Structural bioinformatics in the frame of integrative structural biology

Benjamin Bardiaux and Thérèse E Malliavin

Unité de Bioinformatique Structurale Institut Pasteur and UMR CNRS 3528

Réunion groupe de travail Paris, 16-17 November 2017

Structural Bioinformatics Unit

(head: Michael Nilges)

"Molecular modelling in structural biology"

data interpretation \leftrightarrow model validation \leftrightarrow experiments design....

Structural Bioinformatics Unit | GT MASIM 2017 | B. Bardiaux

Software/Database

- **ARIA / YARIA** = automated NMR structure determination
- **IMP/PMI** = Integrative Modeling Platform/ Python Modeling Interface
- **SOM** = Self-Organising maps for automatic clustering of macromolecular conformations
- ibp-ng = a software for exploring protein conformational space based on a branch-andprune exploration
- **iPPI-DB** = database of protein-protein interaction modulators

aria.pasteur.fr yasara.org/yaria

integrativemodeling.org github.com/salilab/pmi

github.com/bougui505/SOM

github.com/geekysuavo/ibp-ng

ippidb.cdithem.fr

Structures under experimental restraints

- Ideal: Determine ensemble of 3D structures explaining experimental data
- Practice:
 - Experimental data as geometrical restraints
 - Find ensemble of conformations best satisfying the restraints
 - Minimise an hybrid energy function

$$E_{hybrid} = E_{geom} + E_{nb} + E_{data}$$

Examples:

- Structure of whirlin PDZ12 bi-domain from NMR and SAXS
- Modelling of symmetric helical filaments from NMR and cryo-EM

Docking of whirlin PDZ1 and PDZ2 with NMR Restraints

Find ensemble satisfying both NMR and SAXS data

=> Genetic algorithm (160.000 conformations from MD)

Find ensemble satisfying both NMR and SAXS data

40% of "closed" structures

Delhommel, Cordier, Bardiaux, Bouvier *et al.* & Wolff **Structure** 2017 7

Modelling of symmetric helical filaments from NMR and cryo-EM

implemented in CNS, valid for all symmetries, CPU efficient

Modelling of symmetric helical filaments from NMR and cryo-EM

Atomic structure of type II secretion pilus from **NMR** and **cryo-EM** (PDB 5WDA) Atomic structure of MAVS^{CARD} filament from **solid-state NMR** (PDB 2MS7)

Lopez-Castilla*, Thomassin*, Bardiaux* *et al.* & Francetic, **Nat. Microbiology**, 2017

He*, Bardiaux* *et al.* & Ritter **PNAS**, 2016

Enhanced sampling approach: TAMD

Maragliano, Vanden-Eijden, Chem Phys Lett 2006; Abrams, Tuckerman, JCP 2008

CpxA crystallographic structure

Martinez et al, Biopolymers 2016; Mechaly et al, PloS Pathogens, 2014

Effect of TAMD on HAMP motions

N2

His-248

2B

Connection of HAMP motions to CpxA function

Duclert-Savatier et al, submitted to PloS Comput Biol

Connection of HAMP motions to CpxA function

Duclert-Savatier et al, submitted to PloS Comput Biol

Comparison with X-ray structures of other histidine kinases

Gushchin, Melnikov, Polovinkin, Ishchenko, Yuzhakova, Buslaev, Bourenkov, Grudinin, Round, Balandin, Borshchevskiy, Willbold, Leonard, Büldt, Popov, Gordeliy, Science 2017

Interaction of YEATS and Nt peptide from H3

Gilles Lamothe, in revision at BMC Struct Biol

Interaction of YEATS and Nt peptide from H3

a) TAMDYpt13 (front) c) TAMDYpt7 (front) e) TAMDYpt3 (front)

Interaction of YEATS and Nt peptide from H3

