Development of coarse-grained models for nucleic acids (and aromatic systems)

Samuela Pasquali & Elisa Frezza

Laboratoire de Cristallographie et RMN Biologiques Faculté de Pharmacie, Université Paris Descartes

Nucleic acids complex structural architectures

Physical description

Prediction of the dynamical and thermodynamical behavior in 3D

Coarse-grained RNA modeling

Ab initio models: simplified models to represent the meaningful degrees of freedom of the system and the process of interest

... Why is RNA not a protein ...

At large distances the dominant effect should be the ELECTROSTATIC repulsion, with Van der Waals forces being subdominant

At long-range is LJ-like potential appropriate/necessary?

STACKING is the hydrophobic behavior of bases and it is short-ranged

At short-range LJ-like potential between bases are inadequate

Hydrogen bonding occurs in the base PLANE

Local geometries have to be taken into account

Bases can form hydrogen bonds on 3 different SIDES

Non-canonical base pairs and multiple pairings have to be included

HiRE-RNA, version 3

genetic algorithm parameter optimization NDB - topology based

T. Cragnolini, Y. Laurin, P. Derreumaux, S. Pasquali, JCTC (2015)

T. Cragnolini, P. Derreumaux, S. Pasquali, J. Physics: Condensed Matter (2015)

Base pairing canonical and non-canonical

288 theoretically possible pairs --> 145 found experimentally (NDB)

Non-canonical pairings

HiRE-RNA, version 3

Inclusion of experimental data

Low-resolution techniques : SAXS, Cryo-EM \longrightarrow Biased simulations Interactive simulations

High-resolution techniques : biochemistry, NRM, X-ray \longrightarrow Constraints

Single-molecule experiments : FRET, optical tweezers \longrightarrow External forces Constraints

Contraintes d'appariement de bases

Interactive simulations: UnityMol + HiRE-RNA

Energetic monitoring: total, electrostatic, stacking, base-pairing

Simulation interface

S. Doutreligne, P. Derreumaux, S. Pasquali, M. Baaden (2015) S. Doutreligne, L. Mazzanti, A. Taly, P. Derreumaux, M. Baden, S. Pasquali (2017)

Behavior of biomolecules

Tanford-Kirkwood model (1934, 1957)

pH

Molecule represented as a sphere impenetrable to solvent. Titratable group are independent (interact only through electrostatics) -----molecule's titration curve as superposition of titration curves of individual types of groups

$$w_{TK} \approx \frac{e^2}{8\pi\epsilon_0\epsilon_r} \sum_{i>j}^{N_p} \left(\frac{z_i z_j}{r_{ij}} - \frac{Z_p^2 \kappa}{2(1+\kappa b)} \right) \pm (pH - pK_a)$$
protonation (+)
deprotonation (-)
Fast Monte Carlo titration scheme

Texeira, Lund, Barroso da Silva, JCTC, 2010

pH

Fast MC titration

Barroso da Silva, Derreumaux, Pasquali, BBRC 2017

Barroso da Silva, Derreumaux, Pasquali, J Chem Phys 2017

Base protonation is intertwined with base pairing!

pH

HiRE-RNA v3 achievements

- Correctly fold molecules of complex architectures, including triplets and quadruplets, giving access to folding pathways and metastable states.
- **Mathematical States of St**
- Give access to the plurality of states of G-quadruplexes and study the possible interconversions between different conformations.
- Development of interactive simulation software for teaching and experimentalists (software presentation on Friday)

Future directions (to do list)

- HiRE-RNA v4, including ions and base-phosphate interactions
- **Enhance sampling for rare events** (collaboration D. Wales)
- **Proteins/Nucleic acids systems** (collaboration LBT)
- **Strenghten coupling with experiments** (collaborations LCRB, LBT)
- **Couple Titration and HiRE-RNA** (collaboration F. Barroso da Silva)
- **Generalization to other aromatic systems** (collaboration B. Baumeier)

Internal coordinates

immediate future

immediate future Internal Normal Mode Analysis

Advantages

- Faster and more harmonic exploration
- Better sampling for large conformational changes
- Determination of torsions implied in the global movements
- Conformational changes better described by the lower frequency modes (<5)
- No deformation of the structure, but large conformational changes

10% contribution

immediate future Internal Normal Mode Analysis Applications

- Sampling methods
- Prediction of candidate structures for docking experiments
- Prediction of RNA structure by combining SAXS data and MD
- Parametrization and optimisation of a coarse-grained force-field

Acknowledgements

Philippe Derreumaux LBT, Paris 7

HiRE-RNA

Marc Baaden LBT, CNRS

UnityMol

Fernando LB Da Silva University of Sao Paolo

Titration

Elisa Frezza LCRB

Internal coordinates

Tristan Cragnolini Post-doc Cambridge

HiRE-RNA, v2 & v3

Liuba Mazzanti Post-doc Cambridge

HiRE-RNA + SAXS

Sébastien Doutreligne grad student

D. Wales's group

