \nu(\alpha_{ij})$$
(7)
$$E_{\text{HB2}} = \sum_{\alpha} \varepsilon_{\alpha}^{\text{coop}} \exp(-(r_{ij}-\sigma)^2/2) \exp(-(r_{kl}-\sigma)^2/2) \times \Delta(ijkl) + \sum_{\beta} \varepsilon_{\beta}^{\text{coop}} \exp(-(r_{ij}-\sigma)^2/2) \times \exp(-(r_{kl}-\sigma)^2/2) \Delta'(ijkl)$$
(10)

Maupetit et al., Proteins, 2007 Maupetit et al., J. Comput Chem., 2009

De novo peptide structure modeling

>HMM-SA

NLHWAAAAAVWAVDOQUSUFSLHBBVWAAAVZZFFFSPBS XTLNHZDSNLNJFZDRLPECCILGDEQLUGPRGBDSKHBB BBQHEGOWAVWAAAVWABQHZRUEEEGWAAZCCQUQYGEB BVSUSP

Camproux et al., J. Mol. Biol., 2004

Maupetit et al. J. Comput Chem., 2009; Shen et al. J. Chem. Theor. Comput., 2014

Lamiable et al., J. Comput Chem, 2016 ; Nucleic Acids Res., 2016

Lamiable et al., J. Comput Chem, 2016 ; Nucleic Acids Res., 2016

PEP-FOLD1 (cyan) and PEP-FOLD2 (magenta) compared to the experimental conformation (green) of 2jnh (top) and 1i6c (bottom) *Shen et al., J. Chem. Theor. Comput., 2014*

PEP-FOLD1 (cyan) and PEP-FOLD2 (magenta) compared to the experimental conformation (green) of 2jnh (top) and 1i6c (bottom) *Shen et al., J. Chem. Theor. Comput., 2014*

1bhi (zinc finger like) Green : model rank2 Wheat : NMR

RMSd : 6.3A

RC-RMSd : 1.4A

1aqg(11 aas) rank 1 RC-RMSd : 0.9A 2oru(20 aas) rank 2 RC-RMSd : 2.8A

Green : model Wheat : NMR model

1uao (10 aas) rank 1 RC-RMSd : 0.9A

2bn6 (P-element somatic inhibitor) Green : model rank 1 Cyan : NMR model

RC-RMSd : 4.3A

1bjb (Amyloid beta [e16], res.1-28) Green : model rank 1 Cyan : NMR model

Towards rational peptide design

Peptide-protein interactions : an increasing panel of online tools

Peptide-protein complex

Accessing peptide conformation in complexes ?

Can suboptimal conformations of peptides in isolation approximate conformation of peptides in interaction with proteins ?

Peptidb collection (London & al., Structure, 2010) (100 peptides)

Lamiable et al., Methods Mol. Biol., 2017.

PEP-SiteFinder : a protocol for binding site identificati

Saladin et al., Nucleic Acids Res., 2014.

Peptide sub-optimal conformations to search for interaction sites ?

PriA Helicase Bound to SSB C-terminal Tail Peptide (PDB code: 4NL8)

http://bioserv.rpbs.univ-paris-diderot.fr/PEP-SiteFinder/

PepATTRACT : blind rigid docking step

Docking performance (50 best models)

iRMSd < 2 : 34 %

Binding site identification performance

	Sens.	Spec.
r_pepATTRACT	37.2	37.2
PEP-SiteFinder	27.3	27.3
PepSite	13.4	26.6

http://bioserv.rpbs.univ-paris-diderot.fr/services/pepATTRACT/

deVries et al., Nucleic Acids Res., 2017

Peptide-protein complex is better sampled

Direct blind search for peptide-protein complex conformat

PEP-FOLD-ATTRACT for failed pepATTRACT

KELCH-LIKE ECH-ASSOCIATED PROTEIN 1 / 9-mer NRF2 PDB : 1X2J (unbound) 1X2R (bound)

The first correct (iRMSD < 2) structure is at rank #6, with iRMSD = 1.1 A

Local docking by folding peptide at protein vicinity ?

Lamiable et al., Nucleic Acids Res., 2016.

Local docking by folding peptide at protein vicinity ?

Dashed: mean Plain: median

PeptiDB 41 complexes, APO protein conformation

PEP-FOLD3: protein-peptide interactions

http://bioserv.rpbs.univ-paris-diderot.fr/PEP-FOLD3/

Generation ~ OK

Improve scoring At the coarse grained level

Sampling issue ?

Hot spots of interaction

CYPA + 20 * GP

Towards rational peptide design

Example of CASPASE9-PP2A interaction

Interfering peptides identified using pepSCAN (thanks to A. Rebollo)

PP2A PDB : 2IAE (ABC) CASPASE9 PDB : 1JXQ (AB)

Example of CASPASE9-PP2A interaction PEP-FOLD-ATTRACT in agreement with pepSCAN ?

Q1 : CASPASE9 peptide to bind identified patch of PP2A?

Example of CASPASE9-PP2A interaction PEP-FOLD-ATTRACT in agreement with pepSCAN ?

Q2 : CASPASE9 peptide specifically binds identified patch of PP2A ?

Bruzzoni et al., Drug Discov. Today.,2017.

Mining protein structures to get information about candidate peptides.

bioserv.rpbs.univ-paris-diderot.fr/services/BCSearch

Guyon et al., Bioinformatics 2014, Guyon et al., Nucleic Acids Res., 2015.

PatchSearch: A Fast Computational Method for Off-Target Detection.

Rasolohery I. Moroy G. and Guyon F. J. Chem. Inf. Model. 2017

PatchSearch: A Fast Computational Method for Off-Target Detection.

Method:

Similarities searches based on conservation of internal distances between atoms a binding site.

 Stringent clique searching in correspondence graph
 → rigid core of binding sites

2) Enlargement of the cliques to construct quasi-cliques in correspondence graph
→ flexible parts of binding sites.

Construction of a correspondence graph.

Correspondence or matching between atoms C_1C_1' is linked to correspondence C_2C_2' as distance between C_1 and C_2 is equivalent to distance between C_1' and C_2' .

PatchSearch: A Fast Computational Method for Off-Target Detection.

Comparaison with other approaches (AUC):

	Kahraman data set		Homogeneous data set	
methods	shape	shape + size	shape	shape + size
PatchSearch: Clique	0.52	0.60	0.67	0.74
PatchSearch: Quasi-Clique	0.78	0.82	0.74	0.77
Spherical Harmonics (a)	0.64	0.77	NA	NA
sup-CK (a)	0.86	0.89	0.71	0.72
MultiBind (a)	0.71	NA	0.69	NA
PSIM (b)	0.79	NA	0.76	NA
PatchSurfer (c)	0.81	0.84	NA	NA

Rasolohery I. Moroy G. and Guyon F. J. Chem. Inf. Model. 2017

Clustering vs partitioning

Force field optimization vs optimality

Quick binding affinity estimates

Thanks to

MTi INSERM UMR-S 973

J. Maupetit Y. Shen

- J. Rey F. Guyon
- A. Saladin
- G. Moroy
- P. Thévenet
- A. Lamiable
- M. Vavrusa
- S. deVries
- U. Montreal, Canada
- N. Mousseau
- S. Coté

http://bioserv.rpbs.univ-parisdiderot.fr

IBPC CNRS UPR 9080

Ph. Derreumaux

TUM Munchen, Germany

M. Zacharias

Ceci n'est pas une protéine

From http://shoichetlab.compbio.ucsf.edu/